From b0fa47c20d5c6e706c44613c14fbcb2542cc402e Mon Sep 17 00:00:00 2001 From: Parul Sethi Date: Mon, 23 Jan 2017 07:41:44 +0530 Subject: [PATCH] New feature: wordrank wrapper (#1066) --- .../WordRank_wrapper_quickstart.ipynb | 274 ++++ docs/notebooks/Wordrank_comparisons.ipynb | 1242 +++++++++++++++++ docs/src/apiref.rst | 1 + docs/src/models/wrappers/wordrank.rst | 9 + gensim/models/wrappers/__init__.py | 1 + gensim/models/wrappers/dtmmodel.py | 2 +- gensim/models/wrappers/ldamallet.py | 8 +- gensim/models/wrappers/wordrank.py | 199 +++ gensim/test/test_data/simlex999.txt | 1001 +++++++++++++ gensim/test/test_wordrank_wrapper.py | 84 ++ gensim/utils.py | 6 +- setup.py | 2 +- 12 files changed, 2820 insertions(+), 9 deletions(-) create mode 100644 docs/notebooks/WordRank_wrapper_quickstart.ipynb create mode 100644 docs/notebooks/Wordrank_comparisons.ipynb create mode 100644 docs/src/models/wrappers/wordrank.rst create mode 100644 gensim/models/wrappers/wordrank.py create mode 100644 gensim/test/test_data/simlex999.txt create mode 100644 gensim/test/test_wordrank_wrapper.py diff --git a/docs/notebooks/WordRank_wrapper_quickstart.ipynb b/docs/notebooks/WordRank_wrapper_quickstart.ipynb new file mode 100644 index 0000000000..5c300783e3 --- /dev/null +++ b/docs/notebooks/WordRank_wrapper_quickstart.ipynb @@ -0,0 +1,274 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# WordRank wrapper tutorial on Lee Corpus\n", + "\n", + "WordRank is a new word embedding algorithm which captures the semantic similarities in a text data well. See this [notebook](https://github.com/parulsethi/gensim/blob/4b9271e63737e725eaa5b60596e13d57af5eed17/docs/notebooks/Wordrank_comparisons.ipynb) for it's comparisons to other popular embedding models. This tutorial will serve as a guide to use the WordRank wrapper in gensim. You need to install [WordRank](https://bitbucket.org/shihaoji/wordrank) before proceeding with this tutorial.\n", + "\n", + "\n", + "# Train model\n", + "\n", + "We'll use [Lee corpus](https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/test/test_data/lee_background.cor) for training which is already available in gensim. Now for Wordrank, two parameters `dump_period` and `iter` needs to be in sync as it dumps the embedding file with the start of next iteration. For example, if you want results after 10 iterations, you need to use `iter=11` and `dump_period` can be anything that gives mod 0 with resulting iteration, in this case 2 or 5.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from gensim.models.wrappers import Wordrank\n", + "\n", + "wr_path = 'wordrank' # path to Wordrank directory\n", + "out_dir = 'model' # name of output directory to save data to\n", + "data = '../../gensim/test/test_data/lee.cor' # sample corpus\n", + "\n", + "model = Wordrank.train(wr_path, data, out_dir, iter=11, dump_period=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, you can use any of the Keyed Vector function in gensim, on this model for further tasks. For example," + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[(u'Bush', 0.7258214950561523),\n", + " (u'world', 0.5512409210205078),\n", + " (u'Iraq,', 0.5380253195762634),\n", + " (u'has', 0.5292117595672607),\n", + " (u'But', 0.5288761854171753),\n", + " (u'Iraq', 0.500893771648407),\n", + " (u'Iraqi', 0.4988182783126831),\n", + " (u'new', 0.47176095843315125),\n", + " (u'U.S.', 0.4699680209159851),\n", + " (u'with', 0.46098268032073975)]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.most_similar('President')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.15981575765235229" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.similarity('President', 'military')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "As Wordrank provides two sets of embeddings, the word and context embedding, you can obtain their addition by setting ensemble parameter to 1 in the train method.\n", + "\n", + "# Save and Load models\n", + "In case, you have trained the model yourself using demo scripts in Wordrank, you can then simply load the embedding files in gensim. \n", + "\n", + "Also, Wordrank doesn't return the embeddings sorted according to the word frequency in corpus, so you can use the sorted_vocab parameter in the load method. But for that, you need to provide the vocabulary file generated in the 'matrix.toy' directory(if you used default names in demo) where all the metadata is stored." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "wr_word_embedding = 'wordrank.words'\n", + "vocab_file = 'vocab.txt'\n", + "\n", + "model = Wordrank.load_wordrank_model(wr_word_embedding, vocab_file, sorted_vocab=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "If you want to load the ensemble embedding, you similarly need to provide the context embedding file and set ensemble to 1 in `load_wordrank_model` method." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [], + "source": [ + "wr_context_file = 'wordrank.contexts'\n", + "model = Wordrank.load_wordrank_model(wr_word_embedding, vocab_file, wr_context_file, sorted_vocab=1, ensemble=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can save these sorted embeddings using the standard gensim methods." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from tempfile import mkstemp\n", + "\n", + "fs, temp_path = mkstemp(\"gensim_temp\") # creates a temp file\n", + "model.save(temp_path) # save the model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Evaluating models\n", + "Now that the embeddings are loaded in Word2Vec format and sorted according to the word frequencies in corpus, you can use the evaluations provided by gensim on this model.\n", + "\n", + "For example, it can be evaluated on following Word Analogies and Word Similarity benchmarks. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'correct': [], 'incorrect': [], 'section': u'capital-common-countries'},\n", + " {'correct': [], 'incorrect': [], 'section': u'capital-world'},\n", + " {'correct': [], 'incorrect': [], 'section': u'currency'},\n", + " {'correct': [], 'incorrect': [], 'section': u'city-in-state'},\n", + " {'correct': [], 'incorrect': [], 'section': u'family'},\n", + " {'correct': [], 'incorrect': [], 'section': u'gram1-adjective-to-adverb'},\n", + " {'correct': [], 'incorrect': [], 'section': u'gram2-opposite'},\n", + " {'correct': [], 'incorrect': [], 'section': u'gram3-comparative'},\n", + " {'correct': [], 'incorrect': [], 'section': u'gram4-superlative'},\n", + " {'correct': [], 'incorrect': [], 'section': u'gram5-present-participle'},\n", + " {'correct': [], 'incorrect': [], 'section': u'gram6-nationality-adjective'},\n", + " {'correct': [], 'incorrect': [], 'section': u'gram7-past-tense'},\n", + " {'correct': [], 'incorrect': [], 'section': u'gram8-plural'},\n", + " {'correct': [], 'incorrect': [], 'section': u'gram9-plural-verbs'},\n", + " {'correct': [], 'incorrect': [], 'section': 'total'}]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "word_analogies_file = 'datasets/questions-words.txt'\n", + "model.accuracy(word_analogies_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "((nan, nan), SpearmanrResult(correlation=nan, pvalue=nan), 100.0)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "word_similarity_file = 'datasets/ws-353.txt'\n", + "model.evaluate_word_pairs(word_similarity_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These methods take an [optional parameter](http://radimrehurek.com/gensim/models/word2vec.html#gensim.models.word2vec.Word2Vec.accuracy) restrict_vocab which limits which test examples are to be considered.\n", + "\n", + "The results here don't look good because the training corpus is very small. To get meaningful results one needs to train on 500k+ words.\n", + "\n", + "# Conclusion\n", + "We learned to use Wordrank wrapper on a sample corpus and also how to directly load the Wordrank embedding files in gensim. Once loaded, you can use the standard gensim methods on this embedding." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/notebooks/Wordrank_comparisons.ipynb b/docs/notebooks/Wordrank_comparisons.ipynb new file mode 100644 index 0000000000..3ee4624756 --- /dev/null +++ b/docs/notebooks/Wordrank_comparisons.ipynb @@ -0,0 +1,1242 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Comparison of WordRank, Word2Vec and FastText\n", + "\n", + "[Wordrank](https://arxiv.org/pdf/1506.02761v3.pdf) is a fresh new approach to the word embeddings, which formulates it as a ranking problem. That is, given a word w, it aims to output an ordered list (c1, c2, · · ·) of context words such that words that co-occur with w appear at the top of the list. This formulation fits naturally to popular word embedding tasks such as word similarity/analogy since instead of the likelihood of each word, we are interested in finding the most relevant words in a given context[1].\n", + "\n", + "This notebook accompanies a more theoretical blog post [here](https://rare-technologies.com/wordrank-word2vec-fasttext-comparison).\n", + "\n", + "Gensim is used to train and evaluate the word2vec models. Analogical reasoning and Word Similarity tasks are used for comparing the models. Word2vec and FastText embeddings are trained using the skipgram architecture here." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Download and preprocess data" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[nltk_data] Downloading package brown to /Users/parul/nltk_data...\n", + "[nltk_data] Package brown is already up-to-date!\n" + ] + } + ], + "source": [ + "import nltk\n", + "from gensim.parsing.preprocessing import strip_punctuation, strip_multiple_whitespaces\n", + "\n", + "# Only the brown corpus is needed in case you don't have it.\n", + "nltk.download('brown') \n", + "\n", + "# Generate brown corpus text file\n", + "with open('brown_corp.txt', 'w+') as f:\n", + " for word in nltk.corpus.brown.words():\n", + " f.write('{word} '.format(word=word))\n", + " f.seek(0)\n", + " brown = f.read()\n", + "\n", + "# Preprocess brown corpus\n", + "with open('proc_brown_corp.txt', 'w') as f:\n", + " proc_brown = strip_punctuation(brown)\n", + " proc_brown = strip_multiple_whitespaces(proc_brown).lower()\n", + " f.write(proc_brown)\n", + "\n", + "# Set WR_HOME and FT_HOME to respective directory root\n", + "WR_HOME = 'wordrank/'\n", + "FT_HOME = 'fastText/'\n", + "\n", + "# download the text8 corpus (a 100 MB sample of preprocessed wikipedia text)\n", + "import os.path\n", + "if not os.path.isfile('text8'):\n", + " !wget -c http://mattmahoney.net/dc/text8.zip\n", + " !unzip text8.zip" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Train Models\n", + "For training the models yourself, you'll need to have Gensim, FastText and Wordrank set up on your machine." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Training word2vec on proc_brown_corp.txt corpus..\n", + "CPU times: user 1min 7s, sys: 527 ms, total: 1min 8s\n", + "Wall time: 46.8 s\n", + "\n", + "Saved gensim model as brown_gs.vec\n", + "Training fasttext on proc_brown_corp.txt corpus..\n", + "Read 1M words\n", + "Number of words: 14042\n", + "Number of labels: 0\n", + "Progress: 99.6% words/sec/thread: 58810 lr: 0.000179 loss: 2.348125 eta: 0h0m Progress: 20.1% words/sec/thread: 30702 lr: 0.039934 loss: 2.296231 eta: 0h0m Progress: 100.0% words/sec/thread: 58810 lr: 0.000000 loss: 2.348125 eta: 0h0m \n", + "CPU times: user 842 ms, sys: 284 ms, total: 1.13 s\n", + "Wall time: 41.3 s\n", + "\n", + "Training wordrank on proc_brown_corp.txt corpus..\n", + "CPU times: user 10.8 s, sys: 1.02 s, total: 11.8 s\n", + "Wall time: 8h 24min 25s\n", + "\n", + "Saved wordrank model as brown_wr.vec\n", + "\n", + "Loading ensemble embeddings (vector combination of word and context embeddings)..