diff --git a/gensim/models/ldamodel.py b/gensim/models/ldamodel.py index 2f8fca4768..2f66f30c52 100755 --- a/gensim/models/ldamodel.py +++ b/gensim/models/ldamodel.py @@ -369,7 +369,7 @@ def __init__(self, corpus=None, num_topics=100, id2word=None, Alternatively default prior selecting strategies can be employed by supplying a string: * 'asymmetric': Uses a fixed normalized asymmetric prior of `1.0 / topicno`. - * 'default': Learns an asymmetric prior from the corpus. + * 'auto': Learns an asymmetric prior from the corpus. eta : {float, np.array, str}, optional A-priori belief on word probability, this can be: @@ -530,8 +530,8 @@ def init_dir_prior(self, prior, name): If `name` == 'alpha', then the prior can be: * an 1D array of length equal to the number of expected topics, - * 'asymmetric': Uses a fixed normalized assymetric prior of `1.0 / topicno`. - * 'default': Learns an assymetric prior from the corpus. + * 'asymmetric': Uses a fixed normalized asymmetric prior of `1.0 / topicno`. + * 'auto': Learns an asymmetric prior from the corpus. name : {'alpha', 'eta'} Whether the `prior` is parameterized by the alpha vector (1 parameter per topic) or by the eta (1 parameter per unique term in the vocabulary). diff --git a/gensim/models/ldamulticore.py b/gensim/models/ldamulticore.py index d32a709f80..168a2752c0 100644 --- a/gensim/models/ldamulticore.py +++ b/gensim/models/ldamulticore.py @@ -128,8 +128,8 @@ def __init__(self, corpus=None, num_topics=100, id2word=None, workers=None, our a-priori belief for the each topics' probability. Alternatively default prior selecting strategies can be employed by supplying a string: - * 'asymmetric': Uses a fixed normalized assymetric prior of `1.0 / topicno`. - * 'default': Learns an assymetric prior from the corpus. + * 'asymmetric': Uses a fixed normalized asymmetric prior of `1.0 / topicno`. + * 'auto': Learns an asymmetric prior from the corpus. eta : {float, np.array, str}, optional A-priori belief on word probability, this can be: diff --git a/gensim/sklearn_api/atmodel.py b/gensim/sklearn_api/atmodel.py index 69397833c0..085ed9a745 100644 --- a/gensim/sklearn_api/atmodel.py +++ b/gensim/sklearn_api/atmodel.py @@ -82,8 +82,8 @@ def __init__(self, num_topics=100, id2word=None, author2doc=None, doc2author=Non our a-priori belief for the each topics' probability. Alternatively default prior selecting strategies can be employed by supplying a string: - * 'asymmetric': Uses a fixed normalized assymetric prior of `1.0 / topicno`. - * 'default': Learns an assymetric prior from the corpus. + * 'asymmetric': Uses a fixed normalized asymmetric prior of `1.0 / topicno`. + * 'auto': Learns an asymmetric prior from the corpus. eta : {float, np.array, str}, optional A-priori belief on word probability, this can be: diff --git a/gensim/sklearn_api/ldamodel.py b/gensim/sklearn_api/ldamodel.py index 3e5d65dcc6..33f2575acc 100644 --- a/gensim/sklearn_api/ldamodel.py +++ b/gensim/sklearn_api/ldamodel.py @@ -60,8 +60,8 @@ def __init__(self, num_topics=100, id2word=None, chunksize=2000, passes=1, updat our a-priori belief for the each topics' probability. Alternatively default prior selecting strategies can be employed by supplying a string: - * 'asymmetric': Uses a fixed normalized assymetric prior of `1.0 / topicno`. - * 'default': Learns an assymetric prior from the corpus. + * 'asymmetric': Uses a fixed normalized asymmetric prior of `1.0 / topicno`. + * 'auto': Learns an asymmetric prior from the corpus. eta : {float, np.array, str}, optional A-priori belief on word probability, this can be: