-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathisomorphism_polynomials.tex
2309 lines (2119 loc) · 103 KB
/
isomorphism_polynomials.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{amsart}
%\usepackage[margin=30mm]{geometry}
\usepackage{unicode}
\DeclareUnicodeCharacter{22F1}{\smash\ddots}
\DeclareUnicodeCharacter{22F0}{\smash\iddots}
\DeclareUnicodeCharacter{2264}{\leqslant}
\DeclareUnicodeCharacter{2265}{\geqslant}
\usepackage{amsmath,amssymb,mathrsfs}
\usepackage{bm}
\usepackage{lmodern}
\usepackage{mathdots}
\usepackage{algorithm}
\usepackage{algpseudocode}
\usepackage{graphicx}
% \usepackage{lineno}\linenumbers
\usepackage{booktabs,multirow}
\newif\ifapx \apxtrue % If appendix
% Colors%<<<
\usepackage{color}
\definecolor{purple}{rgb}{.49,.11,.61}
\definecolor{green}{rgb}{.08,.69,.10}
\definecolor{blue}{rgb}{.01,.26,.87}
\definecolor{pink}{rgb}{1,.5,.75}
\definecolor{brown}{rgb}{.39,.21,.00}
\definecolor{red}{rgb}{.89,0,0}
\definecolor{lightblue}{rgb}{.58,.81,.98}
\definecolor{teal}{rgb}{0,.57,.52}
\definecolor{orange}{rgb}{.97,.45,.02}
\definecolor{lightgreen}{rgb}{.53,.99,.01}
\definecolor{magenta}{rgb}{.76,0,.47}
%>>>
\usepackage{soulutf8}\sethlcolor{pink} \def\todo#1{\hl{#1}}
% Theorems, equations, counters%<<<
\def\linkcounter#1#2{\edef\magic{\noexpand\let
\expandafter\noexpand\csname c@#1\endcsname
\expandafter\noexpand\csname c@#2\endcsname}\magic}
\def\newthm#1#2{\newtheorem{#1}{#2}[section]\linkcounter{#1}{equation}}
\newthm{prop}{Proposition}
\newthm{thm}{Theorem}
\newthm{lem}{Lemma}
\def\theequation{\thesection.\arabic{equation}}
\def\labelenumi{(\roman{enumi})}
\def\itemref#1{\expandafter\ifx\csname r@#1\endcsname\relax
{\bfseries ??}\else{\setcounter{enumi}{\ref{#1}}\labelenumi}\fi}
\def\proofof{Proof of }
\let\realpar\paragraph
\def\paragraph#1{\realpar{\textbf{#1}}}
% Bib aliases
\makeatletter%<<<
\def\@citex[#1]#2{\leavevmode
\let\@citea\@empty
\@cite{\@for\@citeb:=#2\do
{\@citea\def\@citea{,\penalty\@m\ }%
\edef\magic##1{\let##1\expandafter\noexpand\csname bibalias@\@citeb\endcsname}%
\magic\tmp \ifx\tmp\relax\else \let\@citeb\tmp\fi
\edef\@citeb{\expandafter\@firstofone\@citeb\@empty}%
\if@filesw\immediate\write\@auxout{\string\citation{\@citeb}}\fi
\@ifundefined{b@\@citeb}{\hbox{\reset@font\bfseries ?}%
\G@refundefinedtrue
\@latex@warning
{Citation `\@citeb' on page \thepage \space undefined}}%
{\@cite@ofmt{\csname b@\@citeb\endcsname}}}}{#1}}
\def\bibalias#1#2{\expandafter\def\csname bibalias@#1\endcsname{#2}}
\makeatother%>>>
\bibalias{2013bfp}{DBLP:journals/corr/BerthomieuFP13}
%>>>
% Misc. math stuff%<<<
\def\bigperp{\mathop{\vcenter{\hbox{\scalebox{2}{\ensuremath{\perp}}}}}%
\displaylimits}
\let\fr\mathfrak
\let\ro\mathscr
% \def\transpose{\,{}^{\mathrm{t}\!}}
\def\transpose#1{{\vphantom{#1}}^{\mathrm{t}}\!#1}
\def\pa#1{\left(#1\right)}
\def\floor#1{\left\lfloor#1\right\rfloor}
\def\chev#1{\left\langle#1\right\rangle}
\def\acco#1{\left\{#1\right\}}
\def\abs#1{\left|#1\right|}
\def\mat#1{\begin{pmatrix}#1\end{pmatrix}}
\def\smat{\def\arraystretch{.66}\mat}
\def\card#1{\abs{#1}}
\def\chk#1{#1^{\smash{\scalebox{.7}[1.4]{\rotatebox{90}{\guilsinglleft}}}}}
\DeclareMathOperator\Ker{Ker}
\DeclareMathOperator\Hom{Hom}
\DeclareMathOperator\End{End}
\DeclareMathOperator\GL{GL}
\DeclareMathOperator\PGL{PGL}
\DeclareMathOperator\Tr{Tr}
\def\F{\mathbb{F}}
\def\Id{\mathrm{Id}}
\def\M{\mathsf{M}}
\def\Ot{\widetilde{O}}
\def\plusort{\stackrel{⟂}{⊕}}
\def\gitkw$#1:#2${{\small \textbf{#1: }\texttt{#2}}}
%>>>
% Stretching diagonal dots%<<<
\makeatletter
\def\clap #1{\hbox to 0pt{\hss#1\hss}}
\def\stretchdots#1#2#3#4{
\setbox0=\hbox{$#4$}\dimen0= \wd0 \advance \dimen0 2\arraycolsep
\rlap{\kern -\arraycolsep \hbox to \dimen0 {%
\hss \raise #1 \clap{$.$}\hss
\hss \raise #2 \clap{$\m@th.$}\hss
\hss \raise #3 \clap{$\m@th.$}\hss}}%
\kern \wd0
}
\def\siddots{\stretchdots{0pt}{4pt}{8pt}}
\def\sddots{\stretchdots{8pt}{4pt}{0pt}}
\makeatother%>>>
%>>>1
% $Date:$
\title[Pairs of quadratic forms]%<<<1
{Computing Isomorphisms between Pairs of Quadratic Forms in Polynomial Time}
% {Solving the ``Isomorphism of Polynomials with Two Secrets'' Problem
% for All Pairs of Quadratic Forms}
% \keywords{Quadratic forms, pencils of quadratic forms,
% isomorphism of polynomials, multivariate cryptography}
% \subjclass[2000]{15A63, 15A22, 15A21, 11T71}
% \author{Jérôme Plût}
% \email{jerome.plut@ssi.gouv.fr}
% \address{Agence Nationale de la Sécurité des Systèmes d'Information --- 51,
% boulevard de La Tour-Maubourg, 75007 Paris, France}
% \author{Pierre-Alain Fouque}
% \email{pierre-alain.fouque@ens.fr}
% \address{Université Rennes 1, Campus de Beaulieu ---
% 263, avenue du Général Leclerc - Batiment 12
% 35042 Rennes Cedex, France}
% \author{Gilles Macario-Rat}
% \email{gilles.macariorat@orange.com}
% \address{Orange Labs --- 38-40, rue du Général Leclerc,
% 92130 Issy-les-Moulineaux, France}
% \author{Jérôme Plût\footnote{ANSSI}
% \and Pierre-Alain Fouque\footnote{Université Rennes 1 and Institut
% Universitaire de France}
% \and Gilles Macario-Rat\footnote{Orange Labs}}
\author[J. Plût, P.-A. Fouque and G. Macario-Rat]%
{Jérôme Plût, Pierre-Alain Fouque and Gilles Macario-Rat}
% \centerline{\gitkw $Id:$
% \gitkw $Author:$
% \gitkw $Date:$}
\begin{document}
\maketitle
\begin{abstract}%<<<
We study the Isomorphism of Polynomial (IP2S) problem
with~$m=2$ homogeneous quadratic polynomials of $n$ variables over a finite field
characteristic: given two pairs~$(\bm{a}, \bm{b})$
of quadratic forms on $n$~variables,
we compute two bijective linear maps $(s,t)$ such that
$\bm{b}=t\circ \bm{a}\circ s$.
We give an algorithm computing~$s$ and~$t$
in worst-case time complexity~$O(n^{ω+1})$ in odd characteristic
and~$O(n^{2ω})$ in characteristic two,
and~$O(n^3)$ on average in all characteristics,
where $ω$~is a linear algebra exponent.
%
% The IP2S problem was introduced in cryptography by Patarin back in 1996.
% The special case of this problem when $t$ is the identity is called
% the isomorphism with one secret (IP1S) problem.
% Generic algebraic equation solvers (for example using Gröbner bases)
% solve quite well random instances of the IP1S problem. For the particular
% \emph{cyclic} instances of IP1S, a cubic-time algorithm was later
% given~\cite{MPG2013} and explained in terms of pencils of quadratic forms
% over all finite fields; in particular, the cyclic IP1S problem in odd
% characteristic reduces to the computation of the square root of a matrix.
%
% We give here an algorithm solving all cases of the IP1S problem in odd
% characteristic using two new tools, the Kronecker form for a singular
% quadratic pencil, and the reduction of bilinear forms over a non-commutative
% algebra. Finally, we show that the second secret in the IP2S problem may
% be recovered in cubic time.
\end{abstract}%>>>
\maketitle
\section*{Introduction}
\subsection*{The IP1S and IP2S problems}
The \emph{Isomorphism of Polynomial with Two Secrets} (IP2S) problem is
the following: given a field~$k$ and two $m$-uples $\bm{a} = (a_1, …,
a_m)$ and~$\bm{b} = (b_1, …, b_m)$ in $n$~variables~$(x_1, …, x_n)$, compute
two invertible linear maps~$s ∈ \GL_n(k)$ of the variables~$x_i$
and~$t ∈ \GL_m(k)$ of the polynomials~$a_i$ such that
\begin{equation*}
\bm{b} = t ∘ \bm{a} ∘ s.
\end{equation*}
The particular case where we restrict~$t$ to the identity transformation
is also known as \emph{Isomorphism of Polynomials with One Secret}
(IP1S).
Both these problems were introduced in cryptography by
Patarin~\cite{DBLP:conf/eurocrypt/Patarin96} to construct an efficient
authentication scheme,
as an alternative to the Graph Isomorphism Problem (GI) proposed by Goldreich, Micali and Wigderson~\cite{DBLP:journals/jacm/GoldreichMW91}.
The IP problem was appealing since
it seems more difficult than the Graph Isomorphism problem~\cite{DBLP:conf/eurocrypt/PatarinGC98}.
Agrawal and Saxena reduced~\cite{DBLP:conf/stacs/AgrawalS06} the Graph
Isomorphism problem to a particular case of IP1S using two polynomials.
% one of them being a quadratic form encoding the adjacency matrix of the
% graph, and the other one being the cubic~$\sum x_i^3$, over a finite field of
% odd characteristic.
For the case of quadratic polynomials, the status of this problem is unclear despite recent
intensive research in the cryptographic community since this case is the most interesting
for practical schemes. There exists a claimed reduction between the quadratic IP1S problem and the GI
problem~\cite{DBLP:conf/eurocrypt/PatarinGC98}, but we realized that this proof is incomplete.
Indeed, the proof works by induction and decomposes any permutation as the composition of
transpositions. It is possible to write a system of quadratic polynomials such that the only solutions
of the IP1S problem will be the identity or a transposition by modifying a bit the systems proposed
in~\cite{DBLP:conf/eurocrypt/PatarinGC98}. However, it is not obvious how we can compose the systems
of equations such that the solutions will be the composition of the solutions.
\bigbreak
The defining parameters of the IP problems are the number~$n$ of
variables, the number~$m$ of polynomials, their degree, and the finite
field~$k$.
For efficiency reasons, the degree is generally small:
only quadratic and cubic equations are involved.
To our knowledge, no significant progress has been done on the cubic case.
We limit ourselves to the special case of two equations, both
being homogeneous polynomials of degree~two. According to previous
literature~\cite{DBLP:conf/eurocrypt/Perret05,DBLP:conf/eurocrypt/FaugereP06,DBLP:conf/pkc/BouillaguetFFP11,DBLP:conf/eurocrypt/BouillaguetFV13},
this is the most difficult case.
The case of only one homogeneous quadratic equation
is solved by reduction of quadratic forms,
which has been known for centuries~\cite{gauss,lidl1997finite}.
In the non-homogeneous case, the presence of affine terms
gives linear relations between
the secret unknowns~\cite{DBLP:conf/eurocrypt/PatarinGC98},
and this extra information actually helps generic solvers,
for example those using Gröbner bases~\cite{DBLP:conf/eurocrypt/FaugereP06}.
The case of more than two equations is easier since we can relinearize
the systems~\cite{DBLP:conf/pkc/BouillaguetFFP11}.
\subsection*{Previous work}
The (closely related) problem of finding a normal form
for pairs of symmetric bilinear forms
has been studied since the second half of the 19\textsuperscript{th} century.
The problem depends on both the characteristic of the base field,
and on the regularity of the bilinear forms
(\emph{i.e.} whether one of the forms in the pair is invertible).
Since bilinear and quadratic pairs over the real numbers occur naturally
in a large class of physics and optimization problems,
these cases have historically been studied in much more depth
than the corresponding problem over finite fields,
and some textbook proofs even use complex analysis~\cite[XII(56)]{Gantmacher}.
The following table gives a summary of proofs of the various cases
of reduction of a pair of symmetric bilinear forms.
Another report is given in~\cite{olomouc2004fv}.
\setlength\tabcolsep{.2em}\smallbreak
\begin{center}\begin{tabular}{llll}
Characteristic & zero & odd & two \\
\toprule
regular & Weierstraß 1858\cite{1858weierstrass}
& Dickson 1909\cite{ams1909dickson}
& \multirow{2}{*}{Waterhouse 1977\cite{pacific1977waterhouse}} \\
singular & Kronecker 1890\cite{1890kronecker}
& Waterhouse 1976\cite{inventiones1976waterhouse} & \\
\bottomrule
\end{tabular}\end{center}\medbreak
% Despite the different techniques used in the proof,
% depending on the characteristic
% (\emph{e.g.} the first proofs in characteristic zero
% used complex-analytic methods),
% in the end the result is always the same
% (and it is possible to give a unified proof of it):
% a pair of bilinear forms is the direct sum of a \emph{regular} part,
% which is classified by invariant factors;
% and of a \emph{singular} part, which is classified by dimensions.
%
If $2 ≠ 0$, then quadratic and bilinear forms coincide,
thus the odd-characteristic case of the problem
was solved before it was even proposed.
After the proposal of using pairs of quadratic forms by Patarin,
there were also some advances by cryptographers,
most of them unaware of the previous work cited above.
Bouillaguet, Fouque and Macario-Rat solved
in 2011~\cite{DBLP:conf/asiacrypt/BouillaguetFM11}
the special case where, in odd characteristic,
one of the maps is the Weil restriction of $x ↦ x σ(x)$,
where $σ$~is the Frobenius automorphism.
% used \emph{pencils} of quadratic forms,
% which are pairs~$(b_{∞}, b_0)$ of such forms,
% to recover the secret mappings $s$ and $t$ when three equations are available
% and one of the quadratic equations $\bm{a}$
% comes from a special mapping $X\mapsto X^{q^\theta+1}$ over $\F_q$.
% In the case of the IP problem,
% this is optimal using an information theoretic argument.
% A case of interest is the particular case of \emph{cyclic} pencils: a
% pencil~$\bm{b} = (b_{∞}, b_0)$ is \emph{cyclic} if $b_{∞}$~is invertible
% and $b_{∞}^{-1} b_{0}$ is a cyclic matrix, \emph{i.e.} its characteristic
% polynomial is equal to its minimal polynomial. The cyclic case is
% dominant (it is defined by the non-cancellation of some polynomial
% functions of the coefficients of~$\bm{b}$). For cyclic instances of the
% IP1S problem, the Gröbner basis approach works
% well~\cite{DBLP:conf/pkc/BouillaguetFFP11} since the number of solutions
% is known to be small. For all other instances, the number of solutions is
% empirically large and such algorithms are then well known to be less
% efficient.
Macario-Rat, Plût and Gilbert gave in 2013~\cite{MPG2013}
an algebraic solution to the cyclic instances of the IP1S problem
for $m=2$ over finite fields of any characteristic.
% Macario-Rat, Plût and Gilbert explained in 2013~\cite{MPG2013} how to
% solve cyclic instances of the IP1S problem for~$m=2$ over finite fields
% of any characteristic. A pencil~$\bm{b} = (b_{∞}, b_0)$ is \emph{cyclic}
% if $b_{∞}$~is invertible and~$b_{∞}^{-1} b_{0}$ is a cyclic matrix,
% \emph{i.e.} its characteristic polynomial is equal to its minimal
% polynomial. Although the cyclic case is dominant (it is defined by the
% non-cancellation of some polynomial functions
% of the coefficients of~$\bm{b}$), it is not the general case in a
% practical sense. In the cyclic instances, Gröbner bases works
% well~\cite{DBLP:conf/pkc/BouillaguetFFP11} since in this case, the number
% of solutions is small. For all other instances, the number of solutions
% is large, and it is well-known that in this case, such algorithms are
% less efficient.
Finally, Berthomieu, Faugère and Perret
proposed in 2014~\cite{DBLP:journals/corr/BerthomieuFP13}
a polynomial algorithm for the regular, odd-characteristic instances of IP1S
with any number of equations,
inspired by the characteristic-zero methods.
We compare our method to theirs in Appendix~\ref{ap:polar}.
% Given two families of polynomials over a field~$k$,
% they give a solution to the IP1S problem
% over a tower~$k'$ of real quadratic extensions of~$k$
% (where a \emph{real quadratic extension} is obtained by
% adjoining the square root of a sum of squares).
% This solves the IP1S problem over the original field~$k$ only when
% $k$~is \emph{Euclidean}, \emph{i.e.} has no real quadratic extension.
% This is the case for example if $k$~is a closed real field such as~$ℝ$
% or the field~$ℝ_{\mathrm{alg}}$ of real algebraic numbers,
% or an algebraically closed field;
% however, since any quadratic extension of a finite field is real,
% no finite field is Euclidean.
% Over the
% original field, this solves the \emph{decisional} IP1S problem:
% determining whether two families of polynomials are isomorphic. This
% latter problem does not have many cryptographic applications.
\subsection*{Our contributions}
These previous works left open the case of singular pencils,
as well as the characteristic-two case
and the IP2S problem.
We give here a solution to these three problems.
We first review the mathematical theory behind pairs of \emph{bilinear} forms,
adding an algorithmic point of view to the classic theorems.
% Since this is a solved problem, we have been able to omit most proofs in
% this part.
%
% We start by studying the bilinear forms associated to
% a pair of quadratic forms.
Such a bilinear pair decomposes canonically as the orthogonal sum of
a “totally singular” and a regular part.
The totally singular part is canonically isomorphic to a sum of
standard objects called Kronecker modules,
while the regular parts is classified by invariant factors
and some quadratic invariants.
In characteristic different from two,
this theory gives a full classification of quadratic forms.
We use this to give a solution to the IP1S problem.
% In that case, the mathematics of bilinear pairs
% directly translate to a polynomial algorithm for solving the IP1S problem.
In this first part, we follow the previous treatment of
the bilinear case given by Waterhouse~\cite{inventiones1976waterhouse};
our contributions consist in detailing some algorithms
as well as clarifying the status of characteristic~two.
We then cover the case of quadratic forms in characteristic two.
In both the singular and the regular case,
we give a description of the groups of automorphisms
of the associated bilinear forms.
We then show how to find, in these sets,
a transformation with the required action on the diagonal coefficients.
The last section explains how to recover the second (``outer'') secret
in the two-secret IP2S problem.
We determine this transformation by its action on the invariant factors.
% Since applying an outer linear combination to a Kronecker module
% leaves it unchanged (up to almost-unique isomorphism),
% the regular part is enough to recover the outer secret.
% This is done using the factorization of the characteristic polynomial.
\subsection*{Mathematical background and notations}
Throughout this document, $k$~is a finite field
and $V$~is a $n$-dimensional vector space over~$k$.
We study the IP1S and IP2S problems for \emph{$k$-quadratic forms} on~$V$,
which are homogeneous polynomials of degree~$2$ in coordinates on~$V$
and with coefficients in~$k$.