\n", + "CPU times: user 8.97 s, sys: 279 ms, total: 9.25 s\n", + "Wall time: 13.8 s\n", + "\n", + "Saved wordrank (ensemble) model as brown_wr_ensemble.vec\n" + ] + } + ], + "source": [ + "MODELS_DIR = 'models/'\n", + "!mkdir -p {MODELS_DIR}\n", + "\n", + "from gensim.models import Word2Vec\n", + "from gensim.models.wrappers import Wordrank\n", + "from gensim.models.word2vec import Text8Corpus\n", + "\n", + "# fasttext params\n", + "lr = 0.05\n", + "dim = 100\n", + "ws = 5\n", + "epoch = 5\n", + "minCount = 5\n", + "neg = 5\n", + "loss = 'ns'\n", + "t = 1e-4\n", + "\n", + "w2v_params = {\n", + " 'alpha': 0.025,\n", + " 'size': 100,\n", + " 'window': 15,\n", + " 'iter': 5,\n", + " 'min_count': 5,\n", + " 'sample': t,\n", + " 'sg': 1,\n", + " 'hs': 0,\n", + " 'negative': 5\n", + "}\n", + "\n", + "wr_params = {\n", + " 'size': 100,\n", + " 'window': 15,\n", + " 'iter': 91,\n", + " 'min_count': 5\n", + "}\n", + "\n", + "def train_models(corpus_file, output_name):\n", + " # Train using word2vec\n", + " output_file = '{:s}_gs'.format(output_name)\n", + " if not os.path.isfile(os.path.join(MODELS_DIR, '{:s}.vec'.format(output_file))):\n", + " print('\\nTraining word2vec on {:s} corpus..'.format(corpus_file))\n", + " # Text8Corpus class for reading space-separated words file\n", + " %time gs_model = Word2Vec(Text8Corpus(corpus_file), **w2v_params); gs_model\n", + " locals()['gs_model'].save_word2vec_format(os.path.join(MODELS_DIR, '{:s}.vec'.format(output_file)))\n", + " print('\\nSaved gensim model as {:s}.vec'.format(output_file))\n", + " else:\n", + " print('\\nUsing existing model file {:s}.vec'.format(output_file))\n", + "\n", + " # Train using fasttext\n", + " output_file = '{:s}_ft'.format(output_name)\n", + " if not os.path.isfile(os.path.join(MODELS_DIR, '{:s}.vec'.format(output_file))):\n", + " print('Training fasttext on {:s} corpus..'.format(corpus_file))\n", + " %time !{FT_HOME}fasttext skipgram -input {corpus_file} -output {MODELS_DIR+output_file} -lr {lr} -dim {dim} -ws {ws} -epoch {epoch} -minCount {minCount} -neg {neg} -loss {loss} -t {t}\n", + " else:\n", + " print('\\nUsing existing model file {:s}.vec'.format(output_file))\n", + " \n", + " # Train using wordrank\n", + " output_file = '{:s}_wr'.format(output_name)\n", + " if not os.path.isfile(os.path.join(MODELS_DIR, '{:s}.vec'.format(output_file))):\n", + " print('\\nTraining wordrank on {:s} corpus..'.format(corpus_file))\n", + " %time wr_model = Wordrank.train(WR_HOME, corpus_file, **wr_params); wr_model\n", + " locals()['wr_model'].save_word2vec_format(os.path.join(MODELS_DIR, '{:s}.vec'.format(output_file)))\n", + " print('\\nSaved wordrank model as {:s}.vec'.format(output_file))\n", + " else:\n", + " print('\\nUsing existing model file {:s}.vec'.format(output_file))\n", + " \n", + " # Loading ensemble embeddings\n", + " output_file = '{:s}_wr_ensemble'.format(output_name)\n", + " if not os.path.isfile(os.path.join(MODELS_DIR, '{:s}.vec'.format(output_file))):\n", + " print('\\nLoading ensemble embeddings (vector combination of word and context embeddings)..')\n", + " %time wr_model = Wordrank.load_wordrank_model(os.path.join(WR_HOME, 'model/wordrank.words'), os.path.join(WR_HOME, 'model/meta/vocab.txt'), os.path.join(WR_HOME, 'model/wordrank.contexts'), sorted_vocab=1, ensemble=1); wr_model\n", + " locals()['wr_model'].save_word2vec_format(os.path.join(MODELS_DIR, '{:s}.vec'.format(output_file)))\n", + " print('\\nSaved wordrank (ensemble) model as {:s}.vec'.format(output_file))\n", + " else:\n", + " print('\\nUsing existing model file {:s}.vec'.format(output_file))\n", + " \n", + "train_models(corpus_file='proc_brown_corp.txt', output_name='brown')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Training word2vec on text8 corpus..\n", + "CPU times: user 24min 21s, sys: 8.64 s, total: 24min 29s\n", + "Wall time: 18min 33s\n", + "\n", + "Saved gensim model as text8_gs.vec\n", + "\n", + "Using existing model file text8_ft.vec\n", + "\n", + "Using existing model file text8_wr.vec\n", + "\n", + "Using existing model file text8_wr_ensemble.vec\n" + ] + } + ], + "source": [ + "train_models(corpus_file='text8', output_name='text8')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we train wordrank model using ensemble in second case as it is known to give a small performance boost in some cases. So we'll test accuracy for both the cases." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Comparisons" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import logging\n", + "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)\n", + "\n", + "def print_analogy_accuracy(model, questions_file):\n", + " acc = model.wv.accuracy(questions_file)\n", + "\n", + " sem_correct = sum((len(acc[i]['correct']) for i in range(5)))\n", + " sem_total = sum((len(acc[i]['correct']) + len(acc[i]['incorrect'])) for i in range(5))\n", + " sem_acc = 100*float(sem_correct)/sem_total\n", + " print('\\nSemantic: {:d}/{:d}, Accuracy: {:.2f}%'.format(sem_correct, sem_total, sem_acc))\n", + " \n", + " syn_correct = sum((len(acc[i]['correct']) for i in range(5, len(acc)-1)))\n", + " syn_total = sum((len(acc[i]['correct']) + len(acc[i]['incorrect'])) for i in range(5,len(acc)-1))\n", + " syn_acc = 100*float(syn_correct)/syn_total\n", + " print('Syntactic: {:d}/{:d}, Accuracy: {:.2f}%\\n'.format(syn_correct, syn_total, syn_acc))\n", + " \n", + "def print_similarity_accuracy(model, similarity_file):\n", + " acc = model.wv.evaluate_word_pairs(similarity_file)\n", + " print('Pearson correlation coefficient: {:.2f}'.format(acc[0][0]))\n", + " print('Spearman rank correlation coefficient: {:.2f}'.format(acc[1][0]))" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:53:09,062 : INFO : 'pattern' package found; tag filters are available for English\n", + "2017-01-10 14:53:09,067 : INFO : loading projection weights from models/brown_gs.vec\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Loading Gensim embeddings\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:53:10,730 : INFO : loaded (14042, 100) matrix from models/brown_gs.vec\n", + "2017-01-10 14:53:10,823 : INFO : precomputing L2-norms of word weight vectors\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy for Word2Vec:\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:53:11,052 : INFO : capital-common-countries: 0.0% (0/90)\n", + "2017-01-10 14:53:11,259 : INFO : capital-world: 0.0% (0/53)\n", + "2017-01-10 14:53:11,284 : INFO : currency: 0.0% (0/12)\n", + "2017-01-10 14:53:12,010 : INFO : city-in-state: 0.9% (4/457)\n", + "2017-01-10 14:53:12,380 : INFO : family: 20.0% (48/240)\n", + "2017-01-10 14:53:13,614 : INFO : gram1-adjective-to-adverb: 0.1% (1/812)\n", + "2017-01-10 14:53:13,839 : INFO : gram2-opposite: 0.0% (0/132)\n", + "2017-01-10 14:53:15,703 : INFO : gram3-comparative: 1.8% (19/1056)\n", + "2017-01-10 14:53:16,104 : INFO : gram4-superlative: 0.5% (1/210)\n", + "2017-01-10 14:53:17,184 : INFO : gram5-present-participle: 2.6% (17/650)\n", + "2017-01-10 14:53:17,653 : INFO : gram6-nationality-adjective: 11.4% (34/297)\n", + "2017-01-10 14:53:20,023 : INFO : gram7-past-tense: 3.3% (42/1260)\n", + "2017-01-10 14:53:21,215 : INFO : gram8-plural: 6.6% (46/702)\n", + "2017-01-10 14:53:21,984 : INFO : gram9-plural-verbs: 2.0% (7/342)\n", + "2017-01-10 14:53:21,987 : INFO : total: 3.5% (219/6313)\n", + "2017-01-10 14:53:22,044 : INFO : Pearson correlation coefficient against ./datasets/simlex-999.txt: 0.1538\n", + "2017-01-10 14:53:22,046 : INFO : Spearman rank-order correlation coefficient against ./datasets/simlex-999.txt: 0.1294\n", + "2017-01-10 14:53:22,047 : INFO : Pairs with unknown words ratio: 0.2%\n", + "2017-01-10 14:53:22,080 : INFO : Pearson correlation coefficient against ./datasets/ws-353.txt: 0.3242\n", + "2017-01-10 14:53:22,081 : INFO : Spearman rank-order correlation coefficient against ./datasets/ws-353.txt: 0.3164\n", + "2017-01-10 14:53:22,082 : INFO : Pairs with unknown words ratio: 21.8%\n", + "2017-01-10 14:53:22,087 : INFO : loading projection weights from models/brown_ft.vec\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Semantic: 52/852, Accuracy: 6.10%\n", + "Syntactic: 167/5461, Accuracy: 3.06%\n", + "\n", + "SimLex-999 similarity\n", + "Pearson correlation coefficient: 0.15\n", + "Spearman rank correlation coefficient: 0.13\n", + "\n", + "WordSim-353 similarity\n", + "Pearson correlation coefficient: 0.32\n", + "Spearman rank correlation coefficient: 0.32\n", + "\n", + "Loading FastText embeddings\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:53:23,984 : INFO : loaded (14042, 100) matrix from models/brown_ft.vec\n", + "2017-01-10 14:53:24,006 : INFO : precomputing L2-norms of word weight vectors\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy for FastText:\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:53:24,275 : INFO : capital-common-countries: 1.1% (1/90)\n", + "2017-01-10 14:53:24,446 : INFO : capital-world: 0.0% (0/53)\n", + "2017-01-10 14:53:24,487 : INFO : currency: 0.0% (0/12)\n", + "2017-01-10 14:53:25,355 : INFO : city-in-state: 2.4% (11/457)\n", + "2017-01-10 14:53:25,867 : INFO : family: 11.7% (28/240)\n", + "2017-01-10 14:53:27,239 : INFO : gram1-adjective-to-adverb: 79.9% (649/812)\n", + "2017-01-10 14:53:27,477 : INFO : gram2-opposite: 79.5% (105/132)\n", + "2017-01-10 14:53:29,220 : INFO : gram3-comparative: 56.3% (595/1056)\n", + "2017-01-10 14:53:29,618 : INFO : gram4-superlative: 71.4% (150/210)\n", + "2017-01-10 14:53:31,081 : INFO : gram5-present-participle: 65.7% (427/650)\n", + "2017-01-10 14:53:31,749 : INFO : gram6-nationality-adjective: 35.0% (104/297)\n", + "2017-01-10 14:53:34,210 : INFO : gram7-past-tense: 12.1% (153/1260)\n", + "2017-01-10 14:53:35,299 : INFO : gram8-plural: 53.1% (373/702)\n", + "2017-01-10 14:53:35,841 : INFO : gram9-plural-verbs: 69.0% (236/342)\n", + "2017-01-10 14:53:35,842 : INFO : total: 44.9% (2832/6313)\n", + "2017-01-10 14:53:35,928 : INFO : Pearson correlation coefficient against ./datasets/simlex-999.txt: 0.1208\n", + "2017-01-10 14:53:35,929 : INFO : Spearman rank-order correlation coefficient against ./datasets/simlex-999.txt: 0.1039\n", + "2017-01-10 14:53:35,930 : INFO : Pairs with unknown words ratio: 0.2%\n", + "2017-01-10 14:53:35,958 : INFO : Pearson correlation coefficient against ./datasets/ws-353.txt: 0.3789\n", + "2017-01-10 14:53:35,960 : INFO : Spearman rank-order correlation coefficient against ./datasets/ws-353.txt: 0.3791\n", + "2017-01-10 14:53:35,963 : INFO : Pairs with unknown words ratio: 21.8%\n", + "2017-01-10 14:53:35,977 : INFO : loading projection weights from models/brown_wr.vec\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Semantic: 40/852, Accuracy: 4.69%\n", + "Syntactic: 2792/5461, Accuracy: 51.13%\n", + "\n", + "SimLex-999 similarity\n", + "Pearson correlation coefficient: 0.12\n", + "Spearman rank correlation coefficient: 0.10\n", + "\n", + "WordSim-353 similarity\n", + "Pearson correlation coefficient: 0.38\n", + "Spearman rank correlation coefficient: 0.38\n", + "\n", + "Loading Wordrank embeddings\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:53:37,423 : INFO : loaded (14042, 100) matrix from models/brown_wr.vec\n", + "2017-01-10 14:53:37,437 : INFO : precomputing L2-norms of word weight vectors\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy for Wordrank:\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:53:37,666 : INFO : capital-common-countries: 10.0% (9/90)\n", + "2017-01-10 14:53:37,799 : INFO : capital-world: 15.1% (8/53)\n", + "2017-01-10 14:53:37,832 : INFO : currency: 0.0% (0/12)\n", + "2017-01-10 14:53:38,543 : INFO : city-in-state: 8.1% (37/457)\n", + "2017-01-10 14:53:38,921 : INFO : family: 23.8% (57/240)\n", + "2017-01-10 14:53:40,150 : INFO : gram1-adjective-to-adverb: 0.6% (5/812)\n", + "2017-01-10 14:53:40,381 : INFO : gram2-opposite: 0.0% (0/132)\n", + "2017-01-10 14:53:41,979 : INFO : gram3-comparative: 2.0% (21/1056)\n", + "2017-01-10 14:53:42,377 : INFO : gram4-superlative: 1.0% (2/210)\n", + "2017-01-10 14:53:43,498 : INFO : gram5-present-participle: 0.5% (3/650)\n", + "2017-01-10 14:53:44,027 : INFO : gram6-nationality-adjective: 10.8% (32/297)\n", + "2017-01-10 14:53:46,105 : INFO : gram7-past-tense: 1.6% (20/1260)\n", + "2017-01-10 14:53:47,194 : INFO : gram8-plural: 8.3% (58/702)\n", + "2017-01-10 14:53:47,732 : INFO : gram9-plural-verbs: 0.3% (1/342)\n", + "2017-01-10 14:53:47,733 : INFO : total: 4.0% (253/6313)\n", + "2017-01-10 14:53:47,774 : INFO : Pearson correlation coefficient against ./datasets/simlex-999.txt: 0.0901\n", + "2017-01-10 14:53:47,776 : INFO : Spearman rank-order correlation coefficient against ./datasets/simlex-999.txt: 0.0974\n", + "2017-01-10 14:53:47,777 : INFO : Pairs with unknown words ratio: 0.2%\n", + "2017-01-10 14:53:47,816 : INFO : Pearson correlation coefficient against ./datasets/ws-353.txt: 0.3864\n", + "2017-01-10 14:53:47,817 : INFO : Spearman rank-order correlation coefficient against ./datasets/ws-353.txt: 0.3831\n", + "2017-01-10 14:53:47,821 : INFO : Pairs with unknown words ratio: 21.8%\n", + "2017-01-10 14:53:47,832 : INFO : loading projection weights from models/brown_wr_ensemble.vec\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Semantic: 111/852, Accuracy: 13.03%\n", + "Syntactic: 142/5461, Accuracy: 2.60%\n", + "\n", + "SimLex-999 similarity\n", + "Pearson correlation coefficient: 0.09\n", + "Spearman rank correlation coefficient: 0.10\n", + "\n", + "WordSim-353 similarity\n", + "Pearson correlation coefficient: 0.39\n", + "Spearman rank correlation coefficient: 0.38\n", + "\n", + "Loading Wordrank ensemble embeddings\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:53:49,306 : INFO : loaded (14042, 100) matrix from models/brown_wr_ensemble.vec\n", + "2017-01-10 14:53:49,327 : INFO : precomputing L2-norms of word weight vectors\n", + "2017-01-10 14:53:49,495 : INFO : capital-common-countries: 14.4% (13/90)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy for Wordrank:\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:53:49,620 : INFO : capital-world: 18.9% (10/53)\n", + "2017-01-10 14:53:49,649 : INFO : currency: 0.0% (0/12)\n", + "2017-01-10 14:53:50,352 : INFO : city-in-state: 8.3% (38/457)\n", + "2017-01-10 14:53:50,717 : INFO : family: 28.8% (69/240)\n", + "2017-01-10 14:53:51,915 : INFO : gram1-adjective-to-adverb: 0.6% (5/812)\n", + "2017-01-10 14:53:52,122 : INFO : gram2-opposite: 0.0% (0/132)\n", + "2017-01-10 14:53:53,669 : INFO : gram3-comparative: 3.4% (36/1056)\n", + "2017-01-10 14:53:53,992 : INFO : gram4-superlative: 0.0% (0/210)\n", + "2017-01-10 14:53:54,948 : INFO : gram5-present-participle: 1.7% (11/650)\n", + "2017-01-10 14:53:55,404 : INFO : gram6-nationality-adjective: 16.8% (50/297)\n", + "2017-01-10 14:53:57,244 : INFO : gram7-past-tense: 3.8% (48/1260)\n", + "2017-01-10 14:53:58,294 : INFO : gram8-plural: 11.1% (78/702)\n", + "2017-01-10 14:53:58,813 : INFO : gram9-plural-verbs: 0.9% (3/342)\n", + "2017-01-10 14:53:58,814 : INFO : total: 5.7% (361/6313)\n", + "2017-01-10 14:53:58,852 : INFO : Pearson correlation coefficient against ./datasets/simlex-999.txt: -0.0007\n", + "2017-01-10 14:53:58,853 : INFO : Spearman rank-order correlation coefficient against ./datasets/simlex-999.txt: 0.0081\n", + "2017-01-10 14:53:58,854 : INFO : Pairs with unknown words ratio: 0.2%\n", + "2017-01-10 14:53:58,880 : INFO : Pearson correlation coefficient against ./datasets/ws-353.txt: 0.2464\n", + "2017-01-10 14:53:58,881 : INFO : Spearman rank-order correlation coefficient against ./datasets/ws-353.txt: 0.2148\n", + "2017-01-10 14:53:58,882 : INFO : Pairs with unknown words ratio: 21.8%\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Semantic: 130/852, Accuracy: 15.26%\n", + "Syntactic: 231/5461, Accuracy: 4.23%\n", + "\n", + "SimLex-999 similarity\n", + "Pearson correlation coefficient: -0.00\n", + "Spearman rank correlation coefficient: 0.01\n", + "\n", + "WordSim-353 similarity\n", + "Pearson correlation coefficient: 0.25\n", + "Spearman rank correlation coefficient: 0.21\n" + ] + } + ], + "source": [ + "MODELS_DIR = 'models/'\n", + "word_analogies_file = './datasets/questions-words.txt'\n", + "simlex_file = '../../gensim/test/test_data/simlex999.txt'\n", + "wordsim_file = '../../gensim/test/test_data/wordsim353.tsv'\n", + "\n", + "print('\\nLoading Gensim embeddings')\n", + "brown_gs = Word2Vec.load_word2vec_format(MODELS_DIR + 'brown_gs.vec')\n", + "print('Accuracy for Word2Vec:')\n", + "print_analogy_accuracy(brown_gs, word_analogies_file)\n", + "print('SimLex-999 similarity')\n", + "print_similarity_accuracy(brown_gs, simlex_file)\n", + "print('\\nWordSim-353 similarity')\n", + "print_similarity_accuracy(brown_gs, wordsim_file)\n", + "\n", + "print('\\nLoading FastText embeddings')\n", + "brown_ft = Word2Vec.load_word2vec_format(MODELS_DIR + 'brown_ft.vec')\n", + "print('Accuracy for FastText:')\n", + "print_analogy_accuracy(brown_ft, word_analogies_file)\n", + "print('SimLex-999 similarity')\n", + "print_similarity_accuracy(brown_ft, simlex_file)\n", + "print('\\nWordSim-353 similarity')\n", + "print_similarity_accuracy(brown_ft, wordsim_file)\n", + "\n", + "print('\\nLoading Wordrank embeddings')\n", + "brown_wr = Word2Vec.load_word2vec_format(MODELS_DIR + 'brown_wr.vec')\n", + "print('Accuracy for Wordrank:')\n", + "print_analogy_accuracy(brown_wr, word_analogies_file)\n", + "print('SimLex-999 similarity')\n", + "print_similarity_accuracy(brown_wr, simlex_file)\n", + "print('\\nWordSim-353 similarity')\n", + "print_similarity_accuracy(brown_wr, wordsim_file)\n", + "\n", + "print('\\nLoading Wordrank ensemble embeddings')\n", + "brown_wr_ensemble = Word2Vec.load_word2vec_format(MODELS_DIR + 'brown_wr_ensemble.vec')\n", + "print('Accuracy for Wordrank:')\n", + "print_analogy_accuracy(brown_wr_ensemble, word_analogies_file)\n", + "print('SimLex-999 similarity')\n", + "print_similarity_accuracy(brown_wr_ensemble, simlex_file)\n", + "print('\\nWordSim-353 similarity')\n", + "print_similarity_accuracy(brown_wr_ensemble, wordsim_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As evident from the above outputs, WordRank performs significantly better in Semantic analogies, whereas, FastText on Syntactic analogies. Also ensemble embeddings gives a small performance boost in WordRank's case.\n", + "\n", + "Wordrank's effectiveness in Semantic analogies is possibly due to it's focused attention on getting most relevant words right at the top using the ranking approach.\n", + "And as fasttext is designed to incorporate morphological information about words, it results in it's performance boost in Syntactic analogies, as most of the Syntactic analogies are morphology based[2].\n", + "\n", + "And for the Word Similarity, Word2Vec performed better on SimLex-999 test data, whereas, WordRank on WS-353. This is probably due to the different types of similarities these datasets address. SimLex-999 provides a measure of how well the two words are interchangeable in similar contexts, and WS-353 tries to estimate the relatedness or co-occurrence of two words. Also, ensemble embeddings doesn't help in the Word Similarity task[1], which is evident from the results above so we'll use just the Word Embeddings for it. \n", + "\n", + "Now lets evaluate on a larger corpus, text8, and see how it effects the performance of different embedding models. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:54:59,108 : INFO : loading projection weights from models/text8_gs.vec\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading Gensim embeddings\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:55:06,748 : INFO : loaded (71290, 100) matrix from models/text8_gs.vec\n", + "2017-01-10 14:55:06,788 : INFO : precomputing L2-norms of word weight vectors\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy for word2vec:\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:55:08,624 : INFO : capital-common-countries: 68.6% (347/506)\n", + "2017-01-10 14:55:13,392 : INFO : capital-world: 52.3% (760/1452)\n", + "2017-01-10 14:55:14,287 : INFO : currency: 19.8% (53/268)\n", + "2017-01-10 14:55:19,439 : INFO : city-in-state: 24.8% (389/1571)\n", + "2017-01-10 14:55:20,668 : INFO : family: 47.7% (146/306)\n", + "2017-01-10 14:55:23,721 : INFO : gram1-adjective-to-adverb: 18.0% (136/756)\n", + "2017-01-10 14:55:24,737 : INFO : gram2-opposite: 13.4% (41/306)\n", + "2017-01-10 14:55:28,860 : INFO : gram3-comparative: 37.8% (476/1260)\n", + "2017-01-10 14:55:30,518 : INFO : gram4-superlative: 22.3% (113/506)\n", + "2017-01-10 14:55:33,766 : INFO : gram5-present-participle: 22.9% (227/992)\n", + "2017-01-10 14:55:38,413 : INFO : gram6-nationality-adjective: 86.7% (1188/1371)\n", + "2017-01-10 14:55:42,759 : INFO : gram7-past-tense: 27.0% (359/1332)\n", + "2017-01-10 14:55:45,924 : INFO : gram8-plural: 54.4% (540/992)\n", + "2017-01-10 14:55:48,088 : INFO : gram9-plural-verbs: 25.2% (164/650)\n", + "2017-01-10 14:55:48,091 : INFO : total: 40.3% (4939/12268)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Semantic: 1695/4103, Accuracy: 41.31%\n", + "Syntactic: 3244/8165, Accuracy: 39.73%\n", + "\n", + "SimLex-999 similarity\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:55:48,307 : INFO : Pearson correlation coefficient against ./datasets/simlex-999.txt: 0.3094\n", + "2017-01-10 14:55:48,308 : INFO : Spearman rank-order correlation coefficient against ./datasets/simlex-999.txt: 0.2937\n", + "2017-01-10 14:55:48,309 : INFO : Pairs with unknown words ratio: 0.7%\n", + "2017-01-10 14:55:48,523 : INFO : Pearson correlation coefficient against ./datasets/ws-353.txt: 0.6865\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pearson correlation coefficient: 0.31\n", + "Spearman rank correlation coefficient: 0.29\n", + "\n", + "WordSim-353 similarity\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:55:48,524 : INFO : Spearman rank-order correlation coefficient against ./datasets/ws-353.txt: 0.6947\n", + "2017-01-10 14:55:48,525 : INFO : Pairs with unknown words ratio: 0.6%\n", + "2017-01-10 14:55:48,537 : INFO : loading projection weights from models/text8_ft.vec\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pearson correlation coefficient: 0.69\n", + "Spearman rank correlation coefficient: 0.69\n", + "Loading FastText embeddings\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:55:56,320 : INFO : loaded (71290, 100) matrix from models/text8_ft.vec\n", + "2017-01-10 14:55:56,373 : INFO : precomputing L2-norms of word weight vectors\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy for FastText (with n-grams):\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:55:58,389 : INFO : capital-common-countries: 62.5% (316/506)\n", + "2017-01-10 14:56:03,138 : INFO : capital-world: 43.0% (625/1452)\n", + "2017-01-10 14:56:04,165 : INFO : currency: 12.7% (34/268)\n", + "2017-01-10 14:56:09,344 : INFO : city-in-state: 18.3% (287/1571)\n", + "2017-01-10 14:56:10,342 : INFO : family: 43.5% (133/306)\n", + "2017-01-10 14:56:13,360 : INFO : gram1-adjective-to-adverb: 73.7% (557/756)\n", + "2017-01-10 14:56:14,469 : INFO : gram2-opposite: 53.9% (165/306)\n", + "2017-01-10 14:56:19,780 : INFO : gram3-comparative: 64.8% (816/1260)\n", + "2017-01-10 14:56:21,954 : INFO : gram4-superlative: 53.4% (270/506)\n", + "2017-01-10 14:56:25,950 : INFO : gram5-present-participle: 54.4% (540/992)\n", + "2017-01-10 14:56:31,082 : INFO : gram6-nationality-adjective: 93.9% (1288/1371)\n", + "2017-01-10 14:56:36,499 : INFO : gram7-past-tense: 35.6% (474/1332)\n", + "2017-01-10 14:56:40,886 : INFO : gram8-plural: 90.1% (894/992)\n", + "2017-01-10 14:56:43,304 : INFO : gram9-plural-verbs: 59.4% (386/650)\n", + "2017-01-10 14:56:43,305 : INFO : total: 55.3% (6785/12268)\n", + "2017-01-10 14:56:43,495 : INFO : Pearson correlation coefficient against ./datasets/simlex-999.txt: 0.3005\n", + "2017-01-10 14:56:43,496 : INFO : Spearman rank-order correlation coefficient against ./datasets/simlex-999.txt: 0.2872\n", + "2017-01-10 14:56:43,497 : INFO : Pairs with unknown words ratio: 0.7%\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Semantic: 1395/4103, Accuracy: 34.00%\n", + "Syntactic: 5390/8165, Accuracy: 66.01%\n", + "\n", + "SimLex-999 similarity\n", + "Pearson correlation coefficient: 0.30\n", + "Spearman rank correlation coefficient: 0.29\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:56:43,735 : INFO : Pearson correlation coefficient against ./datasets/ws-353.txt: 0.6418\n", + "2017-01-10 14:56:43,735 : INFO : Spearman rank-order correlation coefficient against ./datasets/ws-353.txt: 0.6475\n", + "2017-01-10 14:56:43,736 : INFO : Pairs with unknown words ratio: 0.6%\n", + "2017-01-10 14:56:43,748 : INFO : loading projection weights from models/text8_wr.vec\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "WordSim-353 similarity\n", + "Pearson correlation coefficient: 0.64\n", + "Spearman rank correlation coefficient: 0.65\n", + "\n", + "Loading Wordrank embeddings\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:56:52,829 : INFO : loaded (71290, 100) matrix from models/text8_wr.vec\n", + "2017-01-10 14:56:52,892 : INFO : precomputing L2-norms of word weight vectors\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy for Wordrank:\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:56:55,183 : INFO : capital-common-countries: 84.6% (428/506)\n", + "2017-01-10 14:57:00,832 : INFO : capital-world: 70.0% (1016/1452)\n", + "2017-01-10 14:57:02,166 : INFO : currency: 19.0% (51/268)\n", + "2017-01-10 14:57:08,742 : INFO : city-in-state: 36.0% (565/1571)\n", + "2017-01-10 14:57:09,847 : INFO : family: 57.8% (177/306)\n", + "2017-01-10 14:57:12,342 : INFO : gram1-adjective-to-adverb: 15.3% (116/756)\n", + "2017-01-10 14:57:13,343 : INFO : gram2-opposite: 15.4% (47/306)\n", + "2017-01-10 14:57:18,192 : INFO : gram3-comparative: 33.8% (426/1260)\n", + "2017-01-10 14:57:20,238 : INFO : gram4-superlative: 21.1% (107/506)\n", + "2017-01-10 14:57:23,527 : INFO : gram5-present-participle: 23.8% (236/992)\n", + "2017-01-10 14:57:28,243 : INFO : gram6-nationality-adjective: 90.2% (1237/1371)\n", + "2017-01-10 14:57:32,737 : INFO : gram7-past-tense: 26.4% (351/1332)\n", + "2017-01-10 14:57:36,066 : INFO : gram8-plural: 60.9% (604/992)\n", + "2017-01-10 14:57:38,646 : INFO : gram9-plural-verbs: 19.7% (128/650)\n", + "2017-01-10 14:57:38,647 : INFO : total: 44.7% (5489/12268)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Semantic: 2237/4103, Accuracy: 54.52%\n", + "Syntactic: 3252/8165, Accuracy: 39.83%\n", + "\n", + "SimLex-999 similarity\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:57:38,942 : INFO : Pearson correlation coefficient against ./datasets/simlex-999.txt: 0.2829\n", + "2017-01-10 14:57:38,943 : INFO : Spearman rank-order correlation coefficient against ./datasets/simlex-999.txt: 0.2770\n", + "2017-01-10 14:57:38,944 : INFO : Pairs with unknown words ratio: 0.7%\n", + "2017-01-10 14:57:39,047 : INFO : Pearson correlation coefficient against ./datasets/ws-353.txt: 0.7028\n", + "2017-01-10 14:57:39,048 : INFO : Spearman rank-order correlation coefficient against ./datasets/ws-353.txt: 0.7105\n", + "2017-01-10 14:57:39,049 : INFO : Pairs with unknown words ratio: 0.6%\n", + "2017-01-10 14:57:39,063 : INFO : loading projection weights from models/text8_wr_ensemble.vec\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pearson correlation coefficient: 0.28\n", + "Spearman rank correlation coefficient: 0.28\n", + "\n", + "WordSim-353 similarity\n", + "Pearson correlation coefficient: 0.70\n", + "Spearman rank correlation coefficient: 0.71\n", + "\n", + "Loading Wordrank ensemble embeddings\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:57:48,289 : INFO : loaded (71290, 100) matrix from models/text8_wr_ensemble.vec\n", + "2017-01-10 14:57:48,355 : INFO : precomputing L2-norms of word weight vectors\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy for Wordrank:\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:57:50,393 : INFO : capital-common-countries: 67.0% (339/506)\n", + "2017-01-10 14:57:55,893 : INFO : capital-world: 59.0% (856/1452)\n", + "2017-01-10 14:57:57,069 : INFO : currency: 17.2% (46/268)\n", + "2017-01-10 14:58:03,097 : INFO : city-in-state: 33.0% (519/1571)\n", + "2017-01-10 14:58:04,262 : INFO : family: 32.0% (98/306)\n", + "2017-01-10 14:58:07,506 : INFO : gram1-adjective-to-adverb: 10.3% (78/756)\n", + "2017-01-10 14:58:08,548 : INFO : gram2-opposite: 10.5% (32/306)\n", + "2017-01-10 14:58:12,550 : INFO : gram3-comparative: 24.4% (308/1260)\n", + "2017-01-10 14:58:14,443 : INFO : gram4-superlative: 11.5% (58/506)\n", + "2017-01-10 14:58:18,236 : INFO : gram5-present-participle: 11.7% (116/992)\n", + "2017-01-10 14:58:23,111 : INFO : gram6-nationality-adjective: 71.8% (985/1371)\n", + "2017-01-10 14:58:28,082 : INFO : gram7-past-tense: 17.0% (226/1332)\n", + "2017-01-10 14:58:32,411 : INFO : gram8-plural: 47.8% (474/992)\n", + "2017-01-10 14:58:35,146 : INFO : gram9-plural-verbs: 11.7% (76/650)\n", + "2017-01-10 14:58:35,148 : INFO : total: 34.3% (4211/12268)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Semantic: 1858/4103, Accuracy: 45.28%\n", + "Syntactic: 2353/8165, Accuracy: 28.82%\n", + "\n", + "SimLex-999 similarity\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:58:35,422 : INFO : Pearson correlation coefficient against ./datasets/simlex-999.txt: 0.1945\n", + "2017-01-10 14:58:35,424 : INFO : Spearman rank-order correlation coefficient against ./datasets/simlex-999.txt: 0.1872\n", + "2017-01-10 14:58:35,425 : INFO : Pairs with unknown words ratio: 0.7%\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pearson correlation coefficient: 0.19\n", + "Spearman rank correlation coefficient: 0.19\n", + "\n", + "WordSim-353 similarity\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2017-01-10 14:58:35,674 : INFO : Pearson correlation coefficient against ./datasets/ws-353.txt: 0.5338\n", + "2017-01-10 14:58:35,675 : INFO : Spearman rank-order correlation coefficient against ./datasets/ws-353.txt: 0.5107\n", + "2017-01-10 14:58:35,676 : INFO : Pairs with unknown words ratio: 0.6%\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pearson correlation coefficient: 0.53\n", + "Spearman rank correlation coefficient: 0.51\n" + ] + } + ], + "source": [ + "print('Loading Gensim embeddings')\n", + "text8_gs = Word2Vec.load_word2vec_format(MODELS_DIR + 'text8_gs.vec')\n", + "print('Accuracy for word2vec:')\n", + "print_analogy_accuracy(text8_gs, word_analogies_file)\n", + "print('SimLex-999 similarity')\n", + "print_similarity_accuracy(text8_gs, simlex_file)\n", + "print('\\nWordSim-353 similarity')\n", + "print_similarity_accuracy(text8_gs, wordsim_file)\n", + "\n", + "print('Loading FastText embeddings')\n", + "text8_ft = Word2Vec.load_word2vec_format(MODELS_DIR + 'text8_ft.vec')\n", + "print('Accuracy for FastText (with n-grams):')\n", + "print_analogy_accuracy(text8_ft, word_analogies_file)\n", + "print('SimLex-999 similarity')\n", + "print_similarity_accuracy(text8_ft, simlex_file)\n", + "print('\\nWordSim-353 similarity')\n", + "print_similarity_accuracy(text8_ft, wordsim_file)\n", + "\n", + "print('\\nLoading Wordrank embeddings')\n", + "text8_wr = Word2Vec.load_word2vec_format(MODELS_DIR + 'text8_wr.vec')\n", + "print('Accuracy for Wordrank:')\n", + "print_analogy_accuracy(text8_wr, word_analogies_file)\n", + "print('SimLex-999 similarity')\n", + "print_similarity_accuracy(text8_wr, simlex_file)\n", + "print('\\nWordSim-353 similarity')\n", + "print_similarity_accuracy(text8_wr, wordsim_file)\n", + "\n", + "print('\\nLoading Wordrank ensemble embeddings')\n", + "text8_wr_ensemble = Word2Vec.load_word2vec_format(MODELS_DIR + 'text8_wr_ensemble.vec')\n", + "print('Accuracy for Wordrank:')\n", + "print_analogy_accuracy(text8_wr_ensemble, word_analogies_file)\n", + "print('SimLex-999 similarity')\n", + "print_similarity_accuracy(text8_wr_ensemble, simlex_file)\n", + "print('\\nWordSim-353 similarity')\n", + "print_similarity_accuracy(text8_wr_ensemble, wordsim_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "With a larger corpus, we observe similar patterns in the accuracies. Here also, WordRank dominates the Semantic analogies and FastText Syntactic ones. Word2Vec again performs better on SimLex-999 dataset and WordRank on WordSim-353.\n", + "Though we observe a little performance decrease in WordRank in case of ensemble embeddings here, so it's good to try both the cases for evaluations.\n", + "\n", + "# Word Frequency and Model Performance\n", + "\n", + "In this section, we'll see if the frequency of a word has any effect on embedding model's performance in Analogy task. Accuracy vs. Frequency graph is used to analyze this effect. The mean frequency of four words involved in each analogy is computed, and then bucketed with other analogies having similar mean frequencies. Each bucket has six percent of the total analogies involved in the particular task. You can go to this [repo](https://github.com/parulsethi/EmbeddingVisData/tree/master/WordAnalogyFreq) if you want to inspect about what analogies(with their sorted frequencies) were used for each of the plot." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAATbCAYAAAAUBvjzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xt8zuX/wPHXeweHMdsY2YYZM6MoJqfCRhF9c8j5SyRF\nUUk51O9b0TlyqL6p7zpRlJwrlUSmqITNISGsLaSMmDOb7fr98bk3222bHe7tvjfv5+NxP+y+Ptfn\nut73Z8x71+dzXZcYY1BKKaWUUqWfm7MDUEoppZRSjqGJnVJKKaVUGaGJnVJKKaVUGaGJnVJKKaVU\nGaGJnVJKKaVUGaGJnVJKKaVUGaGJnVJKKaVUGaGJnVJKKaVUGaGJnVJKKaVUGaGJnVLqqiciHUQk\nXUTaOzuWoiqpz2Lr4+ni7EMpVXCa2CmlABCRJiKyWEQSReSciBwUkW9E5EFnx+YoIvKAiAzN5bDD\n91cUka62BOigo9u+gpLYK9KUUD9KqQIQ3StWKSUibYE1wB/AB8DfQG2gNVDfGBPmxPAcRkR+AY4Y\nYzrmcKycMSbFwf3NA9oAdYFbjTFrHNl+Ln12wPpeRhljvi/GfsoBF40x6cXVh1Kq4DycHYBSyiX8\nB0gGWhhjTmU9ICL+zgmpZBVDUucF9AAeB4YBg7ASrjLB0ddLKeUYeitWKQVQD/jVPqkDMMYctS8T\nkcEisllEzorIPyIyX0Rq2dVZKyLbbbd414rIGRHZKyK9bcc7iMgGWxu7RaST3fl1RORN27GzInJU\nRBaKSLBdvaG2251tRWSGiCSJyGkRWZo1KRWRBOBaINJWP11E1mSJ5bLn0kSklYh8JSLHbG1uE5GH\n83lN7wQqAIuABcCdtlEu+2uZLiKvi0gPEflFRM6LyA4R6VKY65EbEemb5Xt2RETmikhgLvV+td2O\n3y4iPUVkju362cf9tF1ZoIi8LyJ/Z/kc9+TQx0O2Y2ds13aTiAzIz+dQSuVNEzulFFi3YCNE5Nor\nVRSR/2Ddrv0NGAvMBDoB34lIlSxVDVAVWA5sAMYD54H5ItIPmA98AUwEKgGLRKRSlvNvxLoVPB94\nCHjL1k+MiFTIIbT/Ak2AycCbwB22sgxjgIPALqzRs8HAC3bxZv2ctwLfAeHAq8CjWCNut+dxebL6\nNxBjjEkCPgGq2GLKSTtgFtZnHQ+UBxaLSNUsdQp6PbJ+lruxkstUrBHEt7ESz3VZv2cicrst1gu2\nekuB94DmXOF5OhGpAfwMdAReBx4G9gLvZk2GReQ+4DVgB9b35GlgC9Aqr/aVUvlkjNGXvvR1lb+A\nW4AUrP/4fwBeBm4FPOzq1bHVmWhX3th2/uNZymKANKBflrIwIN3Wxo1Zym+1lQ/JUlY+hzhb2uoN\nylI21Fb2tV3d6baYvLOU/QKsyaHdDrZY29veuwG/A/FZzy/A9axu63tYlrL1wNIc6qYD54C6Wcqa\n2MpHFeJ62H8WD6xnJrcC5bLU62Y7d1KWsu1YSX7FLGXtbPV+zyHup7O8fxcrcfa1q/cxcCwjfmAZ\nsN3Zf+f1pa+y+tIRO6UUxpjVQFvgM6Ap1qjRSuBPEck6ytQbEKzRtWoZLyAJa3Qmyq7p08aYhVn6\n2YP1LN8uY8ymLPV+tv1ZL0vdCxlfi4iHbfTqd+A41ghSto+ANQqV1TrAHcjXrUo7zbAmPLxqcrg9\nnQ8DsRKfpVnK5gNdRcQnh/qrjDGJGW+MMb8AJyn89ciqBVADeNNkeS7OGPMVsBvbCKSIBADXAR8Y\nY85lqbcOKyG+kjuxRmfd7f5ufAP4ZokxGaglIi3y0aZSqoA0sVNKAWCM2WyM6QP4YY0EvQhUxkri\nwm3VQrF+buwDjmR5JWHdsqxh12xOy3ycAA7Y9X3S9qVfRpmIVBCRZ0VkP9atwaO2fnyBnJKjA3bv\nj9u3WQD1sZLFXwtxLli3en8G/EWkvojUxxoxKw/0zaG+fexgxV+U65EhGOuz7Mnh2G4uJb4Zf8bn\nUG9fHu0jItVtcYwg+9+LI8D7tv4z/m5MAU4DG0Vkj4i8IdasbKWUA+isWKVUNsaYi0AsECsie4HZ\nWMnIc1hJXTpwm+1Pe6ft3qfl0k1u5ZLl6zewbrPOxHpG7wRWgrCAnH8pzU+b+VWYc6wTRUKxnocz\nWKOYWRmspO9du/LiuB45tVFcMvqfh/X8ZU62AxhjdotIQ+BfWH+P7gRGicgzxphnij1Spco4TeyU\nUnnZbPszwPZnPFaikGiMyXMUxwF6A3OMMRMyCkSkPNbIUGHld+HOfVif8zoKvkTJYKzn6wZzefLb\nDnhIRGoZYwq6aHFhr0ci1mdpCKy1O9YQ65k6svwZmkMbOZVldQQ4BbibfKzVZ7vVuwhrNNgD67m7\n/4jIS0aXUVGqSPRWrFIKEYnM5VDGDNDdtj+XYnvgPpd2quZUXkhpXP4z6mGs5+YK6wz5SwzjgATg\nkVyeicvLv4F1xpjFxpilWV/AVKwka2AB24TCX4/NWLds7xcRz4xCEekKNMKamYwx5i+smapDxFqD\nL6NeB6zJHLky1iLFS4DeOc2stlt2pqrduRexZiq7AZ4opYpER+yUUgD/tf1nvgwriSsH3AT0w3pA\nfw6AMeZ3EXkSeFFEQoBPsUZq6gE9gWhghoNi+gK4S0ROAjuxdnDohPVsmb3cbjfal8diJTj/wRqV\nSzLGxNjXNcYYERmFNZlkq4jMBv7Ceo6wsTGma46dibTCGt16Pafjxpi/RCQO63bsK7nEnJtCXQ9j\nzEURmYj1rNv3IjIfqImVFP6OtZRLhv/D+p7+aPvMVYHRWJMnKl8hvseBSOBnEXnHFmNVIAJrCZSM\n5O4bEfkba/b1YawZ1aOB5caYM1e+DEqpvGhip5QCeAzrObquwH1Yid1+rOe6XswyuQFjzBQRyVjD\nLmOB2gPA18Dndu3mdOsztz1G7csfBi5ijYBVwFou5Bas2br25+d2i9W+/FmsJVvGA95Y69TF5FTX\nGLNSRKKwRicfxRpRiufy2bdZ/dvWzhd51FkOTBKR64wxOyiB62GM+UBEzmAlXy9jjVwuwVqeJuv3\n9gsRGYi1FuDLWBMuhgJ3YyVgucZnjEkSkZZYfyd6AQ8A/2BNQJmQ5bz/YSW2Y7GSxYNYyWXWNQWV\nUoWke8UqpZTKk4hswRrd7HLFykopp3KZZ+xEZLSIJNi2sdkgIjfm87wBtq1tltqVz5ZL2wZlvL4q\nnuiVUqr0ExF3EXGzK4sErufSyKZSyoW5xK1YEemPtUr8CGAj1hD9ShEJMznsU5nlvGCs51S+z6XK\nCqxbCBnPm1zIpZ5SSimoBawSkY+AQ1iTK0bavo52ZmBKqfxxlRG7sUC0MeZDY8xu4H7gLHDZ5tEZ\nbL9VzsN6niMhl2oXjDFHjDFJttcJRweulFJlyHGsCSbDsSaADMF6JrCdMeZ4XicqpVyD00fsbNPv\nI7BWuQcyZ6Stxpr1lZtJWM98zBaR9rnUiRSRw1g/rNYATxpjjjkodKWUKlNsEykKsxSLUspFOD2x\nw5oC74417T2rw1iLZ15GRG4ChmE995GbFVizvhKwtgd6CfhKRNqYHGaM2PY07IK1mOf5gn0EpZRS\nSqkCq4C1L/VKY8w/jmjQFRK73Ag5LAEgIpWBucB9ed0ayLrxOPCriPyCtVRBJDk/BNwF+KgoASul\nlFJKFcIg4GNHNOQKid1RrBXVr7Err8Hlo3hgjb4FA8tFJGNShBuAiKQADY0xlz1zZ4xJEJGjWIuH\n5pTYJQLMmzePRo0aFeJjXL3Gjh3LzJkznR1GqaLXrHD0uhWcXrPC0etWcHrNCm7Xrl0MHjwYbDmI\nIzg9sTPGpIpILNYK6p8D2BK2TuS8evsuLt/e5gWshS4fxloo9TIiUguohrV6fE7OAzRq1IjmzZsX\n8FNc3Xx8fPSaFZBes8LR61Zwes0KR69bwek1KxKHPQLm9MTOZgbwgS3By1juxAvbNkYi8iFw0Bjz\nf7YNondmPVlEkrHmXOyyva+ENbliCfA31ijdFKxV1FeWxAdSSimllCppLpHYGWMW2jaJfhbrluxW\noIsx5oitSi2srXTyKw1oijVV3xdrDaaVwNPGmFSHBa6UUkop5UJcIrEDMMa8CbyZy7GOVzh3mN37\n88BtjotOKaWUUsr1uUxip0qvgQN12auC0mtWOHrdCk