diff --git a/doc/source/whatsnew/v2.2.1.rst b/doc/source/whatsnew/v2.2.1.rst index 6c6a37b2b2f89..85b9346aa01a5 100644 --- a/doc/source/whatsnew/v2.2.1.rst +++ b/doc/source/whatsnew/v2.2.1.rst @@ -39,6 +39,7 @@ Fixed regressions - Fixed regression in :meth:`DataFrameGroupBy.idxmin`, :meth:`DataFrameGroupBy.idxmax`, :meth:`SeriesGroupBy.idxmin`, :meth:`SeriesGroupBy.idxmax` where values containing the minimum or maximum value for the dtype could produce incorrect results (:issue:`57040`) - Fixed regression in :meth:`ExtensionArray.to_numpy` raising for non-numeric masked dtypes (:issue:`56991`) - Fixed regression in :meth:`Index.join` raising ``TypeError`` when joining an empty index to a non-empty index containing mixed dtype values (:issue:`57048`) +- Fixed regression in :meth:`Series.astype` introducing decimals when converting from integer with missing values to string dtype (:issue:`57418`) - Fixed regression in :meth:`Series.pct_change` raising a ``ValueError`` for an empty :class:`Series` (:issue:`57056`) - Fixed regression in :meth:`Series.to_numpy` when dtype is given as float and the data contains NaNs (:issue:`57121`) diff --git a/pandas/_libs/lib.pyx b/pandas/_libs/lib.pyx index 3146b31a2e7e8..00668576d5d53 100644 --- a/pandas/_libs/lib.pyx +++ b/pandas/_libs/lib.pyx @@ -759,7 +759,7 @@ cpdef ndarray[object] ensure_string_array( out = arr.astype(str).astype(object) out[arr.isna()] = na_value return out - arr = arr.to_numpy() + arr = arr.to_numpy(dtype=object) elif not util.is_array(arr): arr = np.array(arr, dtype="object") diff --git a/pandas/tests/series/methods/test_astype.py b/pandas/tests/series/methods/test_astype.py index 2588f195aab7e..4b2122e25f819 100644 --- a/pandas/tests/series/methods/test_astype.py +++ b/pandas/tests/series/methods/test_astype.py @@ -667,3 +667,11 @@ def test_astype_timedelta64_with_np_nan(self): result = Series([Timedelta(1), np.nan], dtype="timedelta64[ns]") expected = Series([Timedelta(1), NaT], dtype="timedelta64[ns]") tm.assert_series_equal(result, expected) + + @td.skip_if_no("pyarrow") + def test_astype_int_na_string(self): + # GH#57418 + ser = Series([12, NA], dtype="Int64[pyarrow]") + result = ser.astype("string[pyarrow]") + expected = Series(["12", NA], dtype="string[pyarrow]") + tm.assert_series_equal(result, expected)