To a quadratic form~$q$,
one may associate its \emph{polar form}~$b$ defined by
\begin{equation*}\label{eq:polar}
b(x,y) = q(x+y) - q(x) - q(y);
\end{equation*}
this is a symmetric $k$-bilinear form,
and it satisfies the \emph{polarity identity}
\begin{equation*}\label{eq:polarity}
b(x,x) = 2q(x).
\end{equation*}
If~$2 ≠ 0$ in~$k$, then the polarity identity is a bijection between
quadratic forms and bilinear forms.
Therefore, instead of quadratic forms, we shall study bilinear forms.
In the case where~$2 = 0$ in~$k$, the situation is more complicated;
the polarity map is neither injective nor surjective
(polar forms are always alternating bilinear forms).
We refer to~\cite{milnorhusemoller} for a classification of
binary quadratic forms.
It will be convenient here do designate by \emph{polar forms}
the image of the polarity map: that is, symmetric bilinear forms if~$2 ≠ 0$,
and alternating bilinear forms if~$2 = 0$.
\medbreak
We define a \emph{pencil} of quadratic forms
as a pair~$(q_0, q_∞)$ of quadratic forms,
or equivalently, as the affine line~$(q_λ = q_0 - λ q_{∞})$
with base points~$q_0, q_∞$.
Likewise, we define bilinear and polar pencils.
There are obvious notions of orthogonal sum and polarity for these pencils.
We say that a bilinear pencil is \emph{regular}
if its characteristic polynomial~$\det (q_λ)$ is not zero,
and \emph{singular} otherwise.
A quadratic pencil is regular if its polar pencil is regular.
% This means that their classification is%<<<
% quite different from the odd-characteristic case~\cite{milnorhusemoller}.
% and relies on the Arf invariant.
%
% Let~$\chk{V}$ be the dual of the vector space~$V$.
% A bilinear form~$b$ on~$V$ is the same as a linear map~$b: V → \chk{V}$.
% The bilinear form is \emph{regular} if it defines
% an invertible linear map~$V → \chk{V}$.
% In this case, for any endomorphism~$u$ of~$V$,
% there exists a unique endomorphism~$u^{⋆}$ of~$V$
% such that~$b(x,u(y)) = b(u^{⋆}(x), y)$;
% the endomorphism~$u^{⋆}$ is called the \emph{left-adjoint} of~$u$.
% If $b$~is symmetric then left- and right-adjoints coincide.
%
% An \emph{(affine) pencil of symmetric bilinear forms} over~$V$,
% or a \emph{symmetric pencil} in short,
% is a pair of symmetric bilinear forms~$\bm{b} = (b_{∞}, b_{0})$ over~$V$.
% We write this pencil in affine form as~$b_{λ} = λ b_{∞} + b_{0}$,
% and in projective form as~$b_{λ:μ} = λ b_{∞} + μ b_{0}$,
% where $b_{0}$ and~$b_{∞}$ are symmetric bilinear forms.
% Given two vector spaces equipped with pencils~$(V, b)$ and~$(V', b')$, a
% \emph{linear map} of pencils is a linear map~$s: V → V'$ such
% that~$b'_{λ} ∘ s = b_{λ}$.
% A \emph{projective map} of pencils is a pair~$(s, t)$,
% where $s: V → V'$ is a linear map
% and $t ∈ \PGL_2 (k)$~is a homography such that~$b'_{λ} ∘ s = b_{t(λ)}$.
% We define quadratic pencils in the same way.
% The IP1S problem is then the computation of
% a linear isomorphism of quadratic pencils,
% whereas the IP2S problem is the computation of a projective isomorphism.
%>>>
% We define a \emph{(affine) pencil} of symmetric bilinear forms%<<<
% as an ordered pair of quadratic forms~$\bm{b} = (b_∞, b_0)$ on~$V$.
% Such a pencil also corresponds to the affine line~$b_{λ} = λ b_∞ + b_0$.
% There is an obvious definition of orthogonal sum for bilinear pencils.
% We define in the same way affine pencils of quadratic forms;
% the polar of a quadratic pencil is a symmetric bilinear pencil.
%%>>>
% Two elements~$x$ and~$y$ of~$V$ are \emph{orthogonal} for a%<<<
% bilinear form~$b$ if~$b(x,y) = 0$.
% They are orthogonal for a pencil~$(b_{λ})$ if,
% for all~$λ$, $b_{λ}(x,y) = 0$.
% We write~$x ⟂_{b} y$,
% or $x ⟂ y$ when the context makes the bilinear form, or pencil, obvious.
% We write~$W^{⟂}$ for the orthogonal of a subspace~$W ⊂ V$.
% A space~$W$ is \emph{self-orthogonal} if~$W ⊂ W^{⟂}$.
%>>>
\bigbreak
For any ring~$R$, we write~$R^{m×n}$ for the vector space of
matrices with entries in~$R$ having $m$~lines and $n$~columns,
and $\transpose{A}$~for the transpose of a matrix~$A$.
% A \emph{symmetric} matrix is a matrix such that~$A = \transpose{A}$.
Symmetric bilinear forms~$b$ correspond to symmetric matrices~$B$.
A bilinear form is regular iff its matrix is invertible.
For any endomorphism~$u$ with matrix~$U$,
the adjoint endomorphism (relatively to~$B$)
has the matrix~$U^{⋆} = B^{-1} · \transpose{U} · B$.
The \emph{companion matrix}~$M_f$ of a polynomial~$f$
is the matrix of multiplication by~$x$
in the basis~$\acco{1,x,…,x^{\deg f-1}}$ of the quotient ring~$k[x]/f(x)$.
\medbreak
We also recall Hensel's lemma~\cite[II~(4.6)]{neukirch1999algebraic},
which is a powerful tool for solving algebraic equations in a local ring.
Let~$R$ be a complete local ring with maximal ideal~$\fr m$ and quotient
field~$k = R/\fr m$; let~$f ∈ R[x]$ be a polynomial and~$a ∈ k$ such
that~$f(a) = 0$ and~$f'(a) ≠ 0$ (\emph{i.e.} $a$~is a simple root of~$f$
modulo~$\fr m$). Then there exists a unique simple root~$b$ of~$f$ in~$R$
such that~$b ≡ a \pmod{m}$.
\medbreak
All complexities will be given as a number of operations
in the base field~$k$.
We write~$\M(n)$ for the cost of multiplication of polynomials of degree~$n$,
and~$ω$ for an exponent such that linear algebra of dimension~$n$
has cost~$n^{ω}$.
% For example,
% since Hensel lifts are computed via Newton's approximation method,
% lifting a root of a degree~$d$ polynomial to a ring of length~$n$
% requires $O(d \log n)$ operations.
% For simplicity, we will assume that the ``schoolbook'' methods are used
% for matrix and polynomial algebra;
% thus, matrix inversion has a cost of~$O(n^3)$,
% and polynomial multiplication has a cost of~$O(n^2)$.
