-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsnn.py
111 lines (84 loc) · 3.21 KB
/
snn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
'''
Simulates 1000 neurons for 1000 ms.
Each neuron receives (random) 10% of the 100 Poisson spike trains of rate f_rate = 2 Hz between time 200 ms and 700 ms.
Neurons are not inter-connected.
'''
import tensorflow as tf
import numpy as np
import math
n = 1000 # Number of neurons
dt = 0.5
a = 0.02
b = 0.2
c = -65.0
d = 8.0
T = math.ceil(1000/dt)
v_init = -65
u_init = -14.0
n_in = 100
rate = 2*1e-3
tau_g = 10.0
with tf.Graph().as_default() as tf_graph:
E_in = tf.constant(0.0, shape=[n_in, 1])
conections = tf.greater_equal(tf.random_uniform([n, n_in]), 0.1)
w_in = tf.where(conections, tf.constant(0.0, shape=[n, n_in]), tf.constant(0.07, shape=[n, n_in]))
inh = tf.less_equal(tf.random_uniform([n, 1]), 0.2)
exc = tf.logical_not(inh)
inh_num = tf.cast(inh, tf.float32)
exc_num = tf.cast(exc, tf.float32)
d = (8.0 * exc_num) + (2.0 * inh_num)
a = (0.02 * exc_num) + (0.1 * inh_num)
v_shape = [n, 1]
p_shape = [n_in, 1]
g_in_shape = [n_in, 1]
v = tf.Variable(tf.ones(shape=v_shape) * v_init, dtype=tf.float32, name='v')
u = tf.Variable(tf.ones(shape=v_shape) * u_init, dtype=tf.float32, name='u')
g_in = tf.Variable(tf.zeros(shape=g_in_shape), dtype=tf.float32, name='g_in')
fired = tf.Variable(np.zeros(v_shape, dtype=bool), dtype=tf.bool, name='fired')
p_in = tf.placeholder(tf.float32, shape=p_shape)
g_inp = g_in + p_in
iapp = tf.reshape(tf.matmul(w_in, np.multiply(g_inp, E_in)) - \
tf.multiply(tf.matmul(w_in, g_inp), v),
tf.shape(v))
g_in_op = g_in.assign((1 - dt / tau_g) * g_inp)
v_in = tf.where(fired, tf.ones(tf.shape(v))*c, v)
u_in = tf.where(fired, tf.ones(tf.shape(u))*tf.add(u, d), u)
'''
ODEs to be updated
dv =(0.04*v[:,t]+5)*v[:,t]+140−u[:,t]
v(:,t+1) = v[:,t] + (dv+I_app)*dt
du = a*(0.2*v[:,t]−u[:,t])
u[:,t+1] = u[:,t] + dt*du
Written below in TF
'''
dv = tf.subtract(tf.add(tf.multiply(
tf.add(tf.multiply(0.04, v_in), 5.0), v_in), 140), u_in)
v_updated = tf.add(v_in, tf.multiply(tf.add(dv, iapp), dt))
du = tf.multiply(a, tf.subtract(tf.multiply(b, v_in), u_in))
u_out = tf.add(u_in, tf.multiply(dt, du))
fired_op = fired.assign(tf.greater_equal(v_updated, tf.ones(tf.shape(v)) * 35))
v_out = tf.where(fired_op, tf.ones(tf.shape(v)) * 35, v_updated)
p_in_mean = tf.reduce_mean(v_out)
v_op = v.assign(v_out)
u_op = u.assign(u_out)
vs = [np.ones([n, 1]) * v_init]
us = [np.ones([n, 1]) * u_init]
fires = [np.array(u_init).reshape(1)]
means = []
with tf.Session(graph=tf_graph) as sess:
sess.run(tf.global_variables_initializer())
for t in range(T):
if t * dt > 200 and t*dt < 700:
p = np.random.rand(n_in, 1) < rate*dt
else:
p = np.zeros([n_in,1])
feed = {p_in: p}
vo, uo, _, fire, meanv = sess.run(
[v_op, u_op, g_in_op, fired_op, p_in_mean],
feed_dict=feed)
# Reset spikes
vs.append(vo)
us.append(uo)
fires.append(fire)
means.append(meanv)
inh_logical, exc_logical = sess.run([inh, exc])