%>>>1
\section{A review of results on bilinear pencils}
\label{s:bilinear}
\subsection{Kronecker decomposition}
For any integer~$h ≥ 0$, we define the \emph{Kronecker module}
of degree~$h$ as the vector space~$k^{2h+1}$
equipped with the bilinear pencil with matrix
\begin{equation}\label{eq:def-K}
{\def\arraystretch{.8}
q_0 - λ q_∞ = K_{h} = \mat{0&K'_{h}\\\transpose{K'_{h}}&0},
\quad \text{where}\quad
K'_h = \mat{-λ&&0\\1&\sddots{-λ}&\\&\sddots{-λ}&-λ\\0&&1}}.
\end{equation}
This is a singular symmetric bilinear pencil.
% We know~\cite[§3]{inventiones1976waterhouse}
% that any pencil has a unique \emph{Kronecker decomposition},
% that is, as an orthogonal sum of a regular pencil and of Kronecker modules.
% Moreover, the multiplicity of each Kronecker module~$K_h$ in this
% decomposition are also unique.
\begin{prop}[Kronecker decomposition]\label{prop:kronecker-decomposition}
Let~$(b_{λ}) = b_0 - λ b_∞$ be a symmetric bilinear pencil on~$k^n$.
Further assume that either~$2 ≠ 0$ in~$k$,
or that both $b_0$~and~$b_∞$ are alternating.
\begin{enumerate}
\item There exists a unique decomposition of the pencil~$(b_λ)$
as an orthogonal sum of a regular pencil
and of Kronecker modules.
\item There exists an algorithm computing this decomposition
in a time polynomial in~$n$.
\end{enumerate}
\end{prop}
\begin{proof}[\proofof Proposition~\ref{prop:kronecker-decomposition}]
The proof of the Kronecker decomposition~(i) published
by Waterhouse in 1976~\cite[Theorem 3.1]{inventiones1976waterhouse}
gives an algorithm for computing it.
That proof was written under the assumption that~$2 ≠ 0$ in~$k$;
but the only divisions by two used in the proof
involve halving some diagonal coefficients~$A(x,x)$ and~$B(x,x)$,
and it is therefore still valid in characteristic two
if we assume that $A$~and~$B$ are alternating.
The 1976 algorithm begins by computing (a Hermite normal form of)
the kernel of the matrix~$q_0 - λ q_∞$,
with coefficients in the polynomial ring~$k[λ]$.
Since the maximum degree appearing in the coefficients is~$n$,
and assuming that school-book multiplication is used in~$k[λ]$,
this requires at most~$O(n^ω\, \M(n))$~operations in the field~$k$.
\end{proof}
We give in Appendix~\ref{ap:kronecker} an algorithm
with complexity~$O((h_{\max}+1)\,n^ω)$,
where $h_{\max}$~is the maximal degree of
a Kronecker module factor of the pencil.
Since~$2h_{\max}+1 ≤ n$,
this algorithm has a worst-case complexity of~$O(n^{ω+1})$,
and, given that a generic bilinear pencil is regular,
an average-case complexity of~$O(n^ω)$.
% Let~$h$ be the smallest degree such that $E_{h} ∩ (\Ker A)$ is not zero.%<<<
% By \cite[Lemma 3.2]{inventiones1976waterhouse}, we know that
% $V$~contains $(2h + 1)$ linearly independent
% elements~$v_0, …, v_h; x_0, …, x_{h-1}$ such
% that~$(A - λ B) (∑ λ^i v_i) = 0$, $B x_i = A x_{i-1}$, and $B(x_0, v_0) = 1$.
% All that remains to do to find a factor of~$V$ isomorphic to~$K_h$
% is to find linear combinations~$w_i = x_i - ∑ a_{i,r} v_r$;
% such all vectors~$w_i$ are mutually orthogonal.
% Given that the only non-zero scalar products between the~$v_i$
% and the~$x_j$ are~$A(v_{i+1}, x_{i}) = B(v_i, x_i) = 1$,
% the relations for this are given by
% \begin{equation}\label{eq:w-orthogonal}
% a_{i,j} + a_{j,i} = B(x_i, x_j), \quad
% a_{i,j+1} + a_{j,i+1} = A(x_i, x_j) \quad (0 ≤ i, j ≤ h-1).
% \end{equation}
% The second equation may be replaced
% by~$a_{i,j} + a_{j-1,j+1} = A(x_i, x_{j-1})$ for~$1 ≤ j ≤ h$.
% This shows that all the coefficients~$(a_{i,j})$ are determined
% by the $(2h-1)$ coefficients~$a_{i,i}$ and~$a_{i,i+1}$,
% subject to the relations
% \begin{equation}\label{eq:w-orthogonal-diag}
% 2 a_{i,i} = B(x_i, x_i), \quad 2 a_{i,i+1} = A (x_i, x_i).
% \end{equation}
% If~$2 ≠ 0$ in~$k$, then these equations have unique solutions.
% If~$2 = 0$ and $A, B$ are both alternating,
% then these equations are always satisfied.
% In all cases, it is always possible to compute all coefficients~$a_{i,j}$,
% and hence the basis of a Kronecker module isomorphic to~$K_{h}$.
% Moreover, all the computations involved only linear algebra in~$V$,
% for a total computational cost of at most~$O(n^3)$ operations.%>>>
% % pre-ANTS%<<<
% Let~$B_∞, B_0$ be the matrices of the pencil
% and transform the concatenated~$n × (2n)$-matrix~$(B_{∞} \; B_0)$
% to the lower row echelon form
% \begin{equation}
% (B_{∞} \; B_0) \;=\; (⋆) · \mat{A_{∞} & 0\\ C & A_0},
% \end{equation}
% where $(⋆)$~is an invertible~$n × n$-matrix and
% $0$~is a $r × n$-block with $r$~being the largest possible value.
% This implies that the $n-r$~lines of~$A_0$ are linearly independent, and
% therefore that its columns have full rank~$n-r$; therefore, there exists
% a matrix~$F$ such that~$C = -A_0 F$. From this, we see that
% \begin{equation}
% B_{∞} x + B_0 y = 0 \;⇔ \; \begin{cases} A_{∞} x = 0\\ y ∈ Fx + \Ker A_0.
% \end{cases}
% \end{equation}
% In particular, the case~$x = 0$ tells us that $\Ker A_0 = \Ker B_0$.
% By using the \emph{upper} row echelon form, we likewise compute a matrix~$G$
% such that~$B_{∞} x = B_0 y$ implies~$x ∈ G y + \Ker B_{∞}$.
%
% We define a \emph{chain} of length~$h$ as a solution~$(e_0,…,e_h)$ of
% the $h$ equations~$b_0(e_i) + b_{∞}(e_{i-1}) = 0$ for~$i = 1,…,h$
% and~$b_{∞}(e_h) = 0$.
% We define by induction a sequence~$(U_i)$ of vector spaces such that the
% $h$-chains are defined by the relations~$e_0 ∈ U_h$ and~$e_i ∈ F(e_{i-1})
% + U_{h-i}$.
%
% The base case is that of chains of length~$0$, which are the
% elements of~$\Ker B_{∞}$. We define $U_0 = \Ker B_{∞}$.
%
% A $(h+1)$-chain is a $(h+2)$-uple~$(e_0,…,e_{h+1})$ such that
% $(e_1,…,e_{h+1})$~is a $h$-chain and $b_{0} e_1 + b_{∞} e_0 = 0$.
% The first condition amounts to~$e_1 ∈ U_h$ and~$e_i = f(e_{i-1}) +
% U_{h-i}$ for all~$i ≥ 2$; the second one means that $e_0 ∈ G U_{h} + \Ker
% B_{∞}$. We define~$U_{h+1} = G U_h + \Ker B_{∞}$.
%
% This allows us to compute minimal isotropic vectors of length~$h$ as
% satisfying the relations
% \begin{equation}\label{eq:m.i.v.-matrix}
% e_0 ∈ U_{h} ∩ \Ker B_0, \quad e_{i} ∈ F e_{i-1} + U_{h-i}.
% \end{equation}
% This determines the space of isotropic vectors of degree~$≤ h$ with
% total complexity~$O(n^3 (h+1))$; moreover, as this computation is
% triangular, it also gives the space of isotropic vectors of degree~$≤ h'$
% for all~$h' ≤ h$, so that we only need to perform one run of this
% algorithm over all the singular part of the pencil. Once we have isolated
% the minimal Kronecker module~$K$ of~$V$ in Step 2, we may then project
% this basis on the quotient~$V/K$ to directly obtain a (sorted) basis of
% the isotropic vectors of~$V/K$.
%%>>>
\subsection{Primary decomposition of regular bilinear pencils}
\label{ss:bil-regular}
Any regular bilinear pencil~$b_0 - λ b_∞$ is canonically isomorphic to
an orthogonal direct sum~\cite[Theorem 4.2]{inventiones1976waterhouse},
indexed over powers~$p(λ)^e$ of irreducible polynomials in~$k[λ]$,
of regular polar pencils over the local rings~$k[λ]/p(λ)^e$.
Moreover, if~$2 ≠ 0$, then all symmetric bilinear forms over this local ring
are congruent to one of the diagonal forms~$(1,…,1)$ or~$(1,…,1,δ)$,
where $δ$~is a prescribed non-square in the field~$k[λ]/p(λ)$.
Note that the proof of primary decomposition
in~\cite{inventiones1976waterhouse} again
only claims the result to hold when~$2 ≠ 0$; however,
that hypothesis is used only in two places:
in the Kronecker decomposition~\cite[Theorem 3.1]{inventiones1976waterhouse},
which we know by Proposition~\ref{prop:kronecker-decomposition} above
to be valid for alternating pencils when~$2 = 0$;
and in the reduction of quadratic forms over
local rings~\cite[Proposition~1.2]{inventiones1976waterhouse}.
% Therefore, the result~\cite[Theorem 4.2]{inventiones1976waterhouse},
For clarity, we state here a result covering all cases.
If $b = b_0 - λ b_∞$ is a regular bilinear pencil on~$V$,
its \emph{characteristic endomorphism} is~$c = b_∞^{-1} b_0$.
For any polynomial~$f ∈ k[λ]$,
we say that $b$~is \emph{free} over~$R = k[λ]/f(λ)$
if~$f(c) = 0$ and the action of~$R$ on~$V$,
with multiplication by~$λ$ given by~$c$,
makes~$V$ into a free $R$-module;
we then define the \emph{rank} of~$b$ as the rank of~$V$ over~$R$.
\begin{prop}\label{prop:primary}
Let~$b_0 - λ b_∞$ be a regular symmetric bilinear pencil on~$V = k^n$.
\begin{enumerate}
\item There exists a unique decomposition of~$V$ as
an orthogonal sum~$⨁ V_{p^e}$,
running over all powers~$p^e$ of (finite or infinite) places of~$k[λ]$,
such that $V_{p^e}$ is a free module over~$k[λ]/p(λ)^e$.
\item Assume that~$2 ≠ 0$ in~$k$.
Let~$p$ be an irreducible polynomial of degree~$d$ in~$k[λ]$,
and $e$~be an integer.
Write~$M_{p}$ for the companion matrix of~$p$ and
$T_p$~for a prescribed invertible matrix such that
both~$T_p$ and~$T_p M_p$ are symmetric.
Then $V_{p^e}$ is isomorphic to an orthogonal sum of pencils of
the following form, written as $e × e$~blocks of size~$d × d$:
\begin{equation*}
L_{p,e,u} \;=\; \mat{0&&-T_p u&T_p u (λ - M_p)\\
&\siddots{-T_p u}&\siddots{-T_p u}&\\
-T_p u&\siddots{-T_p u}&\\T_p u(λ-M_p)&&&0},
\end{equation*}
where $u$~is either the identity matrix,
or a prescribed non-square element of the field~$k[M_p]$,
with the extra condition that $u = 1$ for all but at most one summand.
\item There exists algorithms computing these decompositions
with at most~$O(n^3)$ operations in addition to those performed in
Proposition~\ref{prop:kronecker-decomposition}.
\end{enumerate}
\end{prop}
% By ``a free module over $k[λ]/p^e$'' in point~(i) above,
% we mean the following.
% If $p$~is a finite place, \emph{i.e.} an irreducible polynomial, then
% after restriction to~$V_{p^e}$: $B$~is a regular bilinear form;
% the endomorphism~$H = B^{-1} A$ satisfies the relation $p(H)^e = 0$;
% and $V_{p^e}$, seen as a $k[λ]/p(λ)^e$-module with
% multiplication by~$λ$ given by~$H$, is free.
In point~(i), following~\cite[§~4]{inventiones1976waterhouse},
we define the summand corresponding to the place at infinity%
\footnote{This could also be done in a way consistent with the finite places,
by considering the \emph{homogeneous} characteristic polynomial
$f(λ: μ) = \det (μ b_0 - λ b_∞)$.
However, using the inhomogeneous polynomial yields a simpler proof,
at the cost of this \emph{ad hoc} definition for the place at infinity.}
of~$k[λ]$ for the pencil~$b_0 - λ b_∞$ as the summand corresponding to
the place zero for the pencil~$b_∞ - λ b_0$.
An algorithm proving point~(iii)
is given in Appendix~\ref{ap:primary}.
\subsection{Bilinear and quadratic forms commuting with an algebra}
\label{ss:commute}
We state here some propositions about bilinear and quadratic forms
that are used in this work.
Let~$A → B$ be a ring morphism and $M$~be a $B$-module.
Then $M$~is also a $A$-module.
We say that a $A$-bilinear form~$b: M ⊗ M → A$ \emph{commutes with~$B$}
if, for any~$c ∈ B$, we have~$b(α x, y) = b(x, α y)$;
we say that a $A$-quadratic form commutes with~$B$ if its polar does.
Let~$b_0 - λ b_∞$ be a regular symmetric bilinear pencil,
and let~$c = b_∞^{-1} b_0$ be its characteristic endomorphism.
Since both $b_∞$ and~$b_0=b_∞ c$~are symmetric, for any~$x, y ∈ V$ we have
\begin{equation}
b_∞(x, c y) = b_0(x, y) = b_0(y, x) = b_∞(y, c x) = b_∞(c x, y).
\end{equation}
This implies that, for all~$α ∈ k[c]$, $b_∞(α x, y) = b_∞(x, α y)$.
Therefore, $b_∞$~commutes with~$k[c]$ in the previous sense.
\begin{prop}\label{prop:trace-ext}
Let~$K/k$ be a separable field extension,
and~$V$ be a finite-dimensional vector space over~$K$.
For any $k$-bilinear form~$b: V ⊗ V → k$ commuting with~$K$, there
exists a unique $K$-bilinear form~$b_K: V ⊗ V → K$ such that~$b =
\Tr_{K/k} \,∘ \,b_K$.
\end{prop}
\begin{proof}
By choosing a $K$-basis of~$V$ and noticing that
all coordinates of a bilinear form are themselves bilinear forms,
we may assume that~$V = K$.
In that case, the result is classical. We recall the proof here.
Let~$z$ be a primitive element of~$K$ and write $d = [K:k]$.
Since~$K/k$ is separable, the trace form is
non-degenerate~\cite[VI~5.2]{lang-algebra}
and there exists a unique element~$a ∈ K$ such that
$\Tr (a z^i) = b(1, z^i)$ for all~$i=0, …, d-1$.
We immadiately see that, for all~$x, y ∈ k$, $\Tr (a x y) = b(x, y)$.
\end{proof}
Let~$k$ be a field and $R$~be the local ring~$R = k[π]/π^e$.
Define the $k$-linear map~$τ: R → k$ by~$τ(∑ x_i π^i) = x_{e-1}$.
Then $(x, y) ↦ τ(xy)$ is a $k$-bilinear map on~$R$,
non-degenerate and commuting with~$R$.
(It is also a natural choice of an isomorphism
between $R$ and its dual $k$-vector space).
\begin{prop}\label{prop:trace-local}
For any $k$-bilinear form~$b$ on~$R^m × R^n$ commuting with~$R$,
there exists a unique $R$-bilinear form~$b_R: R^m × R^n → R$
such that~$b = τ ∘ b_R$.
\end{prop}
\begin{proof}
% (Note that we do not demand that $M$, $N$ be \emph{free} as
% $R$-modules.))
% By the structure theorem of modules over a principal ring,
% we have~$M = ⊕ R_{m_i}$ for some finite sequence of integers~$m_i$.
% If the result holds for modules~$(M', N)$ and~$(M'', N)$ then
% it also holds for~$(M' ⊕ M'', N)$.
% Therefore, using induction on the length of both modules,
% we only need to prove the case where~$M = R_m$ and~$N = R_n$ where~$m ≥ n$.
% In this case, since $b$~commutes with~$k[π]$,
% we see that for~$x = ∑ x_i π^i$, $y = ∑ y_i π^i$:
By taking coordinates we may assume~$m=n=1$.
For any~$x = ∑ x_i π^i$ and $y = ∑ y_i π^i$:
\begin{equation}
b(x,y) \;=\; ∑_{i,j} x_i y_j\: b(1, π^{i+j})
\;=\; ∑_{i+j+r = m-1} x_i y_j\: b(1, π^{m-1-r}) π^r.
\end{equation}
Let~$a = ∑ b(1, π^{i}) π^{m-1-i}$. Since $b(1, π^{r}) = 0$ for all~$r ≥
n$, $a$~belongs to the ideal~$π^{m-n} R_m = \Hom_R (R_n, R_m)$, so that
the product~$a\,y$ is well-defined in~$R_m$. The bilinear form~$b_R$ is
finally the form defined by~$b_R(x,y) = a\:x y$.
\end{proof}
The unicity of~$b_R$ shows that both forms~$b$ and~$b_R$ are
simultaneously symmetric or antisymmetric.
However, when $k$~is a field of characteristic two
and $b$~is alternating, in general $b_R$~is not
(its diagonal coefficients~$a$ only verify~$τ(a x^2) = 0$,
which is equivalent to~$a_{e-2i-1} = 0$ for all~$i$).
On the other hand, if both $b(x,y)$ and~$b(π x, y)$ are alternating
then $b_R$~is also alternating.
\medskip
For quadratic forms in characteristic two,
the analog to~\ref{prop:trace-ext},
which generalizes a result already known
for cyclic pencils~\cite[Prop.~5]{MPG2013}, holds:
\begin{prop} \label{prop:trace-quad}
Let~$K$ be a finite separable extension of~$k$ and~$V$ be a $K$-vector
space. For any $k$-quadratic form~$q: V ⊗ V → k$ commuting with~$K$,
there exists a unique $K$-quadratic form~$q_K: V ⊗ V → K$ such that~$q =
\Tr_{K/k} \, ∘ \, q_K$.
\end{prop}
\begin{proof}
This needs proof only in characteristic two.
First assume that~$V = K$.
Let~$b$ be the polar form of~$q$.
By Proposition~\ref{prop:trace-ext},
there exists~$b_K ∈ K$ such that~$b(x,y) = \Tr_{K/k} (b_K xy)$;
in particular, since $b$~is alternating,
for all~$x$ we have~$\Tr_{K/k} (b_K x^2) = 0$ and therefore~$b_K = 0$.
Since the polar of~$q$ is zero, $q$~is additive
and, since $q(a x) = a^2 q(x)$, it is a semi-linear form.
Since the trace map is non-degenerate,
there exists~$q_K$ such that~$q(x) = \Tr_{K/k} (q_K x^2)$.
As for Prop.~\ref{prop:trace-ext}, the $n$-dimensional case directly follows by
taking coordinates. Here all diagonal entries correspond to quadratic
forms, and all others to bilinear forms; all of these commute with~$K$.
\end{proof}
\section{Fully singular quadratic pencils in characteristic two}
\label{S:quad-sing}
In this section and the following one, we assume that the field~$k$ has
characteristic two.
We write~$σ: x ↦ x^2$ for the absolute Frobenius automorphism of~$k$.
Let~$q$ be a quadratic form over a~$k$-vector space~$V$. Since $2 = 0$
in~$k$, the polarity equation shows that the associated polar form~$b$ is
an \emph{alternating} bilinear form; namely, it satisfies~$b(x,x) = 0$
for all~$x ∈ V$. Moreover, the polarity map is not a bijection from
quadratic forms to alternating bilinear forms; its kernel is the space of
\emph{$σ$-linear forms} on~$V$. This means that, if a basis of~$V$ is
chosen, then a quadratic form is determined by its polar (which is an
alternating bilinear form) and its diagonal coefficients (corresponding to a
$σ$-linear form).
The classification of section~\ref{s:bilinear} still applies to
the polar part of quadratic pencils.
To compute an isomorphism between two such pencils,
we write down an explicit description of the group of automorphisms
preserving this polar part,
and compute how these automorphisms act
on the diagonal coefficients of a quadratic pencil.
We conclude the proof by showing that the corresponding equations
may be solved in polynomial time.
This section solves the case of totally singular pencils;
regular pencils are studied in the next one.
\subsection{An intrinsic description of Kronecker modules}
We give an intrinsic construction of the Kronecker modules.
Except where indicated, all tensor products and duals are understood as
operations on $k$-vector spaces.
For any integer~$d ≥ 0$, let~$H_d$ be
the $d+1$-dimensional vector space of homogeneous polynomials
of degree~$d$ in the variables~$(x:y)$,
$\chk{H_d}$ be the vector space dual to~$H_d$,
and~$\chev{φ,f}: \chk{H_d} × H_d → k$ be the standard bilinear pairing.
(For consistency, we let~$H_d = 0$ when~$d < 0$).
For any $h ∈ H_m$, multiplication by~$h$ defines a linear map,
which we again write~$h: H_d → H_{m+d}$,
as well as a transposed map~$\chk{h}: \chk{H_{d+m}} → \chk{H_d}$.
This means that~$\chev{\chk{h} φ, f} = \chev{φ, hf}$ for all~$φ ∈
\chk{H_{d+m}}$ and~$f ∈ H_d$.
All the maps~$h$ and~$\chk{h}$ commute with each other.
The \emph{Kronecker module} of degree~$d$ is
the $2d+1$-dimensional vector space~$K_d = H_{d-1} ⊕ \chk{H_{d}}$,
equipped with the symmetric bilinear pencil~$(q_λ)$ such that,
for~$f, f' ∈ H_{d-1}$ and~$φ, φ' ∈ \chk{H_d}$:
\begin{equation}\label{eq:kronecker-bilinear}
q_λ (f, f') \;=\; q_λ (φ, φ') \;=\; 0; \qquad
q_λ (f, φ) \;=\; \chev {φ, (λ y - x) f}.
\end{equation}
% The next proposition shows that multiplication by polynomials essentially
% defines all homomorphisms between the bilinear spaces~$K_d$.
% As in Subsection~\ref{SS:bil-reg-local},
% we write~$f ≻ g$ for the relation~$b_{∞} f + b_0 g = 0$.
We define a relation~$≻$ on~$K_{d}$ by: $u ≻ v$ if $B u = A v$.
In particular, for all~$f, g ∈ H_{d-1}$ and~$φ, ψ ∈ \chk{H_d}$,
\begin{equation}\label{eq:chain-Kd}
f ≻ g \;\text{ iff }\; y f = x g; \quad
φ ≻ ψ \;\text{ iff }\; \chk{y} φ = \chk{x} ψ.
\end{equation}
\begin{prop}\label{prop:end-Kd}
For any integers~$d, d'$, the linear maps from~$K_d$ to~$K_{d'}$
preserving the relation~$≻$ are the maps of the form
\begin{equation*}
\begin{array}{lclclcl}H_{d-1} &⊕& \chk{H_d} &→&H_{d'-1} &⊕& \chk{H_{d'}}\\
(f,&& φ) & ↦ & (u f ,&& \chk{v} φ + \chk{f} w)
\end{array},
\end{equation*}
where $u ∈ H_{d'-d}$, $v ∈ H_{d-d'}$, and~$w ∈ \chk{H_{d+d'-1}}$.
\end{prop}
\begin{proof}
(This proof is independent of the characteristic.)
Since we never have~$a ≻ b$ for~$a ∈ H_{d-1}$ and~$b ∈ \chk{H_{d}}$,
a map~$F: K_d → K_{d'}$ is $≻$-preserving
iff each of the four induced maps~$H_{d-1} → H_{d'-1}$, etc.
is $≻$-preserving.
Let~$(x^{i} y^{d-1-i})$ be a basis of~$H_{d-1}$
and write~$ξ_{j,d-j}$ for the dual basis of~$\chk{H_d}$.
We then have the relations
\begin{equation}\label{eq:chain-Kd-zero}
0 ≻ ξ_{0,d} ≻ ξ_{1,d-1} ≻ … ≻ ξ_{d,0} ≻ 0;
\end{equation}
on the other hand, by~\eqref{eq:chain-Kd},
for any chain~$0 ≻ f_0 ≻ … ≻ f_{n} ≻ 0$ in~$H_d$,
we have~$f_0 = … = f_n = 0$.
This proves that there is no non-zero $≻$-preserving map
$g: \chk{H_d} → H_{d'-1}$.
Finally, by observation~\eqref{eq:chain-Kd},
each of the remaining three maps has the required form.
%
% We first prove that any $≻$-map~$g: \chk{H_{d}} → H_{d'-1}$ is zero.
% By relation~\eqref{eq:chain-Kd-zero}, we have
% \begin{equation}
% 0 ≻ g(ξ_{
% \end{equation}
% Let~$F: K_{d} → K_{d'}$ be a $≻$-homomorphism.
% For~$j = 0, …, d$, let~$g_j$ be
% the projection to~$H_{d'-1}$ of~$F(ξ_{j, d-j})$.
% Applying~$F$ to the relation~\eqref{eq:chain-Kd-zero}, we see that
% \begin{equation}
% 0 ≻ g_0 ≻ g_1 ≻ … ≻ g_d ≻ 0.
% \end{equation}
% This and~\eqref{eq:chain-Kd} imply that~$g_j = 0$ for all~$j$.
% From this we deduce that $F(\chk{H_d}) ⊂ \chk{H_{d'}}$.
% Let~$v_j = \chev{F(ξ_{j,d-j}), y^{d'}}$ and~$v = ∑ v_j x^j y^{d-d'-j}$.
% By~\eqref{eq:chain-Kd-zero},
% we see that $v_j = \chev{F(ξ_{0,d}), x^{j} y^{d'-j}}$,
% so that~$F(ξ_{0,d}) = ∑ v_j ξ_{j,d'-j} = \chk{v} ξ_{0,d}$.
% Applying~\eqref{eq:chain-Kd-zero} once more,
% we deduce from this that $F(ξ_{j,d-j}) = \chk{v} ξ_{j,d-j}$ for all~$j$,
% and therefore~$F(φ) = \chk{v} φ$ for all~$φ ∈ \chk{H_{d'}}$.
\end{proof}
\subsection{Kronecker modules with coefficients}
Let~$E = k^{n}$ equipped with its diagonal scalar product.
Then $E ⊗ K_d = K_d^n$ is a bilinear space in a natural way.
% $(x, y) ↦ x · y = ∑ x_i y_i$;
% For any linear maps~$α: V → E$, $β: W → E$,
% we write~$α · β$ for the bilinear form on~$V × W$
% defined by~$(α · β) (x, y) = (α(x) · β(y))$.