6vWeGU1HXbv38/R4/musFSqdK6dWvi4uKc\nHYZL8vf3p06dOiXSl+SwpNtVSUSaA7GxsbH68KdSSqlit3//fho1asTZs2edHYoqZl5eXuzateuy\n5C4uLo6IiAiACGOMQ7JiHbFTSimlnODo0aOcPXtWl9kq4zKWNDl69GiJjNppYqeUUko5kS6zpRzJ\nzdkBKKWUUkopx9DETimllFKqjNDETimllFKqjNDETinlUt6Ne5cDJ3LcGVAppQCIiori0UcfdXYY\nLkkTO6WUyzhx/gT3Lb+POq/W4VzqOWeHo5TKQXR0NFWqVCE9PT2z7MyZM3h6etKpU6dsdWNiYnBz\ncyMxMbHY4rl48SITJ06kadOmVK5cmaCgIIYOHcpff1lbwyclJVGuXDkWLlyY4/nDhw+nRYsWxRZf\nSdPETinlMhKSEwC4MfBG3ER/PCnliqKiojhz5gybN2/OLFu3bh0BAQFs2LCBlJSUzPLvvvuO4OBg\n6tatW+B+Ll7M306iZ8+eZevWrUyaNIktW7awbNkyfvvtN3r06AFAjRo1uP3223n//fdzPHfx4sXc\ne++9BY7PVelPTqWUy0g4biV2ywcup7xHeSdHo5TKSVhYGAEBAaxduzazbO3atfTs2ZOQkBA2bNiQ\nrTwqKgqAAwcO0KNHD7y9vfHx8aF///4kJSVl1n3mmWdo1qwZ7733HvXq1aNChQqAlXwNGTIEb29v\ngoKCmDFjRrZ4qlSpwsqVK+nduzcNGjSgZcuWvPHGG8TGxnLw4EHAGpX79ttvM99nWLhwIRcvXsy2\n00h0dDSNGjWiYsWKXHvttbz99tvZzjlw4AD9+/enWrVqVK5cmVatWhEbG1uEK+pYmtgppVxGQnIC\nXp5e1KhUw9mhKKXyEBkZSUxMTOb7mJgYIiMj6dChQ2b5hQsX+Pnnn+nY0druvUePHiQnJ7Nu3TpW\nr15NfHw8AwYMyNbuvn37WLp0KcuWLWPr1q0AjBs3jnXr1rF8+XK++eYb1q5de8VEKjk5GRHB19cX\ngG7dulGjRg3mzJmTrd6cOXO488478fHxAeCDDz7ghRdeYMqUKezevZvnn3+eJ554gvnz5wNw+vRp\n2rdvz9GjR/nyyy/Zvn0748aNy3Zb2tl0gWKllMtITE6krm9dRMTZoSjlOs6ehd27HdtmeDh4eRX6\n9MjISB599FHS09M5c+YMW7dupX379qSkpBAdHc2kSZP44YcfSElJITIyklWrVrFjxw4SExMJDAwE\nYO7cuVx77bXExsZmbKtFamoqc+fOpWrVqoD17N7777/Pxx9/TGRkJGAlX7Vq1co1tgsXLvD444/z\n73//m8qVKwPg5ubGkCFDmDNnDk8++SQA8fHxrFu3jjVr1mSeO3nyZGbOnEn37t0BCA4OZvv27URH\nRzNw4EA+/PBDTpw4waeffoq3tzcA9erVK/R1LA6a2CmlXEZCcgIhviHODkMp17J7N9gSH4eJjYUi\n7HaR8Zzdpk2bOHbsGGFhYfj7+9OhQwfuueceUlJSWLt2LfXr16dWrVosW7aM2rVrZyZ1YO244evr\ny65duzITu+Dg4MykDqzkKzU1lZYtW2aW+fn50bBhwxzjunjxIn379kVEePPNN7MdGz58OFOmTGHt\n2rVERkYye/ZsQkJC6NChAwCnTp3ijz/+YOjQodx9992Z56WlpeHv7w/Atm3biIiIyEzqXJEmdkop\nl+Hv5U+wT7Czw1DKtYSHW4mYo9ssgvr16xMUFERMTAzHjh3LTI4CAgKoXbs2P/zwQ7bn64wxOY7E\n25dXqlTpsuNAvkbxM5K6AwcOsGbNmszRugyhoaG0a9eO2bNn06FDB+bOncvIkSMzj586dQqwbs/a\nb/Hm7u4OQMWKFa8Yh7NpYqeUchmze8zO9Vhaehr7ju2joX/Ov6krVWZ5eRVpdK24REVFERMTw/Hj\nx5kwYUJmefv27VmxYgUbN25k1KhRADRu3Jj9+/fz559/EhQUBMDOnTs5ceIEjRs3zrWP0NBQPDw8\n2LBhA7179wbg+PHj7NmzJ/PWLFxK6n7//XdiYmLw8/PLsb3hw4czatQo7rjjDg4dOsTQoUMzjwUG\nBnLNNdcQHx9Pnz59cjy/adOmzJ07l5MnT1KlSpX8XagSppMnlFKlwuS1k7np/ZvYf2K/s0NRSmEl\nduvXr2fbtm2ZI3ZgJXbR0dGkpqZmJl+33HILTZo0YdCgQWzZsoWNGzcydOhQoqKiaNasWa59VKpU\nieHDhzN+/HhiYmLYsWMHw4YNyxxBA+tWae/evYmLi2PevHmkpqZy+PBhDh8+TGpqarb2+vbti4eH\nByNHjqRz586ZSWaGyZMn88ILLzBr1iz27t3LL7/8wvvvv8/rr78OwODBg6lWrRq9evXip59+IiEh\ngSVLlmRb+sXZNLFTSpUKY1qPoVK5SvRd1JcLFy84OxylrnpRUVGcP3+eBg0aUL169czyDh06cPr0\nacLDw6lZs2Zm+WeffYafnx8dOnSgc+fOhIaG8sknn1yxn1deeYV27drRvXt3OnfuTLt27TKfyQM4\nePAgX3zxBQcPHuSGG24gMDCQgIAAAgMD+emnn7K1VbFiRQYMGEBycjLDhw+/rK+RI0fy1ltv8d57\n79G0aVM6duzIvHnzCAmxnv0tV64cq1evxs/Pj65du9K0aVNeeeWVbImms0nG/eurnYg0B2JjY2Mv\nu7eulHINm/7cxM2zb+a+5vfxRrc3nB2OUkUSFxdHREQE+v9O2ZbX9znjGBBhjIlzRH86YqeUKjVu\nDLqR1257jVmbZvHR9o+cHY5SSrkcTeyUUqXKyIiRDLl+CCO+GMGOpB3ODkcppVyKJnZKqVJFRHjr\n9reo71efOxfcyckLJ50dklJKuQxN7JRSLqEgz/t6eXqxpN8SKperzN+n/y7GqJRSqnTRxE4p5XTp\nJh2/KX58uO3DfJ/ToFoDYkfEElYtrBgjU0qp0kUTO6WU0/116i9OXDhB1YpVr1w5C91TVimlstPE\nTinldAnJCQC6T6xSShWRJnZKKadLTE4EoK5vXafGoZRSpZ3LJHYiMlpEEkTknIhsEJEb83neABFJ\nF5GlORx7VkQOichZEVklIqGOj1wpVVQJxxOoUakGlcpVunJlpZRSuXKJxE5E+gPTgUlAM2AbsFJE\n/K9wXjDwCvB9DscmAg8CI4GWwBlbm+UcG71SqqgSkhMcOlp36sIph7WllHI9UVFRPProo07pOyQk\nJHPvWFfkEokdMBaINsZ8aIzZDdwPnAXuye0EEXED5gFPAwk5VBkDPGeMWW6M2QEMAQKBno4OXilV\nNAnJCQ57vu6b+G8IeS2E347+5pD2lFLZRUdHU6VKFdLT0zPLzpw5g6enJ506dcpWNyYmBjc3NxIT\nE4s1psjISNzc3HBzc6NixYo0bNiQl19+uVj7dFVOT+xExBOIAL7NKDPWglargTZ5nDoJSDLGzM6h\nzRCgpl2bJ4Gfr9CmUsoJEo47LrFrU6sN1StVp/fC3pxJOeOQNpVSl0RFRXHmzBk2b96cWbZu3ToC\nAgLYsGEDKSkpmeXfffcdwcHB1K1bt8D9XLx4Md91RYQRI0Zw+PBh9uzZwxNPPMHTTz9NdHR0gfst\n7Zye2AH+gDtw2K78MFZydhkRuQkYBtybS5s1AVOQNpVSzjOr2yz+3eTfDmnLu7w3S/otITE5kRFf\njCjQwsdKqSsLCwsjICCAtWvXZpatXbuWnj17EhISwoYNG7KVR0VFAXDgwAF69OiBt7c3Pj4+9O/f\nn6SkpMy6zzzzDM2aNeO9996jXr16VKhQAYCzZ88yZMgQvL29CQoKYsaMGTnG5eXlRfXq1alduzZ3\n3303TZs2ZdWqVZnH09PTuffee6lXrx5eXl6Eh4dfdkt12LBh9OrVi+nTpxMYGIi/vz8PPvggaWlp\nuV6Pd999Fz8/P2JiYvJ/EYuRh7MDyINgJWfZC0UqA3OB+4wxxx3RZlZjx47Fx8cnW9nAgQMZOHBg\nAbtSSuXX7WG3O7S9xtUb8273dxm4ZCBta7VldMvRDm1fqatdZGQkMTExTJgwAbBuuU6cOJG0tDRi\nYmJo3749Fy5c4Oeff+bee60xmIykbt26daSmpvLAAw8wYMAA1qxZk9nuvn37WLp0KcuWLcPd3R2A\ncePGsW7dOpYvX0716tV54okniI2NpVmzZrnGt27dOnbv3k1Y2KUFzNPT06lduzaLFy+mWrVq/Pjj\nj4wYMYLAwED69OmTWS8mJobAwEDWrl3Lvn376NevH82aNWP48OGX9TN16lSmTZvGqlWraNGiRZ7X\n7Ouvv2by5MnZyk6cOJHnOYVijHHqC/AEUoHuduVzgGU51L8eSANSbOel2t5nlIXYXulAU7tz1wIz\nc4mjOWBiY2ONUqpsePirh43ns57mpwM/OTsUpS4TGxtr8vv/zqGTh0zsodhcX78m/XrFNn5N+tXE\nHoo1h04eKnLs77zzjvH29jZpaWnm5MmTply5cubIkSNm/vz5JjIy0hhjzLfffmvc3NzMgQMHzDff\nfGM8PT3Nn3/+mdnGzp07jYiYzZs3G2OMmTx5silfvrz5559/MuucPn3alC9f3ixZsiSz7NixY8bL\ny8uMHTs2sywyMtKUK1fOVK5c2ZQrV86IiPHy8jIbNmzI83M8+OCDpm/fvpnv7777bhMSEmLS09Mz\ny/r162cGDhyY+b5u3brmtddeMxMnTjRBQUFm586defaR1/c54xjQ3Dgor3L6iJ0xJlVEYoFOwOcA\nYi0n3wnIadrJLqCJXdkLQGXgYeCAMeaiiPxta2O7rc0qQCtgVnF8DqWU63ml8yts/mszfRf1JW5E\nHNUrVXd2SEoVSnRsNM9890yuxxtXb8yvo37Ns42+i/qy88hOJnWYxOTIyUWKJ+M5u02bNnHs2DHC\nwsLw9/enQ4cO3HPPPaSkpLB27Vrq169PrVq1WLZsGbVr1yYwMDCzjUaNGuHr68uuXbuIiIgAIDg4\nmKpVL+1AEx8fT2pqKi1btsws8/Pzo2HDhpfFNHjwYJ588kmOHTvGpEmTaNu2La1atcpWZ9asWcye\nPZv9+/dz7tw5UlJSLhv5u/baa7PtahMQEMCOHTuy1Zk2bRpnz55l8+bNhXp+sDg5PbGzmQF8YEvw\nNmLNkvXCGrVDRD4EDhpj/s8YkwLszHqyiCRjzbnYlaX4VeBJEdkHJALPAQeBz4r3oyilXEU593Is\n7LOQFu+0YPXvqxnYRB+pUKXTyIiRdG/YPdfjFTwqXLGNRX0Xcf7ieQIqBxQ5nvr16xMUFERMTAzH\njh2jQ4cOgJUE1a5dmx9++CHb83XGmBy3ALQvr1Sp0mXHIX/bB/r4+BASEkJISAgLFiwgNDSU1q1b\n07FjRwA++eQTxo8fz8yZM2ndujXe3t5MnTqVjRs3ZmvH09Mz23sRyTYDGKB9+/Z8+eWXLFiwgIkT\nJ14xtpLkEomdMWahbc26Z4FrgK1AF2PMEVuVWkD+p8dYbU4VES8gGvAF1gFdbYmhUuoqEVQliN8e\n/I0q5as4OxSlCi3AO4AA76IlZI2rN3ZQNJaoqChiYmI4fvx45rN2YCU9K1asYOPGjYwaNcrqu3Fj\n9u/fz59//klQUBAAO3fu5MSJEzRunHtcoaGheHh4sGHDBnr37g3A8ePH2bNnD5GRkbmeV6lSJcaM\nGcNjjz3Gli1bAPjxxx+56aabGDlyZGa9+Pj4Qn32li1b8tBDD9G5c2fc3d0ZN25codopDq4wKxYA\nY8ybxpi6xpiKxpg2xpjNWY51NMbkuqadMWaYMebOHMonG2MCjTFexpguxph9xRW/UsoBjIFRo2Db\nNoc2q0mdUo4XFRXF+vXr2bZtW+aIHViJXXR0NKmpqZnJ1y233EKTJk0YNGgQW7ZsYePGjQwdOpSo\nqKg8J0FUqlSJ4cOHM378eGJiYtixYwfDhg3LnFiRl5EjR7Jnzx6WLrU2pmrQoAGbN2/mm2++Ye/e\nvTz99NNs2rSp0J+/VatWrFixgueee45XX3210O04msskdkopxeHD8NZb8MQTzo5EKXUFUVFRnD9/\nngYNGlC9+qXnVzt06MDp06cJDw+nZs1LK4x99tln+Pn50aFDBzp37kxoaCiffPLJFft55ZVXaNeu\nHd27d6dz5860a9cu85m8DDndqvXz82PIkCGZM1FHjhzJnXfeyYABA2jdujXHjh1j9OiCz5jP2lfb\ntm354osvePrpp3njjTcK3FZxkIz711c7EWkOxMbGxtK8eXNnh6PUVeH8xfO8E/sOPcN7UtunNvzw\nA9x8s3Vw2zZo2tS5ASpVjOLi4oiIiED/3ynb8vo+ZxwDIowxcY7oT0fslFJO80fyHzz89cP8fvx3\nqyDjeZegIJg61XmBKaVUKaWJnVLKaRKSrW2e6/rWtQri4yEgACZMgE8+gWLeX1LvWCilyhpN7JRS\nTpNwPAEPNw9qVallFezbB/Xrw/Dh4OsLuWwd5AiHTh2izXttiD0UW2x9KKVUSdPETinlNAnJCdTx\nqYO7m22GW3y8ldhVqgQPPgjvvgtHjxZL31UrViXNpNFnUR+OnTtWLH0opVRJ08ROKeU0icmJl27D\nwqXEDqzEDqCYZppV8KjAor6LOHnhJHctu4t0k37lk5RSysVpYqeUcpqE5ARCfEOsNydOWKNzoaHW\ne39/uPde+O9/4cyZYum/rm9dPrrzI1bsXcEL379QLH0opVRJ0sROKeU0CcezJHYZM2IzRuwAHn3U\nSvjee6/YYrgt9DYmdZjEpLWT+Cb+m2LrRymlSoImdkopp7hw8QJVK1alQbUGVkFOiV3dujBgAEyf\nDqmpxRbLUx2eoktoF/695N/sP7G/2PpRSqnipomdUsopynuUZ89De+h3bT+rID7emglbtWr2iuPH\nw/79sGB9y8gsAAAgAElEQVRBscXiJm7M6zWPyuUq89x3zxVbP0opVdw8nB2AUkoBl5Y6sd8a6Prr\n4bbbrAWLBw26/LiDVPOqxuohqy8tvaKUUqWQjtgppVxD1hmx9iZOhF9+gRUrijWE0KqhVPCoUKx9\nKFUWDBs2DDc3N9zd3XFzc8v8+vfffy9Su2lpabi5ufHVV19llrVr1y6zj5xenTt3LurHAeDLL7/E\nzc2N9PTSPUNeR+yUUq4hPh7ats35WIcO0LKlNWrXrVvJxqWUylHXrl2ZM2dOth1cqlevXqQ2c9oN\nZvny5aSkpACQkJBA27Zt+e677wgLCwOgfPnyReoza98iUup3pNERO6WU850/DwcP5j5iJ2KN2n33\nHfz8c8nGppTKUfny5alevTo1atTIfIkIX331FTfffDN+fn74+/vTvXt3EhISMs9LSUnhgQceIDAw\nkIoVK1KvXj2mTZsGQEhICCLCv/71L9zc3AgLC8PX1zezfX9/f4wxVK1aNbPMx8cHgKNHjzJ06FD8\n/f3x8/OjS5cu7N69G4D09HRuuukm+vTpkxnH4cOHueaaa5g+fTq//vor3bt3B8DT0xN3d3cefvjh\nkrqUDqWJnVLK+RISwJjcEzuAHj0gLAymTCm5uJRSBXbu3DnGjx9PXFwc3377LcYYevfunXl8xowZ\nrFy5kiVLlrBnzx7mzp1LnTp1ANi0aRPGGD766CP+/vtvNmzYkO9+e/ToQUpKCmvWrGHjxo00aNCA\nW2+9lTNnzuDm5sa8efNYtWoVs2fPBuCee+6hSZMmPPbYY4SHhzN37lwADh06xF9//cVLL73kwKtS\ncvRWrFLK+XJa6sSeu7s1Q3bECPjtN2jYsGRiU8oF/PWXtX53kybZy7duhYAAuOaaS2VHj1oTyZs3\nz153506oUgVqOWh+0PLly/H29s58361bNxYsWJAtiQN45513CAwMZM+ePYSFhXHgwAHCwsJo06YN\nALVr186sm3Er18fHhxo1auQ7lpUrV5KQkMC6detwc7PGrF5//XWWLVvG8uXLGTBgACEhIbz22ms8\n9NBD7Nq1i59++olffvkFAHd3d3x9fQGoUaNGZhulUemNXClVdsTHQ4UKEBiYd7277oKaNeGVV0om\nLiAtPY2nY55mbeLaEutTKXvR0dC16+Xl7dvDRx9lL/v0U4iIuLxu374wY4bjYurYsSPbt29n27Zt\nbNu2jddffx2AvXv3MmDAAOrVq0eVKlVo0KABIsL+/dYakcOGDWPjxo2Eh4fzyCOP8O233xY5lm3b\ntpGUlISPjw/e3t54e3vj4+NDUlIS8Rm/OAJ33303HTt2ZNq0acyaNYugoKAi9+1qdMROKVXi4v6K\no9eCXnwz+Bsa+je0ljqpVw+u9Fty+fLwyCPw1FPw7LNXTgQdwGBYv389b8e+TdzIOAK9i79PpeyN\nHAl2A2EAfP+9NWKXVc+el4/WASxaZI3YOUqlSpUICQm5rPz2228nLCyM999/n4CAAFJSUrj++usz\nJ0C0aNGCP/74gxUrVrB69Wp69+5N165dmT9/fqFjOX36NKGhoaxYseKyyQ9Vs6yNefLkSbZv346H\nhwd79uwpdH+uTEfslFIlLv5YPPtP7Mffy99WkMdSJ/ZGjrRG9159tfgCzMLDzYP5vefj7uZO/8X9\nSU0rvh0wlMpNQMDlt2EBbrgh+21YsLZZzimxa9zYcbdhc5OUlMS+fft46qmniIyMpGHDhvzzzz+I\n3fqT3t7e9OvXj7fffpuPP/6YBQsWcPr0adzd3XF3dyctLS3XPuzbAmjevDn79++nUqVK1KtXL9sr\n4xYrwOjRo6lWrRqffvopL7zwAhs3bsw8Vq5cOYA8+y4NNLFTSpW4xOREvMt5U7Wi7Tfp+HgIDc3f\nyT4+8MAD8L//QXJy8QWZxTWVr2FR30VsOLiBx1c/XiJ9KlUaVatWDT8/P6Kjo/n999/59ttvGT9+\nfLY606dPZ+HChezZs4c9e/awaNEiatWqReXKlQGoU6cOq1ev5vDhwyTn8G88p+VI7rjjDq677jq6\nd+/OmjVrSExMZP369UycOJFdu3YBsHDhQpYuXcpHH31Et27deOCBBxg0aBBnz54FoG7dugB8/vnn\nHD16NLO8tNHETilV4hKSEwjxs5Y1IC3NmhWb3xE7gDFj4MIFK7krIW1rt2V65+nM2DCDRb8uKrF+\nlSpN3N3dWbBgAT///DPXXXcd48ePz1zKJEPlypV58cUXadGiBa1ateLQoUN8+eWXmcdnzpzJ119/\nTZ06dWjZsuVlfeQ0Yufu7s6qVato3rw5d911F40aNWLIkCEcOXIEf39/Dh06xKhRo3jllVdoaJt4\nNXXqVCpUqMCYMWMAaNCgAY8//jijR4+mZs2aPP546fwlTkr7QnyOIiLNgdjY2Fia5zSGrZRymK4f\ndaWcezk+G/AZJCZCSIi1q8Rtt+W/kREj4PPPrfMrlMxuEcYYBi4ZyJd7v2TTfZsI9w8vkX5V2RQX\nF0dERAT6/07Zltf3OeMYEGGMiXNEfzpip5QqcQnHEwjxtT10nZ+lTnIybhwkJcGHHzo2uDyICO92\nf5faVWozaOmgUr9CvVKq7NFZsUqpEpVu0klMTryU2O3bZ61RFxxcsIbCwuDOO62lT4YPt9ooAZXL\nVWZp/6WcSz2X4y0hpZRyJh2xU0qVqMOnD3Mh7QIhfllG7OrUAduMtAKZONFKDJctc2yQVxDuH06z\ngGYl2qdSSuWHJnZKqRLl5elF9L+iaRHYwiooyFIn9m68EaKirG3G9LaoUkq5TmInIqNFJEFEzonI\nBhG5MY+6vURkk4gcF5HTIrJFRAbb1ZktIul2r6+K/5MopfLiU8GHEREjLi30W5ClTnIyYQJs3gwx\nMY4JUCmlSjGXSOxEpD8wHZgENAO2AStFxD+XU/4BngdaA02A2cBsEbnVrt4K4Bqgpu010PHRK6UK\nzRjrVmphR+wAunSB66+3Ru2UUuoq5yqTJ8YC0caYDwFE5H7gduAeYKp9ZWPM93ZFr4vIUOBmYFWW\n8gvGmCPFE7JSqsiSkuDMmaIldiLWqN2gQdaO6Dfc4Lj4lCoBGQvoqrKppL+/Tk/sRMQTiABezCgz\nxhgRWQ20yWcbnYAw4Du7Q5Eichg4DqwBnjTGHHNI4EqpostY6qQot2IB+vWD//wHpk6Fjz8uelyF\ntOnPTRw7d4wuoV2cFoMqPfz9/fHy8mLw4MFXrqxKNS8vL/z9c7sJ6VhOT+wAf8AdOGxXfhhomNtJ\nIlIF+BMoD1wERhlj1mSpsgJYAiQA9YGXgK9EpI3RxaeUcg379ll/1qtXtHY8POCxx6wdKV54wVrw\n2Amm/TSNlftWEjsilvpVizAKqa4KderUYdeuXRw9etTZoahi5u/vT506dUqkL6fvPCEiAVgJWhtj\nzM9ZyqcCNxtj2uZyngAhQGWgE/A00COH27QZ9UOAeKCTMeayp6wzdp5o3749Pj4+2Y4NHDiQgQP1\n8TylHG7SJHj7bfjrr6K3dfastRZe//7wxhtFb68QTpw/QYt3WlDJsxI/Df+Jip4VnRKHUsr1zJ8/\nn/nz52crO3HiBN9//z04cOcJV0jsPIGzQG9jzOdZyucAPsaYXvls5x2gljGmax51koD/GGPeyeGY\nbimmVEkbPNjaEmz9ese09+yz8PLL8McfUL26Y9osoO2Ht9P63db0v64/73d/XxcxVkrlqkxuKWaM\nSQVisUbdgMzRuE7AjwVoyg3rtmyORKQWUA1wwNCAUqow/kj+g0W/LuLCxQtWQVGXOrE3erQ1meK/\n/3VcmwXU9JqmRP8rmjlb5/DelvecFodS6urk9MTOZgYwQkSGiEg48D/AC5gDICIfikjm5AoReVxE\nbhGREBEJF5HHgMHAXNvxSiIyVURaiUiwbXLFp8AeYGXJfjSlVIY1CWvot7gfBtudgqIudWKvWjW4\n7z7rVuzp045rt4Duuv4u7o+4nwe/epDYQ7FOi0MpdfVxicTOGLMQeAx4FtgCNAW6ZFmqpBbWOnQZ\nKgGzgB3AeqAXMMgYM9t2PM3WxmfAb8A7wCagvW2EUCnlBAnJCQRUDqCCRwU4eRKOHnVsYgfw6KNw\n6hS8+65j2y2gV297lSbXNKH3wt4kn092aixKqauHK8yKBcAY8ybwZi7HOtq9fwp4Ko+2zgO3OTRA\npVSRJSQnZN8jFhx7KxasfWcHDoQZM6xbs56ejm0/n8p7lGdx38XM3zGfKuWrOCUGpdTVxyVG7JRS\nV4eE4wmE+NoSu4ylThw9YgfWgsUHDoDdDLSSFuwbzOM3P46b6I9apVTJ0J82SqkSk5iceCmxi48H\nHx+oWtXxHV13Hdx+u7VgcXq649tXSikXpYmdUqpEXLh4gUOnDmW/FVu/vjWLtThMnAi//gpffVU8\n7SullAvSxE4pVSL+OPEHBkNd37pWgaOXOrF3883Qpg1MmVJ8fSillIvRxE4pVSKOnDmCdznv7M/Y\nFcfzdRlErFG79evhx4IsiamUUqWXJnZKqRJxU52bOPH4CWvE7sIFOHiweBM7gDvugPBwlxu1O5d6\njh/2/+DsMJRSZZAmdkqpEiMi1hZbCQlgTPHeigVwc4Px4+Hzz2HnzuLtqwCm/DCFW+feyvbD250d\nilKqjNHETilV8opzqRN7gwZBYCBMm1b8feXThJsmEFYtjN4Le3Pi/Alnh6OUKkM0sVNKlbz4eChf\n3kq4ilv58jB2LMybZ93+dQFenl4s7reYI2eOcPdnd2OMcXZISqkyQhM7pVTJy1jqxK2EfgSNGAFe\nXvDqqyXTXz6EVg3lw14f8unuT5n2o+uMJiqlSjdN7JRSJS8jsSspVarAqFEQHQ3Hj5dcv1fQvWF3\nnrj5CR7/9nHWJq51djhKqTJAEzulVMkr7qVOcjJmDKSmwltvlWy/V/Bs1LNE1o1kwOIBHDp1yNnh\nKKVKOU3slFIlKy3NmhVb0ondNdfA3XfDa6/BuXMl23cePNw8mN97Pi2DWpKalurscJRSpZwmdkqp\nYvf+lvdpP7u9NUng4EFr5Ky4lzrJybhxcPQofPBByfedhxqVavD5wM8J9g12dihKqVJOEzulVLHb\nkbSDw2cOW2vYleRSJ/ZCQ6F3b2vpk7S0ku9fKaWKmSZ2Sqlil5CccGkrsfh4azZssJNGpyZOtGJY\nssQ5/SulVDHSxE4pVewSjtsldsHBUK6cc4KJiIBOnaxtxnT9OKVUGaOJnVKq2CUmJ1p7xELJL3WS\nk4kTIS4Ovv3WuXEopZSDaWKnlCpWx88d58SFE4T42UbsnLHUib1bboFmzaxROxd38KRr7JahlCod\nNLFTShWrhOQEAOtWrDGuMWInYo3arV4NsbHOjSUPX+/7mvqv1+fHAz86OxSlVCmhiZ1SqlglJicC\nWCN2R47A6dPOWerEXu/eUK8eTJ3q7Ehy1SmkEzcG3kjfRX1JOpPk7HCUKpSUtBTSTbqzw7hqaGKn\nlCpW4f7hPB/1PNUqVnPuUif2PDzgscdg8WJrFNEFebp7srDvQtLS0xiweAAX0y86OySl8uV0ymkW\n71zMoKWDqPFKDTb+udHZIV01NLFTShWrxtUb85/2/7HWsMtIoOrVc25QGYYNg2rVYPp0Z0eSq0Dv\nQBb0WcD3f3zPU2uecnY4SuXq6NmjvL/lfe6Yfwf+U/3pu6gvO5J28EjrRwjyDnJ2eFcND2cHoJS6\nisTHQ82aULmysyOxVKwIDz8ML7wAkydDjRrOjihHHep24KVOLzFh9QRa12pNj/Aezg5JqWzGrBjD\nG5vewBjDTXVu4sVOL9IzvCf1/Fzkl7iriCZ2SqmS4woTJ+yNGgUvvwyvvw7PP+/saHI1ru04fjr4\nE0M+HULsiFhCq7rAc4pK2UTWjeS6GtfRvWF3rql8jbPDuarprVilVMlxhaVO7FWtCiNGwKxZcOqU\ns6PJlYgwu8dsgn2C2fb3NmeHo64i6Sad8xfP51mnV6Ne3BdxnyZ1LkATO6VUyYmPd40ZsfbGjrVm\n677zjrMjyZNPBR/iRsbRu3FvZ4eiyrgLFy+wYu8KRi4fSeD0QN7c9KazQ1L55DKJnYiMFpEEETkn\nIhtE5MY86vYSkU0iclxETovIFhEZnEO9Z0XkkIicFZFVIuKC/6ModZU4edJa7sTVRuwAateGQYNg\nxgxISXF2NHnycNMnaFTxOHXhFAt/XcjAJQOpMa0G3T7uxuqE1QxuOphOIZ2cHZ7KJ5f4CSEi/YHp\nwAhgIzAWWCkiYcaYozmc8g/wPLAbSAHuAGaLyGFjzCpbmxOBB4GhQIKt/koRaWSMce2f3EqVRRkz\nYl0xsQOYMAE++AA+/hjuvtvZ0ShVol5e/zKT1k4iJS2FZjWb8Vibx+gV3ovralxnzWhXpUaBEzsR\nmQO8b4z53oFxjAWijTEf2vq4H7gduAe4bPXQHPp+XUSGAjcDq2xlY4DnjDHLbW0OAQ4DPYGFDoxd\nKZWLHUk7OJ1ymta1Wrt+Yte4Mdxxh7Vg8ZAh4OYyNzSUKnY3Bt7IlFum0DO856V9nVWpVJifXH7A\nKhHZKyL/JyJFWpxGRDyBCCBzN25jjAFWA23y2UYnIAz4zvY+BKhp1+ZJ4Of8tqmUKrrXf36dB796\n0HoTHw8+Pta6ca5q4kTYtQu++MLZkSjlMMaYK05+6FSvE4+0fkSTujKgwImdMaYHUAt4C+gPJIrI\nChHpY0vSCsofcMcaTcvqMFZyliMRqSIip0QkBVgOPGSMWWM7XBMwBW1TKeVYCckJl/6jyFjqxJVv\n69x0k/WaMsXZkRRYSpo+YaIuSUtPY/3+9Ty28jFC/xvKk2uedHZIqoQU6hk7Y8wRYAYwQ0SaA8OA\nucBpEZkHvGmM2VvE2AQrOcvNKeB6oDLQCZgpIr9f4Rbxldpk7Nix+Pj4ZCsbOHAgAwcOzFfQSqlL\nEo4n0Cu8l/XGFZc6ycnEidC9O6xfDzff7Oxo8uXgyYN0mNOBWd1mcVvobc4ORznJ+YvnWZOwhmW7\nlvH5ns9JOpNEzco16dGwBz0a6qLWzjZ//nzmz5+frezEiRMO76dIkydEJAC4FegMpAFfAU2AnSIy\nwRgzMx/NHLWda7/4TQ0uH3HLZLtd+7vt7XYRaQw8AXwP/I2VxF1j10YNYEtewcycOZPmzZvnI2yl\nVF7S0tPYf2I/IX4hVkF8PLRu7dyg8uP2263n7aZMKTWJXaB3IOH+4QxaOoi4EXEE+wY7OyRVwuZs\nncNDKx7idMppQquGMvT6ofQK70WrWq1wE31e1BXkNEgUFxdHRESEQ/sp8HdbRDxFpLeIfAH8AfQF\nZgIBxpihxphbgH7A0/lpzxiTCsRijbpl9CG29z8WIDQ3oLytzQSs5C5rm1WAVgVsUylVSIdOHSI1\nPZUQ3xC4cAEOHCgdI3ZubtYM2S++gB07nB1NvriJG3N7zaVK+Sr0WdSHCxcvODskVcKuq3EdE2+a\nyI4HdrDnwT1MvXUqbWq30aTuKlSY7/hfwDtYSV1LY0wLY8z/jDFZl2yPAZIL0OYMYISIDBGRcOB/\ngBcwB0BEPhSRFzMqi8jjInKLiISISLiIPAYMxrodnOFV4EkRuUNEmgAfAgeBzwr6gZVSBZeQnABg\njdglJIAxpSOxAxg4EGrVgldecXYk+Va1YlUW913ML4d/YczXY5wdjnKwKyXrLQJb8GT7J7m2xrW6\nPMlVrjCJ3Vgg0Bgz2hizNacKxphkY0xIfhs0xiwEHgOexbpV2hToYnuWD6zJGlknPVQCZgE7gPVA\nL2CQMWZ2ljanAv8ForFmw1YEuuoadkqVjITjVmIX7BPs+kud2CtXDh591FrTbv9+Z0eTbxGBEbzR\n7Q2iY6P5YOsHzg5HFYExhi1/bWFSzCSavtWUYZ8Nc3ZIqpQozDN2n2ONpmWbOy0iVYGLtmVFCswY\n8yaQ454lxpiOdu+fAp7KR5uTgcmFiUcpVTSHzxwmoHIAFT0rWold+fIQVKTVkUrWfffBc8/BzJnW\nq5QY3mw4Px74kfu/vJ8bat7A9TWvd3ZIKp/S0tP44cAPLNu1jE9/+5TE5ER8K/jyr7B/MeDaAc4O\nT5UShRmx+wTI6W9YP9sxpZRiwk0TSBhjjdoRHw/16pWuRX8rV4ZRo6z9Y48dc3Y0+SYizOo2i4bV\nGvLW5recHY7KpxV7V1Bzek06zOnAgl8X0DW0K98M/oakcUnM7TWX28Nud3aIqpQozIhdK+DRHMrX\nAi8UKRqlVJlS3qO89UVpWerE3sMPw/Tp8Oab8GTpWQesomdFVt21iqoVqzo7FJVPYdXCGN5sOL3C\ne3Fj0I066UEVWmH+5pQn54TQE+s5NqWUyi4+HkJDnR1FwdWoAcOGweuvw7lzzo6mQKpXqo67m7uz\nw1A2qWmpeR6vX7U+L9/ysi5PooqsMH97NgIjcii/H2vZEqWUuiQtzZoVWxpH7ADGjYN//oHZs69c\nV6ks9v6zl6k/TKXNe23oMq+Ls8NRV4nC3Ip9ElgtItdzaS/WTsCNWAsVK6XUJQcPQkpK6U3s6tWD\nvn1h2jQYMQI8irSuuyrDjDHE/RXHst3L+HT3p/x65FcqelSkS2gX+jTq4+zw1FWiwD+hjDE/iEgb\nYDzWhIlzwHZguAO2EVNKlTUZS52UxluxGSZOhObNYfFiGKCzE9XlNh/aTO+Fvdl/Yj9+Ffy4o+Ed\nPBf1HF1Cu+Dl6eXs8NRVpLB7xW4FBjk4FqVUWRQfb82GDS7F21w1awa33mptM9a/P+gCsMpOfb/6\n3BF2B73Ce9E+uD2e7p7ODkldpYr0hKaIVBSRKllfjgpMKVVG7NsHdepYi/6WZhMnwtatsGqVsyMp\ntNS0VO77/D4W7Fjg7FBKnYvpF/M87lfRjze6vUGnep00qVNOVZi9Yr1E5A0RSQJOA8ftXkqpq9wT\nq5/gP9/+x3oTH196n6/LqmNHiIiwRu1KKQ83D86knmH458PZdWSXs8NxeYdOHeLNTW/SeW5nbvjf\nDRhjnB2SUldUmBG7V4COwAPABeBeYBJwCBjiuNCUUqVVTGIMf57603pTWpc6sSdijdqtWQObNzs7\nmkIREd654x3q+tblzoV3curCqSufdJX57ehvvLz+ZVq/25qgGUGM+XoMBsMDLR4g3aQ7Ozylrqgw\nid0dwChjzBLgIrDOGPM88H/oc3dKKSAxOZEQ3xAwpuyM2AHceaeVpJbiUbtK5SqxpN8SDp48yL3L\n79VRKJuE4wk0ntWY8FnhPPf9cwRVCeLDnh+SNC6JVXetYnTL0bouoCoVCjN5oipg2yeIk7b3AOsB\n3b9Gqavc2dSzHD5zmBC/EDhyBE6dKjuJnbu7ta7dAw/A3r3QoIGzIyqUhv4Nmd1jNn0X9aVtrbaM\naT3G2SE5Xa0qtWgf3J6XOr3ErfVv1ZmsqtQqzIjd70Bd29e7sZY8AWskL9kBMSmlSrHE5EQA6vrW\nLRtLndgbOtTakWLaNGdHUiR9Gvfh0daPMm7VOH7Y/4Ozwyl2aelpeR73dPfkf//6Hz3Ce2hSp0q1\nwiR2s4HrbV+/DIwWkQvATKzn75RSV7GE49aAfohvyKXErl49J0bkYBUqwJgx8MEH8Pffzo6mSF6+\n5WVa12rNyC9Glsnnx46dO8aH2z6k14JeBL8afMVtvZQqCwqzQPHMLF+vFpFwIALYZ4zZ7sjglFKl\nT2JyIp5ungR6B1pLnVxzDVSu7OywHOuBB+Cll+C116w/SylPd08W9lnIuYvnysz+pAdPHuTT3Z+y\nbPcyvkv8jjSTRutarXm41cOkpKXoUiSqzCtQYicinsDXwP0Zu0wYY/4A/iiG2JRSpVBCcgLBvsHW\ng+ZlaeJEVr6+MHIkvPUWPPEEVCm9S3gGeAc4OwSHOHH+BLfMvYXNhzbj4eZBx5COvNHtDbo37G79\nkqHUVaJAiZ0xJlVEmhZXMEqp0q99cHuCfWy7TMTHl9oJBlf0yCPWiN3bb1sTKpRT+VTwoXVQax5p\n9Qi3h92ObwVfZ4eklFMUZlbsPGA48LiDY1FKlQHdG3a/9CY+Hm67zXnBFKegIBg8GGbOhIcegvLl\nnR1RmZZu0q94u/i/3f5bQtEo5boK81CFB/CAiMSKSLSIzMj6cnSASqlS6tQpSEoqm7diM4wfD4cO\nwUcfOTuSMulMyhmW7lrKXcvuoua0mhw7d8zZISnl8gozYncdEGf7OszumK50qZSylMWlTuw1agQ9\nesDUqXD33eBWNiYgONM/Z/9h+Z7lLNu9jG/iv+H8xfM0qdGE+1vcXyZn7irlaIWZFRtVHIEopcqY\njMSuLI/YgbXNWNu28Pnn0LOns6NxmK/3fc3h04cZesPQEukvLT2Nrh91ZU3CGtJNOm1qt+G5qOfo\nGd6T0Kpl+JcDpRysMCN2Sil1Zfv2WbNFq1VzdiTFq00baNfO2masRw9rT9ky4Is9X/BO3Ds0rt6Y\nG4NuLPb+3N3ciQiIoE/jPnRv2J2alWsWe59KlUUFTuxEJIY8brkaYzoWKSKlVNkQH2/dhi0jiU6e\nJk6Ef/0L1q2D9u2dHY1DTO88nU2HNtFnUR/iRsRRzatoCXp+Jj+8dEvpXRNQKVdRmAdCtgLbsrx2\nAuWA5sAvjgtNKVWqldU17HLSrRtcd501aldGlPcoz6K+iziTcoZBSwddcUuunKSkpbBy30ru/+J+\ngmYE8dvR34ohUqVUVoV5xm5sTuUiMhkoY8vLK6UKYstfW6heqTq1qtSyEruWLZ0dUskQgQkTYMgQ\n+OUXaNLE2RE5RB2fOnzc+2Num3cbz3//PJMiJ13xnNMpp1mxdwWf/vYpX+75khMXTlDXty4DrxtI\nBY8KJRC1Ulc3R07hmgfc48D2lFKlzF3L7mLK+ilw4QLs33/1jNgBDBgAdepYM2TLkM71O/Ns1LM8\n890zfL3v6zzrDlk2BP+p/vRb3I8dSTt4pPUjbB25ld8f/p0ZXWYQ7BtcQlErdfVyZGLXBjjvwPaU\nUgHJ/q4AACAASURBVKWIMYaE5ATq+taFxEQwpmwvdWLP0xMefRTmz4c/ytYui//X7v/o2qArg5YO\n4siZI7nWC/cP58VOLxL/cDzb7t/G5MjJXF/zeuRqeM5SKRdR4MRORJbavZaJyAZgNhBd2EBEZLSI\nJIjIORHZICK5TsMSkXtF5HsROWZ7rbKvLyKzRSTd7vVVYeNTSuXtyNkjnE09S4hfyNWz1Im9e+8F\nHx+YUbbWancTN+b2msvMLjPx9/LPtd7/s3ff4VFVWwOHfzsh9BJ6KAIB6UWqiApoAFEUQUUxFrxI\nEQVFauwIKF6QIiBFUUTQGz4EBLEhTWwgHaVLSELvJAIJpO3vjz2BSSOZyWTOTGa9zzOPZM+ZMwuI\nzMoua73W9jWGthlKzdI13RidEMKeMzN2seke54GfgS5a69HOBKGU6glMAkYBzTCHMlYqpbL6F6Q9\n8D/gLuA24Ajwk1IqfTfrH4CKQJDtEepMfEKI7EVeiAQgODDYlDopVMi03fIlxYrBoEHwySdw7pzV\n0bhUmSJl6HVLL5l9E8LDOZzYaa17p3v00Vq/orX+KRdxDAE+0lrP11rvAwYAcWSxZ09r/bTWerbW\n+i+t9QGgr+330iHdpVe11me01qdtj9hcxCiEuIGomCiA6zN2NWv6ZieGF180y9Affmh1JEIIH+TM\nUmwrpVTrTMZbK6VaOnG/AKAFsCZ1TGutgdWYfXs5UQwIwMwe2rtLKXVKKbVPKTVTKVXG0fiEEDkT\nGRNJYOFAAgsH+lapk/TKlYM+fWD6dLh82epohBA+xpkfp2cAN2UyXsX2nKPKAf7AqXTjpzDLpzkx\nHjiGSQZT/QD0AkKAkZjl2++VrCMIkSciL9gOToBvJ3YAw4ZBTAzMnWt1JEIIH+NMS7EGwLZMxrfb\nnnMVxQ06XFy7SKlXgMeA9lrrhNRxrfUiu8t2K6X+BiIw+/LWZXW/IUOGUKpUqTRjoaGhhIbK9jwh\nbiQ6Ntrsr0tOhkOHfDuxq1EDHnsMJk2C55+HAtK9UQhfFx4eTnh4eJqx2FjX7xBz5l+bq5gDCYfS\njVcCkpy431kg2XZPexXIOIuXhlJqOGY2roPWeveNrtVaRyqlzgI3c4PEbsqUKTRv3jwncQsh7KwI\nXcHlxMtw7BgkJPhWqZPMjBwJzZrBokXwxBNWRyOEsFhmk0Tbtm2jRYsWLn0fZ5ZifwLeU0pdm9ZS\nSgUC44BVjt5Ma50IbMXu4INtubQD8EdWr1NKjQBeBzprrbdn9z5KqapAWeCEozEKIbIX4B9wfX8d\n+PaMHUDTptC5sylYrLNdfBBCCJdwJrEbjtljF62UWqeUWgdEYvbDDXMyjslAf6VUL6VUPWA2UBSY\nB6CUmq+UGpd6sVJqJDAWc2r2sFKqou1RzPZ8MaXUBNuBjupKqQ7AMuAAsNLJGIUQOXHwoDkNW6OG\n1ZFYLywMdu6ElfLPjhDCPZwpd3IMaIJZAt2DmW0bDDTWWh9xJgjbfrhhwBjMXr0mmJm41BLnVUl7\nkOJ5zCnYxcBxu0dqYplsu8dyYD8wB9gMtLPNEAoh8kpEhGmtVbCg1ZFY7667oFUrGD/e6kiEED7C\nqR29WuvLwMeuDERrPROYmcVzIem+Ds7mXleAe10XnRAix3z9RKw9pcysXY8esGkT3Hqr1REJIfI5\nZ+rYvaqUylA4WCn1rFIqzDVhCSG8liR2aXXvDrVry6ydEMItnNlj9xywL5Px3ZiOEUIIX6W12WMn\nid11/v4wYgR8/TXs3291NEKIfM6ZxC6IzE+WnsGUPBFC+KqzZ+HiRSl1kt7TT0PFijBxotWRCCHy\nOWcSuyPAHZmM34E5wCCE8DFPLX2Kr/d+LaVOslK4MLz8MsyfDyek4pIQIu84k9jNAT5QSvW2lRKp\nbttzN8X2nBDChyQmJxK+K5wzcWfMMixAzZrWBuWJBgwwCd4HH1gdiRAiH3MmsXsf+BRzgvWQ7TEd\nmKa1fs+FsQkhvMCRf4+QolNMO7GICLPkWKKE1WF5nlKlTHI3ezbkQRshIYQA5+rYaa11GFAeuA24\nBSijtR7j6uCEEJ4v8kIkADUCa8iJ2Oy8/DJcuWKSOyGEyAPOzNgBoLW+pLXerLXepbW+6sqghBDe\nIzImEoWiWqlqkthlp1Il6NXLLMdeuWJ1NEKIfMipxE4p1crWsmuhUmqp/cPVAQohPFvkhUiqlKxC\noQKFzB47ORF7YyNGwKlTsGCB1ZEIIfIhZwoUPw78DtQHHsK09moAhACycUQIHxMVG2X21128CKdP\ny4xddurUgYceMqVPkpOtjkYIkc84M2P3GjBEa90VSMD0ia0PLAIOuzA2IYQXiLwQSXDpYDh0yAxI\nYpe9kSPhwAFYvtzqSIQQ+YwziV0t4DvbrxOAYlprjSl30t9VgQkhvEOX2l3ocnOX66VOJLHLXuvW\n0L69aTOmtdXRCCHyEWcSu/NAai2DY0Aj268DgaKuCEoI4T3eaPcGPRv1NAcnSpaEcuWsDsk7hIXB\npk2wfr3VkQgh8hFnErtfgU62X38FTFVKzQHCgTWuCkwI4WVST8QqZXUk3uHee6FJEzNrJ4QQLuJM\nYjcIWGj79bvAZKAisATo46K4hBDeRkqdOEYps9fuxx9h506roxFC5BPOFCg+r7U+bvt1itb6v1rr\nB7XWw7TWF1wfohDCK0ipE8f17AnVq8OECVZHIoTIJ5wuUCyEENckJMCRIzJj56gCBWDYMPi//4Oo\nKKujEULkA5LYCSFyLyoKUlIksXPGs89CYCBMmmR1JEKIfEASOyFE7kmpE+cVKwYvvgiffgpnzlgd\njRDCy0liJ4Rw2q7Tu4hLjDMHJwoVgqpVrQ7JOw0aZA5TfPih1ZEIIbyc04mdUupmpVRnpVQR29dS\n40AIH3Lx6kUaz2rMsn3LTGIXHAx+8rOiU8qWhb59TWJ3+bLV0QghvJgzvWLLKqVWAweA74FKtqc+\nVUrJJhEhfERkTCSA6RMrpU5yb+hQiI2FTz6xOhIhhBdz5sfrKUASUA2Isxv/P+BeVwQlhPB8kRds\niV3pYCl14grVq0NoKEyeDImJVkcjhPBSziR29wBhWuuj6cb/AarnPiQhhDeIiomiSIEiVCxSHiIj\nZcbOFUaOhMOHYeHC7K8VQohMOJPYFSPtTF2qMsDV3IUjhPAWkTGR1AisgTp+HK5elcTOFRo3hi5d\nTMFira2ORgjhhZztFdvL7mutlPIDRgLrXBKVEMLjpSZ210qdyFKsa4SFwa5d8MMPVkcihPBCziR2\nI4H+SqkfgILABGAX0A4Ic2FsQggPFnkh8vrBCT8/qFHD6pDyh7Zt4bbbYPx4qyMRQnghZ3rF7gLq\nAL8ByzFLs0uBZlrrCGcDUUoNVEpFKqXilVIblVKtbnBtX6XUL0qp87bHqsyuV0qNUUodV0rF2a6R\nKQUhXEBrTVRMlDk4EREBN90EBQtaHVb+oJTZa/fLL7Bxo9XRCCG8jFNFp7TWsVrrd7XWj2mtu2it\n39Ban3A2CKVUT2ASMApoBuwEViqlymXxkvbA/4C7gNuAI8BPSqnU0isopcKAQcBzwK3AZds95dNH\nCBfYP2g/zzZ71izFyv461+rWDerWlVk7IYTDCjj6AqVUkyye0sAV4LDW2tFDFEOAj7TW823vMQC4\nH3gWs9Sb9o20fjpdTH2BR4AOwBe24cHAWK31Cts1vYBTQHdgkYPxCSHsKKWoVML2c1REBLTKcoJd\nOMPPD0aMgH79YN8+qFfP6oiEEF7CmRm7HcB222OH3dc7gH1ArFLqc6VU4ZzcTCkVALQA1qSOaa01\nsBpok8OYigEBwHnbPYOBoHT3/Bf404F7CiGyo7UUJ84rTz0FlSrB++9bHYkQwos4k9g9hKlZ1x+4\nBWhq+/V+4AmgDxACvJPD+5UD/DGzafZOYZKznBgPHMMkg9hep3N5TyFEds6dg3//lcQuLxQqBC+/\nDAsWwLFjVkcjhPASDi/FAq8Dg7XWK+3G/lJKHcUsfd6qlLqM2TM3PBexKUxyduOLlHoFeAxor7VO\nyO09hwwZQqlSpdKMhYaGEhoaml0oQvgeKXWSt557Dt59Fz74QGbuhPBy4eHhhIeHpxmLjY11+fs4\nk9g1BqIzGY+2PQdmWbZSJtdk5iyQDFRMN16BjDNuaSilhmPKr3TQWu+2e+okJomrmO4eFTDLxlma\nMmUKzZs3z1nkQvi6CNtB+Jo1rY0jvypZEp5/HmbMgNdfh8BAqyMSQjgps0mibdu20aJFC5e+jzNL\nsfuAV+xPl9r2yb1iew6gCtkkZam01onAVszBh9T7KdvXf2T1OqXUCMzsYWetdZpkTWsdiUnu7O9Z\nEmh9o3sKIRwUEQEVKkCJElZHkn8NHgwJCTBrltWRCCG8gDOJ3UDgAeCoUmq1UmoVcNQ29rztmprA\nTAfuORlT9LiXUqoeMBsoCswDUErNV0qNS71YKTUSGIs5NXtYKVXR9ihmd88PgDeUUl2VUo2B+bY4\nlzv8OxZCZE5KneS9oCB45hmYOhWuXLE6GiGEh3OmQPEfQA3gLeAvTNeJt4BgrfVG2zULtNY53hCi\ntV4EDAPGYJZKm2Bm4s7YLqlK2kMPz2NOwS4Gjts9htndcwIwHfgIcxq2CHBfDvbhCSFu4PTl0/T6\nuhf7z+43M3ayvy7vDR8Op0/D559bHYkQwsM5s8cOrfUlzKyay2itZ5LFLJ/WOiTd18E5vOfbwNu5\njU0Icd3B8wdZ8NcCRtw+wiR299xjdUj5X+3a8MgjMHEi9O0L/v5WRySE8FBOJXYASqkGQDVMv9hr\ntNbf5DYoIYTnirwQCUCNgHJw6pQsxbpLWJgpBL10KTz6qNXRCCE8lDOdJ2oCX2NOwGrM6VO4XkZE\nfpQUIh+LjImkbJGylDhy2gzIUqx7tGwJISGmzViPHqanrBBCpOPM4YmpQCSmlEgc0BBoB2zB9G4V\nQuRjkRciCS4dfL3UiczYuU9YGGzdCmvXWh2JEMJDOZPYtQHesh1sSAFStNa/Aa8C01wZnBDC80TF\nRhEcaEvsSpSAcuWsDsl3dOoEzZrBhAwttIUQAnAusfMHLtl+fRaobPt1NFDXFUEJITxX5IVIk9gd\nPGiWYWVJ0H2UgpEj4aefYPsNa60LIXyUM4ndLkw5EjBlREYqpe7AlDw55KrAhBCeJyklicOxh68v\nxcoyrPv16AHBwTJrJ4TIlDOJ3Tt2r3sLCAZ+BboAL7koLiGEB4pLjOPxRo/TLKiZJHZWKVAAhg2D\nRYvgkPwsLYRIy5kCxSu11kttvz6ota4HlAMqaK1lR68Q+VjJQiX54uEvaF2hGRw+LImdVXr3hjJl\nYNIkqyMRQngYhxI7pVQBpVSSUqqR/bjW+rzWWmf1OiFEPhMVBSkpUurEKkWLwksvwdy5piOFEELY\nOJTYaa2TgMNIrTohfJuUOrHewIGmA8X06VZHIoTwIM7ssXsXGKeUKuPqYIQQXiIiAgoWhCpVrI7E\nd5UpA/36wYwZcOlS9tcLYaXkZKsj8BnOJHaDMAWJjyul9iulttk/XByfEMITHTwINWtKz1KrDR0K\nFy/CnDlWRyJE5rZsMXtCW7YE2bHlFs70il3m8iiEyAOL9yzmk22f8P2T3+OnnPkZRmRJTsR6hptu\ngieegMmTzdJswYLZv0aIvHb1Knz1FXz4Ifz5J1SrBs8/DwkJUKiQ1dHlew4ndlrr0XkRiBCutuPk\nDnaf2S1JXV6IiDBdEIT1Ro6E+fMhPByeecbqaIQvO3IEZs82M8hnzph/I5YtgwcekNl9N3LqE08p\nFaiU6quUei91r51SqrlSSjbcCI8RHRtN9VLVrQ4j34hPjOf05dPo5GRTP01m7DxDw4bmg3PCBHNS\nWQh30tr0Ln74YahRwxzmefxx2LvXdEjp1k2SOjdzOLFTSjUBDgBhwHAg0PbUw8B7rgtNiNyJiomi\nRmANq8PIN36J/oWKEysStX+jWWqRUieeIywM9uyB776zOhLhKy5eNAd3GjaEDh1g/36z9HrsGEyb\nBvXqWR2hz3Jmxm4yME9rXRu4Yjf+PeZQhRAeITomWhI7F4qMicRf+XPTKdv/9jJj5znuvBNuvx3G\nj7c6EpHf7d0LL75oTsQPHgwNGsC6dbBrl9lHV6KE1RH6PGcSu1bAR5mMHwOCcheOEK6RmJzIsYvH\nZCnWhaJiorip1E0UOBRlmtHXqGF1SMJeWBj8/rt5COFKSUnw9dfQsaNJ5BYtMkldVBQsXgx33WX+\nTRAewZnE7ipQMpPxOsCZ3IUjhGsc/fcoKTpFZuxcKDImkuDAYFPqpFo1Od3maR54wHzoTphgdSQi\nvzhzBt57z5Q2evhhiIuDL7807QTHjoWqVa2OUGTCmcTuG+AtpVSA7WutlKoGjAeWuCwyIXIhKiYK\ngOqBZsZu6saphK0KszAi7xd5wZbYSakTz+TnByNGwDffmP12Qjhr0ybo1cskbmPGmJm6LVvgjz9M\neR35oc6jOZPYDQOKA6eBIsB64CBwEXjddaEJ4byg4kEMazOMaqWqARBzJYbZW2dzNemqxZF5r8iY\nSDMDKomd53riCfNh/P77VkcivM2VK/D553DrrdC6Nfz6K7zzDhw9anoSt2hhdYQihxxO7LTWsVrr\nTkBX4CXgQ6CL1rq91vqyqwMUwhn1y9dn4j0TKVygMAA9GvTg36v/svrQaosj806XEi5xNu4swamJ\nnZyI9UwFC8KQIWa57OhRq6MR3iA6Gl55xfxA8J//mFZ1K1aYLRcjRkDZslZHKBzkTLmTmwC01r9p\nrWdqrSdoreXTUni0BuUbUK9cPRbvXWx1KF4pdWk72K8MxMbKjJ0n69cPihWDKVOsjkR4Kq1h9Wro\n3t3sn5s9G55+2pQs+fFHKSjs5ZxZio1SSv1sK1AcmP3lQlhPKUWP+j1Ytm8ZCckJVofjdWqXqc32\n57bT7GJxMyCJnecqUQJeeAE+/hguXLA6GuFJ/v3XFBCuX990hTh0CGbNMrXnpkyBOnWsjlC4gLPl\nTjYDo4CTSqmvlVKPKKVkN6XwaD0a9CDmSgzrItdZHYrXKVSgEE2DmlI06pgZkMTOs730EiQmwsyZ\nVkciPMHu3SbZr1zZLNU3aQLr18POndC/v5nhFfmGM3vstmmtRwDVgPuAs8Ac4JRSaq6L4xPCZZpU\nbMLNZW5m8R5ZjnXawYNQoYIUIfV0FStC794wdSrEx1sdjbBCUhIsWQJ33w2NGpk6dMOGmT11ixZB\nu3ZSey6fcro7ujbWaa37AR2BSEA6UAuPpZTikfqP8PW+r0lKSbI6HO8kJ2K9x/DhcO4czJtndSTC\nnU6dMqdZg4OhRw8zcxsebhK60aNNxwg3W7YM/vnH7W/rs5xO7JRSNymlRiqldmCWZi8Dg3Jxv4FK\nqUilVLxSaqNSqtUNrm2glFpsuz5FKfVSJteMsj1n/5DiTj6uf4v+LO25FD/l9Le+b5PEznvUqmU+\n2CdONLM3Iv/SGjZsgKeegptugnHj4N57Yft2+O03ePxxc2LaTdJ/u4WEQEyM297e5zlzKra/Umo9\n12foFgG1tNZ3aq1nOROEUqonMAmzb68ZsBNYqZQql8VLigIRQBhw4ga33gVUxLQ6CwLudCY+4V2O\nxB7hr1N/ZfpczdI1aVe9nSR2N3A+/jzfHciimbyUOvEuYWFmg/wSqR2fL8XHw2efQcuWplfwhg3w\n3/+awxBz5kDTpm4P6bPPoGHDtMldyZLQKsupGuFqzny6vQlsAlpqrRtqrcdpraNyGccQ4COt9Xyt\n9T5gABAHPJvZxVrrLVrrMK31IuBGRxyTtNZntNanbY/zuYxTeIHPdnxGpwWdrA4jWxuObGDR7kVo\nrdOMp//aXRKSE/hg4wfcPO1mei/vTVxiXNoLLl2Ckydlxs6bNG9uugaMH29mdUT+EBkJI0ea2nN9\n+kBQEHz3nVnvHDoUSpe2LLQWLcz2zsREy0Lwec4kdtW01iO01jvSP6GUauTozWytyVoAa1LHtPlk\nWw20cSI+e7WVUseUUhFKqS9Sa/CJ/C06JprqpapbHUa2pm+aznu/vYey28B86MIhWs1pxe7Tu90W\nh9aar/d+TcOZDRn20zAebfAofz//N0UDiqa98NAh819J7LxLWJhZklst5Ua9WkoKrFwJXbua/wfn\nzDEFhQ8cMEldly6mrZwbffyxCcFekyam3nGRIm4NRdhx5lRsmh/7lFIlbMuzmzBLqI4qB/gDp9KN\nn8IsnzprI/AfoDNmBjAY+EUpJee687mo2CjT+sqDJSYn8v0/39Otbrc04yULlSQpJYm7P7+bv0/9\nnedxbDm+hfbz2vPwooepVboWOwfs5KOuH1GxeMWMF0dEmP9KYuddOnQwM3fjx1sdiXBGTAx88AHU\nq2f2zR05YjKqY8dg0iRLt0aULAmlSpmcU3iOAs6+UCnVDrNU2gM4DiwFBrooLgAFOL12oLVeaffl\nLlviGQ08BnyW1euGDBlCqVKl0oyFhoYSGhrqbCjCzaJjomlRybP7Gq6PXk/s1dgMiV25ouVY02sN\nnRZ04u7P72Z1r9U0DcqbfTLjfh3H62tfp1GFRvz45I90vrnzjV9w8KApc1K+fJ7EI/KIUmbWrmdP\n2LpVen56i7//hhkzYMECSEgwB2E++8zspbOgTMm8eXD5Mgy0+5R//HHzEDkTHh5OeHh4mrHY2FiX\nv49DiZ1SqhLmwEQfoCTm4EQhoLvW2tkTp2eBZMwhB3sVyDiL5zStdaxS6gBwwx9vpkyZQvPmzV31\ntsLNUnQKh2MPe/xS7PJ9y6lWqlqmSVvZomVZ02sN93xxDyGfh7C612qaV3L992RIcAgfP/AxvZv1\npoBfDv4pSD0RK7WvvM8jj5i/u/HjTQ0z4ZkSE029uRkz4JdfoFIlk5T362d+baFdu+DiRUtD8HqZ\nTRJt27aNFi7+YSvHS7FKqW+AfUAT4GWgstb6xdwGoLVOBLYCHezeS9m+/iO397e7Z3GgFjc+RSu8\n3ImLJ0hMSczxUqwVBxW01izfv5wH6zyYZn+dvdJFSrPq6VXUKVuHDvM7sPnYZpfHcVvV2+jXol/O\nkjqQUifezN/f1LVbssTMvArPcuIEjBkDNWqYmVUwCXh0NLz1ltuTuuXL4eef0469/z589JFbwxBO\ncmSPXRfgU2CU1vo7rXWyC+OYDPRXSvVSStUDZmNKmswDUErNV0qNS71YKRWglLpFKdUUKAhUsX1d\ny+6a95VS7ZRS1ZVStwNfA0lA2nlQka+kNquvHpj9jN28HfNoPKsxKdq9G0R2nNzBkX+P0K1etxte\nF1g4kJ+e/okG5RvQcUFHt+y5uyEpdeLdnnkGypUz+7KE9bSG33+H0FCoVs3MpnbtCn/9Zdp9Pfoo\nBARYEtqUKfDVV2nHZKLeeziS2LUFSgBblFJ/KqUGKaVcstnGVrZkGDAG2I6ZFeystT5ju6QqaQ9S\nVLZdt9U2PhzYhmltht1r/oeZZVwInAFu01qfc0XMwjNFx0YD5GgptkZgDXaf2Z0ns2E3snz/ckoV\nKkX76u2zvbZkoZL8+OSPDGgxgJvLOJZU7TmzhytJV5wNM62EBDN7IDN23qtIERg82OzTOuWyXS7C\nUXFx8Mkn0KwZ3Hmn2ff4/vvmMMTs2dC4sVvD2bQJoqLSjn37rVkNFt4px4md1nqDrX1YJeAj4HHg\nmO0enZRSuWoeqbWeqbWuobUuorVuo7XeYvdciNb6Wbuvo7XWflpr/3SPELtrQrXWVW33q6a1fkJr\nHZmbGIXne7zR45wYdoIShbL/dmxbrS3li5Z3e+/Ym8vczLA2wwjwz9lP4yUKlWB8p/EUCchZ/YBT\nl04x4NsBNJ7VmE+2fZKbUK+LjjZH3ySx827PP29mgaZNszoS3xMRYXq1VqkC/fubDhE//gj79sHL\nL0NgoNtDSkiABx4wlVPsFS/u9lCECzlT7iROaz1Xa30n0BjTMeIV4LRtH54QlvFTfgQVz1mVHH8/\nfx6u/zBL9i5x6167p5o8xZvt33T5feMT4xn36zhqT6/Not2LmHTPJPq36O+am6eWOpGlWO9WurRJ\nKmbOlJ3w7pCSAt9/D/ffD7Vrm6Ol/fqZ/59WrIDOnd1aey462kwYpipY0HQcGzPGbSEIN8jVd5TW\ner/WeiRm2VPqgQiv06NBDyJjItl+crvVoTgtRafw5V9fUvfDuoz6eRR9mvXh4EsHefm2lyno76L+\nkAcPmk8BCxqICxcbMsTUrfj4Y6sjyb8uXIDJk6FOHZPUnTwJn34KR4/ChAkQHOz2kE6fNj+Xpau2\nQZ065myNyD+crmNnz3aQYpntIYTXaF+9PWWKlGHxnsV5UlIkrx2/eJzuC7uz+fhmHqr3EOM7jqd2\n2dquf6OICPNhJJ8A3q9qVXjySbND/sUX3docPt/bscNsTvvyS9Ms9bHH4IsvoHVrt58+uHwZitmV\n469QAZYtg/bZb+0VXk46oQufFuAfQLe63fhmv3fuIqhQrAK1y9Zm/X/Ws7Tn0rxJ6sB8YMkybP4x\ncqTZrP/ll1ZH4v0SEmDhQnMQolkz+OEHeP110yHiiy/gttvcntT9/bdpH7tlS9rx+++X/XO+QBI7\n4fNaV2nNvrP7SEhOsDoUhxXwK8CXD39Ju+rt8u5Ndu82Ra2kxHz+Ub8+PPigWRaUflDOOX4cRo2C\n6tVNyZKAAFi82Bwxff11qJhJW748kn6LcIMG8MYb5nyG8D2S2Amf16NBD/YP2p/zQr2+ZsoUqFzZ\nLCuJ/CMszJzIXLHC6ki8h9amI0TPniahmzQJHnrItGVYt850+Cjg3n9Hfv3V5OkxMdfH/P3NX68b\nc0vhQSSxEz6vbNGy1CpTCz8l/ztkcOqUWU566SXZi5Xf3H67WT4cPz7jlI9IK/WwyS23mE1qO3ea\nwxHHjpkTxg0bWhZa7drQti3Ex1sWgvAw8kkm8o3//f0/XvjuBavDyNSmY5uYsmEKicmJVofiSu/U\nvAAAIABJREFUmFmzzI///V1UNkV4lrAw2LDB1LwQGf3zjzlFXKWKqQFYsyasWgV795qDJ6VKuTWc\ntWvNqq99Hh4UZOrQWdxKVngQSexEvvFr9K/8ccRl7YVdat6OeUzbNM27lnvj480Jv2efNfXPRP7T\npYuZbRo/3upIPEdysmm9cO+9phbIggUmqTt0yBwr7djRsv5aSkFsrHkIkRVJ7ES+ERUbRY3AGlaH\nkYHWmm/2f0O3ut1Q3tRw8Ysv4Nw5UxVf5E9+fuaE7HffmX1ivuzcOdPa6+abTc/Wc+dMQeGjR+G9\n98yeOjf69VezvdXe3XebescWNKkQXkQSO5FvRMdE56hHrLttPbGVYxeP0a1uN6tDybmUFPOp0r27\ntBHL70JDzfHJCROsjsQa27ZBnz6mvt8bb5gNa3/+CZs3wzPPQOHCloS1ZYspJpyUZMnbCy8miZ3I\nF7TWRMV45ozd8n3LKV24NG2rt7U6lJxbudLsIxo61OpIRF4LCDB/z+HhcPiw1dG4x9Wrpobf7bdD\nixZm39xbb5nZufnz4dZb3RrO33/DTz+lHXvxRZNfuvmQrcgHJLET+cLZuLPEJ8V7ZGL3zYFvuL/O\n/d61v27SJGjVCu64w+pIhDv07QslSmRc+8tvjh6FN9+EatXgqaegaFH4+muzf+7VV6F8eUvCmjgR\nRo9OO1aggGVb+YSXk8RO5AtRMVEAVA90fil25KqRLNq9yEURGZEXIvnr1F/etQy7cyesWQPDhskn\ni68oXhwGDTLHK8+ftzoa19LaFNju0QNq1IAPPjA1GffsgdWrzXYDN06LnTxpDtvamzzZhCiEK0hi\nJ/KF6NhogFzN2K2NXMvKgytdFJHxzf5vKOhfkM61Orv0vnlqyhQzo/HII1ZHItzpxRfN3soZM6yO\nxDUuXTLleho3NqcO9uyBadNMx4jp001VXwt07WomB+2VLWtWxIVwBUnsRL4QVDyI3k17U7qw82U5\nGpRvwJ6ze1wYFTSs0JBR7UdRolAJl943z5w4Af/7nylILJt7fEv58qa0zbRpEBdndTTO27/ffP9W\nqWJmIevWNTPQu3fDCy+YJWc3iYvLWJpk7lz45BO3hSB8kCR2Il+4s9qdzO02N1flROqXq8/eM3vR\nLqzC37FmR15r+5rL7pfnPvzQnALs29fqSIQVhg0zS7GffWZ1JI5JTobly+Gee6BePVi40CR1kZGw\nZAmEhLh9W0FyspkUnDQp7XjjxlKuROQtSeyEx0lOSeZC/AW3v2/98vWJvRrLyUsn3f7eHuHyZZg9\n2yR1bq6oLzxEcLDZfzZxonfU2Th71hRXrlXL7JX7919TUPjIEXj3XbOlwE1SUkwyl8rfH6ZOhd69\n3RaCEIAkdsIDjV4/mvoz6pOU4t4PlvrlzJ6bvWf3uvV9Pcb8+aaT+EsvWR2JsNLIkRAVBV99ZXUk\nWduyBf7zH1N7btQos4du82bYuNGcdi1UyK3hXLhgVnyXL0873r27yZWFcCdJ7IRHuXj1ItM3TefU\n5VP8fvh3t753rTK1CPALYO8ZH0zsUgsSP/KIOTkofFezZmZJc/z4tE1JrXblipmNa93alOL5+WcY\nM8aUMPnsM2jZ0rLQSpc2+aTU8haeQBI74VE2H99Mik6hTJEyrDiwwq3vXcCvALXL1vbNGbtvvzU1\nGKQgsQAICzNlb9JXzbXC4cPw2mumO0avXmaD2vLlEBFhZhfLlXNrOFFR0K4dHDiQdnzUKLjlFreG\nIkSmJLETHiUkOIQTw07wSP1H3J7YAfRq0otbKvrgv86TJ5sq/LfdZnUkwhPcfbeZARs/3pr319qc\nZH34YbOWOWMGPPEE7NtnuqI8+KDZxGaBoCAoU8ZsSRXCE0liJzxO0YCidK3TlQPnDnDg3IHsX+BC\nYXeG0a9FP7e+p+W2boX162W2TlynlJm1W7fO7F1zl3//NUlcw4bQsaOZFpsxA44dMycR6tZ1XyyY\nt+/d26wCpypcGJYtMyvWQngiSeyER+pQswOFCxRmfdT6bK89dekUpy6dckNUObPz5E5G/DSCf6/+\na3UoOTN5spkV6d7d6kiEJ3noIahd2z2zdnv3mvIkVarA4MEmsfv5Z9NEdcAA0xnDAkqZ8xhRUZa8\nvRBOkcROeKSiAUWJHByZo9mzcb+O4+7P73ZDVDmzaPci5u6YS9GAolaHkr0jR2DRIvNhatHSlvBQ\n/v4wfDgsXZpxQ5krJCWZPq0dOkCDBrB4MQwZcv1Ebvv2bq09Fxlpuo3Zq13bNKyoV89tYQiRa5LY\nCY8VVDwoR9dFxUblqpWYqy3fv5wH6jxAAT8v6Nzw4YdQrJjpOCBEer16QYUKpq6dq5w+DePGQc2a\nZg/dlSum28nhw+aUa9WqrnsvB2zfDu+8Y8KzJ+2ShbeRxE54veiYaI9J7CLOR7D7zG661e1mdSjZ\nu3QJPvoI+vd3a5sl4UUKF4aXX4bPPzft5pylNfz5Jzz9tDndOnasKamybRv8/juEhkLBgq6LOxvn\nzsHq1WnHHnzQVE6pUMFtYQiRJzwmsVNKDVRKRSql4pVSG5VSrW5wbQOl1GLb9SlKqUwrqjpyT+G9\nomKiqF6qutVhAGa2rpB/Ie6pdY/VoWRv7lyT3L34otWRCE82YIAp+DttmuOvjY+HefPg1lvNievf\nfzcdIY4dMw1TLTqBMG0aPP44JCRcHytQwOSxQng7j0jslFI9gUnAKKAZsBNYqZTKqkBRUSACCAMy\n/THSiXsKCxy/eJzey3tz4qJzswExV2KIvRrrMTN2y/cvp2PNjhQvaM1m7xxLTjYbih57zMygCJGV\nwECT3M2aZU6t5kRUFLzyivne6t3b1JpLrZU4fLipF+ImV6+aknf2Bg82e+fcOEkohNt4RGIHDAE+\n0lrP11rvAwYAcUCmG3+01lu01mFa60VAQmbXOHpPYY3pf05nyZ4lTh80iI6JBnBpYnc16So7Tu4g\nITmrb63MnY07y2+Hf/OOZdjly81ucSlxInLi5ZfN7NtHH2V9TUoKrFoF3bqZ/XOzZ5s9egcOwA8/\nwP33W3JAp29f01DFvolGmTKy5CryL8sTO6VUANACWJM6prXWwGqgjafcU7jexasXmbVlFs+1eI5S\nhZ1rOh8daxK76oGuW4rddmIbzT5qxp4zexx63XcHvkNrTde6XV0WS56ZPNmUz7ewDZPwIpUrm/1x\nU6aYKTB7sbFmbbN+fbNvLirKJIDHjpnvs9q13Ram1mZ3gb2wMAgPl0MQwndYntgB5QB/IH0hslNA\nzo5FuueewsU+3f4plxMv81Lr7JvOn48/j86kb2VUTBSFCxSmYrGKLourfvn6AA73jG0a1JT3O72f\n49O8lvnzT7PXSWbrhCNGjICTJ+GLL8zXu3bB88+b2nPDhpn9cr/8Ajt2QL9+5rS1m3XtCgMHph1r\n1MjknEL4Ck+ux6AAV3egzvaeQ4YMoVSptLNHoaGhhIaGujgU76S15uD5g9Qum7ufwhOTE5mycQqP\nN3qcm0rdeI/X74d/p928dux6fte1pCvVs82epVPNTigX/jgeWDiQoOJBDveMvSXoFm4J8oJ2ZJMn\nw803m09BIXKqbl1TxPqdd0xy9/PPpr/WiBEmkatc2e0haZ12Jq5fPyjl3OS/EHkuPDyc8PDwNGOx\nsbEufx9PSOzOAslA+imXCmScccvze06ZMoXmzZs7+bY5k5icyEs/vETnmzvTvZ53Vfufvmk6g38c\nzCddP6FP8z5O32fxnsUcjj3M8DbDs722eaXmFPIvxIoDKzIkdsULFs8w5goNyjdwOLHzClFRphDs\n9Ong5wkT9jf2xBNmtuXNN6+PJSSY7VxygtECr74KbdqYWnMLF5ruFBacQEhJMeVJOnY02/9SdfOC\n7a3Cd2U2SbRt2zZatGjh0vex/F92rXUisBXokDqmzPRLB+APT7mnKwX4BxAVG8WIVSMc3qBvtaZB\nTQEY9MMg/jr1l1P30FozccNEOtXslKMZriIBRehUqxMrDqxw6v2cUb9cfYf32HmF6dPNlMYzz1gd\nSQZam4YDycnXx5o1y7hFa906KFrU1LO1t3UrREfnfZw+rVUrs6fu11+hZ0/LjpX6+UHr1lCrliVv\nL4RHszyxs5kM9FdK9VJK1QNmY0qazANQSs1XSo1LvVgpFaCUukUp1RQoCFSxfV0rp/e02sROEzl0\n4RAzN8+0OhSHtKvejrjX4qhTtg6PfvUoF69edPgeO0/tZNuJbYy4fUSOX9O1Tlf+OPIH5+LOOfx+\nzqhfrj7/nPuHpJQkt7yfW8TGwpw5pnSFBfufsrNhg8kVNm68PjZihKk3Zq9RI/PbqFIl7Xjfvqah\ngb3oaLPfPw9WO3yXm793Ll2C//wH1qdrG/3mm7KbQIjMeERiZytbMgwYA2wHmgCdtdZnbJdUJe2h\nh8q267baxocD24A5DtzTUg0rNKRf836MWT+G8/HnrQ7HIUUCivDVo19x/OJxnvv2uUwPNdxI06Cm\n7Bu4j441O+b4NffXvp8UncL3/3zvaLhOqV++PokpiUScj8j+Ym/x6aemfdOgQVZHkqnbb4f9++GO\nO258XZUq0KdPxsoZ332XdskWTK2y1183S3f2XnvN1McVnq9YMThzBmJirI5ECO/gEYkdgNZ6pta6\nhta6iNa6jdZ6i91zIVrrZ+2+jtZa+2mt/dM9QnJ6T08w+q7RJKYkMnb9WKtDcVidsnWY03UO4bvC\nmbNtTvYvSKduuboOHXioVKISrSq3cttybP1yZt/evrP73PJ+eS4pCaZONa2bLNjknlO5qYxRuXLG\nNqP33WdmfEqXTjseEwOXL6cdW7/eLO0dO5Z2/PRpSEx0Pi6Rc+fPm6TbvnuZUiZpl/1zQuSMxyR2\nvqhi8Yq8euerzNg8g4PnD1odjsMeb/Q4A1oMYPCPgzl56WSev98DdR7gx4M/umVfYlDxII4PPc6D\ndR/M8/dyiyVLzKa0IUOsjsTtMjsjMnOm6T5gr0IFcxagfPm04w88AM89l3bszBlTczc+3rWx+jo/\nP9OWdudOqyMRwntJYmexIbcNIah4EGGrw6wOxSlT7p3CitAVbqnd1rVOV+KT4p0+tOEIpRSVSlTK\n0axi2KowNhzZkOcxOU1rmDQJQkKgaVOro0lDa1NAdv9+qyMxp28nTsx4HmDSpIztdH/9Fbp0gYvp\ntph+9JGZXRLZu3jRLIfbH5YJDDT7Iu+917q4hPB2kthZrEhAEd7r8B6XEi5xJemK1eE4rHCBwg7t\nlcuNpkFNOTviLC0rm24JC3YuYMLvE9zy3lk5fvE4E/6YwOHYw9lfbJU//oDNm00RWQ9z8qSZTPTk\n06xt22bsVd+tm+nIln52b/lyk/TZ27rVdNM6la7QkoNbU/Od/fvNOZ5t29KOF/CEIlxCeDFJ7DzA\nE42fYOVTKylcwLMKcw1bOYw5Wx3fP5dXlFJpWo99c+Abfor4ycKIYF3kOgDuqnGXpXHc0OTJUK+e\nR06DVKoEe/eaTlTexN8fatTI2Kbq++/hv/9NO5aUZK5LXzi3Qwdz6tfepUsmYUx/2MPbJSWZZif2\nWrY0+xlbtbImJiHyK0nsPIAruya4ys9RPzN542SPLvcRHRNN9VKu6xHrjLWRa2lUoREVi7uupZlL\nRUTA11+bvXUeWpA4IMDqCPJW69bw7bcZCyo/84wpsGtv3TqoWTPt4QGAH3+E7dvzNs689L//mZnP\n9AdTKnro/zZCeDPP/JdeWCo+MZ5+K/rRtlpbnmv5XPYvyEZiciLjfxvP2bizLojuuqiYKGoE1nDp\nPR21NmotHYI7ZH+hVaZOhbJlTQN3D+Lry5BgErvOndOO3XGHOZSR/uByWBjMnZt2bN8+GD7cnCT1\nJFpnTEx79IAtWzLWHhRCuJ4kdiKDt39+myOxR5jTdQ5+KvffIov3LOaVNa9w7N9j2V+cQ5cTLnMm\n7oylid2hC4eIiokiJDgk+4utcOGCyQZeeAGKFLE6mmu0Ni1H582zOhLPU6aMWTFPP4m/ZUvG4svH\njsGyZRkPezz7rDkEYi852X3LuxMmmDM6V69eHytaFPK4U6MQwkYSO5HG1uNbmbhhIqPaj6JuubpO\n3+dI7BEW71mM1pr3/3ife2rdk6P2YTmVeliheqB1S7FrI9fip/xoV72dZTHc0Jw5pgDbCy9YHUka\niYlmf1pQ3h+kzjcCAqBEibRjHTrAwYNQvHja8ZtuyrjEuWqVKfSbfil09+6Mhzoclb7GX48e5ueJ\n/L7ELoSnkvNH4prE5ET6fNOHJhWbMPz24bm616wts5j4x0TG3j2W7Se389NTrj3kEBUTBZDnM3az\nt8xmx8kdzH5gdobn1kaupWXllgQWDszTGJySkADTpsFTT3ncRqaCBc0Kscgbo0dnHKtb1xzqSJ9M\nP/kk3HYbzLb79j5yBFauNO3d0ieT6b35pjl0vWbN9bFataSHqxBWkhk7DxV7JZYjsUfc+p7v//E+\nu07v4tMHPyXAP3c/br9919s0DWrKK2te4ZaKt7i8JEpqYle5RN52UTh9+TRL9i7J9Ll21dsxoMWA\nPH1/p331lZme8cGCxCKj4GBTkDl9G7avvoKRI9OObdtmCjLb15cDGDMGvvwy7Vi7dqaXr+yZFMJz\nyIydh+ryvy6ULFSSH578wW3v2ahCI6bfN53mlXK/Gaagf0EWPbqIjvM7Mvqu0S4/+Xsx4SLVSlWj\ngF/efgs3KN+As3FnOXP5DOWLpS1aNqClhyZ1WpsSJ507Q6NGVkdzTUwMlCzpsYdzfVJmLdy6dYO4\nOChUKO14RETGrZqdOuVdbEII50hi56GGtxnOw4seZuXBlXS+uXP2L3ABV7fPqhFYg39e/CdPyrmM\nvGMkI+8Ymf2FuZTaM3bv2b0ZEjuP9csvZtpl5UqrI0mjZ08oVy7jrI/wPOmTOjCtvoQQnk9+dvZQ\n3et1p221tgxfNZzklOTsX+ChPLFGnyNql62Nv/Jn75m9VoeSc5MmQcOGHjed8uqr0Lev1VEIIUT+\nJomdh1JKMbnzZHad3sXc7XOzf4HIEwX9C1KrTC32nvWSxO7AAVixAoYOzVgzw2J33QV33211FEII\nkb9JYufBWlZuyVNNnuLNdW9y8erF7F8g8kT9cvW9J7H74ANzCvbJJ62ORAghhAUksfNw40LGEXs1\nlvG/j7c6FJ/VoHwD71iKPXfOVP0dODDzTVIWiIqCQ4esjkIIIXyHJHYe7qZSNzH0tqFM2jCJ4xeP\nWx2OT7rv5vvo27wv2tNrOsyebU7EDvCc07pvvw0PPJD/mtoLIYSnklOxXuCVO1/hlqBbqFS8kkvv\nm5ySjEbneckQb9e2elvaVm8LQEJyAh9u+pDQRqFUKuHav49cuXoVPvwQevWC8p5zenfGDIiMlBIn\nQgjhLvLPrRcoUagEjzV8zOUnTL/Z/w3BU4M5G3fWpffNz/48+ifDfhrGiUsnsr/YnRYuhJMnPa4g\ncbFiHlVKTwgh8j1J7HzYzC0zqVqyKuWKlrM6FK+xNnItpQuX5paKrut7m2tamxIn998P9epZHY0Q\nQggLSWLnow6cO8DqQ6t5oaVnNYj3dGsi13BXjbvw9/PP/mJ3WbMG/v7blDjxABERZgk2fUsqIYQQ\neU8SOx81e8tsyhYpy6MNH7U6FK9xOeEyG49upENwB6tDSWvyZGja1GOKxK1cCRMnmm1/Qggh3EsS\nOx8UlxjHZzs+o0+zPhQuUNjqcLzG70d+JzElkZDgEKtDuW7PHvjhB48qSPzCC2YCsWhRqyMRQgjf\nI4mdD1q4ayGxV2J5ruVzVofiVdZGriWoeBD1ynnQPrYpU6BSJdOI1YMUL251BEII4ZsksfNSS/Ys\nYfxvjhct1lozY/MM7qt9HzVL18yDyDzPrFmwbl3asQMHYNw4uHw5Z/fQWjP+9/EEBwZ7Tv/b06dh\nwQJ48UUoWNDqaIQQQngASey81L6z+3hz3ZscPH/QodedjTvLubhzPnVoYt48+OOPtGORkTB1KsTH\n5+weSinuuOkOhrUZ5vL4nDZ5MgQEoPs/x7JlkJRkXSiRkeZQ7tGj1sUghBAClMdX03cTpVRzYOvW\nrVtp3ry51eFkKy4xjrof1qV1ldYsfmyxQ69NTklGKYWfkrzentYes00te6dPQ3AwDBnCtoffoUUL\nWLUKOna0JpxNmyAsDFaskGVYIYTIqW3bttGiRQuAFlrrba64p8d8siulBiqlIpVS8UqpjUqpVtlc\n/6hSaq/t+p1KqfvSPf+ZUiol3eP7vP1duE/RgKKMCxnHkr1L+O3wbw691t/PP18ndYmJcOmSY68Z\nPNijOnFlK/r1jxmaNJ4zvYbRvLk5Q9HBwsO6t95qlrslqRNCCGt5xKe7UqonMAkYBTQDdgIrlVKZ\nVs5VSrUB/gfMAZoCy4BlSqkG6S79AagIBNkeoXnyG7DIk02epEWlFgz7aRgpWppxppo+HRo3zvn+\nOTDVQlrd8EcJD3LiBAc//51lRZ+kcKXSANSvn3a28fhxGDgQzp+3KEYhhBCW8IjEDhgCfKS1nq+1\n3gcMAOKAZ7O4fjDwg9Z6stZ6v9Z6FLANGJTuuqta6zNa69O2R2ye/Q4s4Kf8mHTPJDYd28TCXQut\nDsdjPPwwvPGGaWeVU717Q9++eReTS/33v3QotpGIQ4oSJTK/ZPduWL0a/PO4jvKVK3l7fyGEEI6x\nPLFTSgUALYA1qWPabPxbDbTJ4mVtbM/bW5nJ9XcppU4ppfYppWYqpcq4KGyP0b5Ge7rX686ra14l\nPjGHJwHyuRo1oE8fq6PII0ePwkcfwbBhqNKBWV7WqZNZni1V6vpYSop5uEp0NFSrlvHEsRBCCOtY\nntgB5QB/4FS68VOY5dPMBOXg+h+AXkAIMBJoD3yvPKZWheuM7zie5JRk9p3dZ3UoIq+9956Zinzp\npWwvTT9b98UX0Lo1xMW5JpTAQOjXD1q2dM39hBBC5F4BqwO4AQU4cmQ3zfVa60V2z+1WSv0NRAB3\nAVnOMQwZMoRS9tMcQGhoKKGhnrs9r07ZOkQOjiTAP8DqUCxz+TJs2QLt2zt/j7g4+O9/oVs3MIeU\nPMzhwzBnDst6hhNCSUo6+PLateG++1zXEaJUKXj3XdfcSwgh8rvw8HDCw8PTjMXGun6HmCckdmeB\nZMwhB3sVyDgrl+qkg9ejtY5USp0FbuYGid2UKVO8otxJejdK6uZun0vpwqV5qP5DbozIvT77DEaO\nNMuD5cs7d4/ChWHJEqhXz0MTu3ff5XCJhjz0xSMsfRgecvCvs00b87B3/Lj5fZfJd5sUhBDCs2Q2\nSWRX7sRlLF+K1VonAluBa8UabMulHYA/snjZBvvrbTrZxjOllKoKlAVO5CZeb3M16SqvrnmVdVH5\neyPUwIGwcaPzSR2Anx/s2gVPPOG6uFwmMhLmzqXaa09x5IiZeXOF4cNNmRRHyln+/bdr9+oJIYRw\nHcsTO5vJQH+lVC+lVD1gNlAUmAeglJqvlBpnd/1U4D6l1FClVF2l1NuYAxgf2q4vppSaoJRqrZSq\nrpTqgCmJcgBzyMJnLN27lNOXT/N8y+etDiVPKQVNmrjmPh5p7FgoWxaef56qVc0smytMmWJaruX0\n933hgpn1mzrVNe8vhBDCtTxhKRat9SJbzboxmCXWHUBnrfUZ2yVVgSS76zcopUKBd22Pf4BuWus9\ntkuSgSaYwxOBwHFMQveWbYbQZ8zcMpO7a9xN/fL1rQ5FOOuff2D+fJg0yXUb5GwqVjQPe0uXmtOu\nmR2KKF0afvgBbrnFpWEIIYRwEY9I7AC01jOBmVk8F5LJ2BJgSRbXXwHudWmAXujvU3/z2+Hf+OrR\nr6wOJU+cOQPjx8Obb6Yt65FbcXHwyy9wr6d8B40dCxUrcu6R/pTJ47ZnWsO0aeagRVanXdu2zbv3\nF0IIkTueshQrXExrzVs/v0Wl4pXoVreb1eHkie3bYfFiSEhw7X3XrjV72P75x7X3dcq+ffDll+hX\nX+OOjkV45ZW8fTulTGHjyZPz9n2EEELkDY+ZsfM1K1aY8hyjR6cdHzLElNu4667rY7/+Cl99ZWZS\n7I0ebZbEune/PrZrF8yeDaW6TGDZvmW80faNfFsG5Z57TPIVkNvf3s6d8Mkn104QdEouwP4ny1B7\n6um01/n5mfpxN9+c4RYpKeZplxszBqpUgb59mVwTKlfOg/dIp0AB0nS00Np8P06f7pp9jEIIIfKO\nJHYWiY42iV16Gzeahur2Tp6EDZmc9922LeMS5Pnz8PvvMG/oU+yI+YWBtw50XdBAcjIMHWpOUj74\noEtv7ZRcJ3UXL5pM+upVCDL1rQsBdTK79sABU/V3ypQMT73xhvk7/eILFy6V7t4NCxfC7NmowoXo\n0sVF93XQlSsml/3pJ0nshBDC0yntSJ2DfEwp1RzYunXrVq+sY+dOPXpAly7wbFadfL3JoEGmCN6u\nXRAcfONrn30Wtm41M3zpLFoEp07Biy+6MLbHHoPNm2H/fihY0IU3FkII4Qns6ti10Fpvc8U9ZcYu\nH0tJgW++MfmKK08xLl7suns5Y8cOM7P57LO5zHd++QVmzDC1O7JI6uLjoUgR2xchISYJPHMmQ8G8\nxx7LRRyZ+esvs/7+6aeS1AkhhMgxOTyRz40Y4bpE7O+/zWqk1X77zbRMLZCbH0vi4qBPH7jjDjNr\nl4mhQ6FjR7uBENvh7J9/zvK28fFm9TTXE+Fvvw21asHTTzN6tItnAoUQQuRbMmOXj/n5wZ9/uq5d\n1OjRcOKE2cNnpUGDoH//XB5WGDUKjhyBb7/N8kbdu6drwVW5suk3tmYNPPooYE7k2k+orV8PTz4J\njRtDw4ZOxrZtG3z9NXz+OQQEEBQEhQo5eS8hhBA+RRK7fM6VPUDnzzeJHUBiovm6ZUtritXmanXy\nzz9NPY/33oO6dbO8rF27TAZDQmDVKgAiIuD2281yd+vW5unOnc14jRq5iG/UKKhT51o4tRRWAAAg\nAElEQVRvs+eey8W9hBBC+BRZihU5VrSoWR0Eczj03XdNzTevcvWq2ZzXvLlZa3VUSIipsXLkCMWL\nw3/+k/akqFK5TOo2bTKziKNG5XKtWQghhC+STw4fERFh9n81auSa+/n5mWoc1w4WuMm+fWYyy+ll\n2HfeMYnZ1q3OJU533WWyt7VrqfjMM4wf72QcWRk1Cho0gJ49XXxjIYQQvkBm7HzEk0+a/fjOSEzM\nvLuDu5O6c+fMvrXPP3fyBtu3m+XX1183m+ByICXF7Of7KrUrW9my0LRpjqYq//wTjh1zIL4//oAf\nfzR/Uf7+bNtmWqZdueLAPYQQQvg0Sex8xBdfwIIFzr32++9No/jTp7O/Ni+VKmXOLXTt6sSLExPN\nEmyDBvDqqzl+mZ+fSazi46+PXbzzPvSatTc8+hofb2r9ffKJAzGOGmUSzkceAUweKtVOhBBCOEKW\nYn1EJl2wcqxxY5NzVKiQ8Tmtzapm1arXGjfkmQIF0rZac8iECaZey59/OpwpzZ+f9uvQjYMpe6wO\nnx88CLVrZ/qaIkXM6eEsns7ol19Mk9alS6+tM/fpY/bw5UmrMiGEEPmSfGSIbNWsCS+/nPlzcXEm\n2Uqf/HiUPXtMz9URI8BU+M6VQa8U50m/hWb68Abq1TOHTHJk1Cho1ixt418ceL0QQgiBzNj5nKtX\n4fjx7Ltn5VSxYqaPbf36rrmfyyUnmyXY4GCTPLnAvQ8Xhdv+NfvsBgzI/Q3XrjVFj7/5xoWNZoUQ\nQvgimbHzMU8/DaGhrr1n48Z5X5njtdfMIQaHTZ1qSojMnQuFCzv9/ufPw8yZdnvtQkJg3TpzuiIH\nr92yJYsntYa33oJWreCBBwBISoKffjLbAoUQQghHSGLnY954A+bNy+QJrU0pkF9+uTaUnGwOKvz6\nq5NvlpAAI0eaUwC5VLeuE50cDh40J2AHDzaVhHPh9Glzm22pLZpDQuDsWdi1K9vXDhkCzzyTxVmL\nFSvMZrwxY67N1v32myl0vHNnrkIWQgjhg2Qp1sfYF9NN49134c03zQmIPXugdGnOnTNP5bSsSWys\naX11bWIsLAw++AA++8wkL3XqOB33M884+AKtYeBAc5z3nXecft9U9eqZPK5UKdtAmzbmN7pmzQ3+\nUI2xY82lGVZZN282dWjuv99kcjbt28OOHdneVgghhMhAZuyE6Uv65pumCWtcnDlkgDkFu2KFaRuW\nnQsXTCvVRYvs7vnBB6bBbPnycM89ZnOfuyxaZNYzZ8wwGwFd4FpSByZTu+OOHNWzq1YtkxPFe/fC\nffeZ7O3//i9N1qeUadMm2+2EEEI4ShI7H/bvv5ipoaeeMk3tp02D9983xdOyOfGZXunS8PHH0LEj\ncOgQ9O5t6rG9+SasXGnWde+9F2Ji8uT3kkZsrDnG+8gjZjYsr4SEwPr1ZlOcIw4fNolupUqmfZiL\nEk8hhBBCEjsfNXo0tGqeRErXbmadcd48M0XUt69ZC+zfHy5fduieTz4JlctehcceMx0aPv3U3POm\nm0xyd/QoPPhg2mq/2Th71hxmdag48htvwKVLZsYwL4WEwMWLppBfDmgNG78/D506QUCAmVEsXTrN\nNZcu5UWgQgghfIUkdj7qwXsTeMf/bXRiEixfDkWLmif8/GDOHJYfac6Gvp86fuPhw00h4EWL0q5d\nNmgA331njoeGhuZ4lmvPHpg+PUeHT43Nm83y69ixpmpyXmrZEkqUyPHs5reL4mhzfxl2nwuCVavM\njJ2dq1fNsq1D3SqEEEIIO5LY+SKtaTb7OR6Nnoj/8qUZE6DatZlUdTLzFhY2pUJyavFi+PBD9KTJ\n6OaZFAJu08Y0Xf32W1P/7QYtuVK1awdnzuSwq0VSEjz3nNmgNmhQzuN2VoECZnYzB/vsiI/nvpld\n+bX4fTRYMx1q1cpwidYwcWIuumsIIYTweZLY+aLJk83S6yefQOvWmV7y875KTLxlgelrlZCQ/T0j\nIqBPH0527UvDmS/w889ZXHf//aam3Kefmv13OZDj7gszZ5o9g7Nn531hvVQhIebE75UrWV+TlASP\nP06BzRu488c3ULdkfty1cGFTSzk37d+EEEL4NknsfM3335vacq+8Yg5NkPkyp1/BApSYN92c3hw/\n/sb3vHLFHL6oUIGKCybRqZOiTJkbXN+rlzmk8e67Zp3VFY4dM3vrBgzIMlnNEyEh5ve/YUPmz6ek\nmOT4++9NH9g77nBfbEIIIXyOJHa+ZM8es7/t/vtNUoVZGW3QIItJuaZNTS26sWPNa7MydKh5/quv\nUKVKMnWqWQ29oeHDzWPwYFi4MNNLdu821VdyZMgQU3Bv3LgcvsBFGjeGcuUyX47VGoYNgwULzOPe\ne689deSI6UghhBBCuJIkdr7i3DlzIrVaNfjyS3NIAtPNoUcPs3E/9bLUwsSAWS6tWdPMOiUnZ7zv\n//0f4bNmmdZdTZs6FtP48abHWa9e5jCBHa1Nh62RI3Nwnx9+MBnqlCkQGOhYDLnl5wd33515Yvfu\nu+Zk7owZ8Pjj14bj46FevXA+/PD6pS+/nPeHePOD8PBwq0PwOvJn5hz5c3Oc/Jl5Bo9J7JRSA5VS\nkUqpeKXURqVUq2yuf1Qptdd2/U6l1H2ZXDNGKXVcKRWnlFqllPLN3UuJiWapNCbGNJovUeLaUw0a\nmMYMqUOzZpk9Xtf6lBYubPbibdxoEhR7Bw5A376EV67sXCNXPz9z706d4KGHzIlWG6Xgxx/NZOAN\nxcebDhMdOri+CW5OhYSYQyYXL14fmzXLJMVjx8Lzz6e5vEgRaNo0nCFD0o7lopWtz5APDsfJn5lz\n5M/NcfJn5hk8IrFTSvUEJgGjgGbATmClUqpcFte3Af4HzAGaAsuAZUqpBnbXhAGDgOeAW4HLtnsW\nzMPfimcaPNg0fF26FIKDb3hp376mUklAgN3gnXea5OnVVyEqyozFx5tksXLlTNsknPh/9u47PKoq\nfeD4902ooQYCktAkQCgqCkGwLIRYsK2gYgFBEFER3ZUfrn1VcF3LooIFC6KAglIUUFGRGhBRQBIE\nEZCqVCmiIM208/vj3AyTyaSRmdyZ8H6eZx4z5565580NwptTd8PNN8PGjYXEVr68bfCss+DKK22y\n6GjRwnYWFujpp+38utdfd++ohosusgskcg7VnTTJPq//+z97Vq0ftWvnyq959lk7PVAppZQqiZBI\n7IAhwGhjzHvGmPXAXcBR4LZ86g8GZhljRhhjfjLGDAXSsImcd52njDEzjTFrgL5AHHBN0L6LUPT6\n67b36I037N4hhahXz3ag5fHsszYbGTjQjpMOHmyTsA8/9LsCtWZN2LoVfv21CDFWqWK3QCnu0WPr\n1sHw4TbhLME5tCXWvLndMmbBAjss3Levfb34op4LppRSqlS5ntiJSHkgEfDs8mqMMcA84Px8Pna+\nc93b7Jz6IhIP1PO55yFgWQH3LHsWLIB777VJ2O23F1h1xQq7JVu+Jx9Uq2a3EZkzx84XGzPGrmjN\n56T6ypXtQtFOnYoYa+3anqPHzGVFOHrMGDvE2bixXeHrJhHbazd5sj3G7Mor7RBzROH/e2VknOgE\nVUoppUqqlDb7KlAMEAns8SnfA7TI5zP18qmfs43taYAppI6vSgDr1q0rPOKS2rwZ/vOf4LezZYs9\nHeHmmyEtrcCqe/faXGnRojwHIpxQr549uH7qVPvftm0hLY2DBw+SVsj9p02z272NGJG7/I477Ihu\n165OwUsv8U7v+cypM4+JCf+lfISfBRtgl/Fu2GDn/RW0Yre0xMfDe+9Bu3Z2JfHq1QVWz3lm99xj\nezU/+kg794qiKH/WVG76zE6OPrfi02dWfF45R8BmWYspwu7/wSQiscBO4HxjzDKv8uHA34wxF/j5\nzF9AX2PMFK+yu4HHjDFxzhy8r4E4Y8werzpTgUxjzM1+7nkz8H4AvzWllFJKqaLobYz5IBA3CoUe\nu/1AFraXzVtd8va45fi1kPq/AuLU2eNTZ2U+95wN9AZ+Bgo4RkAppZRSKiAqAadjc5CAcD2xM8Zk\niEgqcDHwKYCIiPP+lXw+9q2f65c65RhjtorIr06d1c49qwMdAZ89Ozxx/IZdaauUUkopVVq+CeTN\nXE/sHCOAd50Ebzl2lWwUMB5ARN4DdhhjHnXqvwwsEpH7gM+BXtgFGHd43fMl4DER2YTthXsK2AF8\nEuxvRimllFLKDSGR2Bljpjp71v0HO3z6PXCZMWafU6UBkOlV/1sR6QU87bw2At2NMWu96gwXkShg\nNFATWAxcYYwpwon2SimllFLhx/XFE0oppZRSKjBc38dOKaWUUkoFximf2InIIyKyXEQOicgeEZkh\nIi4eYxD6ROQu53zeg87rGxG53O24wo3zZy9bREYUXvvUJCJDnWfk/QqBjQtDn4jEicgEEdnvnJe9\nSkTauR1XKHPOK/f985YtIq+6HVuoEpEIEXlKRLY4f842ichjbscV6kSkqoi8JCI/O8/taxFpH4h7\nh8QcO5d1Al4FVmCfx7PAHBFpZYw55mpkoWs78BCwyXl/K/CJiJxjjCmFHZ7Dn4ici13ss8rtWMLA\nGuwK95wtnDMLqKsAEakJLMGevnMZdlup5sDvbsYVBtpjN8zPcRYwB5jqTjhh4WHsmex9gbXYZzhe\nRP4wxoxyNbLQ9g7QGrvN2m7gFmCek3vsLsmNdY6dD2cRx16gszHma7fjCRci8htwvzFmnNuxhDoR\nqQqkAoOAx4GVxpj73I0qNInIUOzCKO1pKgYReQ676XuS27GEMxF5CbjSGKOjOPkQkZnAr8aYO7zK\nPgKOGmP6uhdZ6BKRSsCfwNXGmC+9ylcAXxhjnijJ/U/5oVg/amKPIzvgdiDhwOmG74ndnuZbt+MJ\nE68BM40xC9wOJEw0F5GdIrJZRCaKSEO3AwoDVwMrRGSqM8UkTUQKPjBa5eKcY94b27Oi8vcNcLGI\nNAcQkbOBC4EvXI0qtJXD9gz/5VN+DPhbIG6uHM7GyC8BX3tvnaLyEpEzsYlczm8e1xpj1rsbVehz\nkuBzsMMVqnBLsUP9PwGxwDDgKxE50xhzxMW4Ql08tkf4ReyWUB2BV0TkuDFmoquRhY9rgRrAu24H\nEuKeA6oD60UkC9th9G9jzGR3wwpdxpjDIvIt8LiIrMeekHUzcD52+7YS0cQut9exY94Xuh1IGFgP\nnI3t4ewBvCcinTW5y5+INMD+4nCpMSbD7XjCgTHG+5idNSKyHPgFuBHQYf/8RQDLjTGPO+9XicgZ\n2GRPE7uiuQ2YZYz51e1AQtxN2KSkJ3aO3TnAyyKyyxgzwdXIQlsfYCywEztvOA17+lWJp51oYucQ\nkVHAlUCnkk5cPBUYYzKBLc7bNBHpAAzG/sOh/EsE6gCpTu8w2O74ziLyD6Ci0UmvBTLGHBSRDUAz\nt2MJcbsB34VM64DrXIgl7IhII+AS4Bq3YwkDw4FnjDEfOu9/FJHTgUcATezyYYzZCiSLSGWgujFm\nj4hMBraW9N46xw5PUtcdSDbGbHM7njAVAVR0O4gQNw+7yu4cbG/n2djV2BOBszWpK5yz8KQpNnFR\n+VsCtPApa4Ht7VSFuw07PKbzxAoXhZ2X7i0bzS+KxBhzzEnqorEr2D8u6T1P+R47EXkde9ZsN+CI\niJzmXDpojDnuXmShS0SeBmZhtz2php1gnAR0dTOuUOfMCcs1d1NEjgC/6TYx/onI88BMbEJSH3gS\nO2wxyc24wsBIYImIPILdqqMjcDu5z9NWfji96bcC440x2S6HEw5mAv8Wke3Aj9ihxCHA265GFeJE\npCt2C6efsFsRDcf2qo8v6b1P+cQOuAv728ZCn/L+wHulHk14OA37bGKBg8BqoKuu8jwp2ktXsAbY\neSe1gX3A18B5xpjfXI0qxBljVojItdiJ7Y9jh3cG64T2IrkEaIjO4SyqfwBPYVf71wV2AW84ZSp/\nNbD75tbH7sLxEfCYMSarpDfWfeyUUkoppcoIHQNXSimllCojNLFTSimllCojNLFTSimllCojNLFT\nSimllCojNLFTSimllCojNLFTSimllCojNLFTSimllCojNLFTSimllCojNLFTSimllCojNLFTSqkA\nE5E7RWSbiGSKyL1ux6OUOnXokWJKqSITkXFADWPMdW7HEqpEpBqwH/g/YBpwyBhz3N2olFKninJu\nB6CUUmVMY+zfrV8YY/b6qyAi5YwxmaUbllLqVKBDsUqpgBGRhiLyiYj8KSIHRWSKiNT1qfOYiOxx\nro8RkWdFZGUB90wSkWwR6SoiaSJyVETmiUgdEblCRNY693pfRCp5fU5E5BER2eJ8ZqWI9PC6HiEi\nb3tdX+87bCoi40Rkhoj8S0R2ich+ERklIpH5xNoPWO283SoiWSLSSESGOu0PEJEtwPGixOjUuVJE\nfnKuzxeRfs7zqO5cH+r7/ERksIhs9Sm73XlWx5z/DvK61ti557UiskBEjojI9yJyns89LhSRFOf6\nARGZJSI1ROQW59mU96n/iYiM9/+TVUoFgyZ2SqlA+gSoCXQCLgGaApNzLopIb+BR4AEgEdgGDAKK\nMidkKHA3cD7QCJgK3Av0BK4EugL/9Kr/KNAHuBNoDYwEJohIJ+d6BLAduB5oBTwJPC0i1/u0mwzE\nA12AvsCtzsufyc73DdAeiAV2OO+bAdcB1wLnFCVGEWmIHc79BDgbeBt4jrzPy9/z85Q5z30Y8AjQ\n0mn3PyJyi89n/gsMd9raAHwgIhHOPc4B5gFrgPOAC4GZQCTwIfZ5dvNqsw5wOTDWT2xKqWAxxuhL\nX/rSV5FewDhgej7XLgXSgTivslZANpDovP8WeNnnc4uBtALaTAKygC5eZQ85ZY29yt7ADn8CVAAO\nAx197jUGmFhAW68CU32+3y0485GdsinABwXc42wntkZeZUOxvXS1vMoKjRF4BvjB5/qzzv2re907\nzafOYGCL1/uNwE0+df4NLHG+buz8nG71+dllAQnO+/eBrwr4vl8DPvN6fx+w0e0/s/rS16n20jl2\nSqlAaQlsN8bsyikwxqwTkT+wSUIq0AKbAHhbju0VK8wPXl/vAY4aY37xKTvX+boZEAXMFRHxqlMe\n8Axbisg9QH9sD2BlbLLlOyz8ozHGu0dsN3BmEeL19Ysx5oDX+4JiTHO+bgks87nPt8VpVESisD2n\n74jI216XIoE/fKp7P+PdgAB1sb1352B7SfMzBlguIrHGmN1AP2xirJQqRZrYKaUCRfA/JOhb7ltH\nKJoMn3tk+Fw3nJheUtX575XALp96fwGISE/geWAIsBT4E3gQ6FBAu77tFMcRn/eFxkj+z9RbNnmf\nofdct5x2bscm0d6yfN77PmM48b0eKygIY8z3IrIa6Csic7FDy+8W9BmlVOBpYqeUCpS1QCMRqW+M\n2QkgIq2BGs41gJ+widP7Xp9rH6RY/sIO1X6dT50LsEORo3MKRKRpEGLJT1FiXAtc7VN2vs/7fUA9\nn7K2OV8YY/aKyE6gqTFmMvkrLIFcDVyMnYuYn7exiXIDYF7OnwOlVOnRxE4pVVw1ReRsn7LfjDHz\nROQH4H0RGYLtNXoNSDHG5AxvvgqMEZFU4Bvswoc2wOZC2ixqrx4AxpjDIvICMNJZwfo1NsG8EDho\njJmAnXd2i4h0BbYCt2CHcrcUp62TjbeIMb4J3Cciw7FJU3vsEKe3hcAoEXkQ+Ai4Arto4aBXnWHA\nyyJyCPgSqOjcq6Yx5qUixvwssFpEXnPiysAuKJnqNcT8PvACtnfQd2GGUqoU6KpYpVRxJWHngHm/\nnnCudQd+BxYBc4BN2OQNAGPMB9gFAc9j59w1BsbjbP9RgGLvpG6MeRz4D/AwtudrFnbYM2cbkNHA\ndOxK1qVALfLO/ztZRYq3sBiNMduBHtjn+j129ewjPvdYj10tfLdTpz32+XrXeQebbPXH9rwtxCaI\n3luiFLiy1hizEbvyuA123t8S7CrYTK86f2JX8R7GruRVSpUyPXlCKeUqEZkD7DbG+PZEKT9EJAlY\nAEQbYw65HY8vEZmHXck7xO1YlDoV6VCsUqrUiEhl4C5gNnbSfy/svK1LCvqcyqNYQ9OlQURqYlc3\nJ2H3JlRKuUATO6VUaTLYocZ/Y+d5/QRcZ4xJcTWq8BOKQy0rsZtTP+gM2yqlXKBDsUoppZRSZYQu\nnlBKKaWUKiM0sVNKKaWUKiM0sVNKKaWUKiM0sVNKKaWUKiM0sVNKKaWUKiM0sVNKKaWUKiM0sVNK\nndJEJElEskWks9uxlFRpfS9OG08UXlMpVdo0sVNKASAiZ4nIRyLys4gcE5EdIjJHRP4R5HavEJGh\nwWzDaWeQiOR3bFnAN/R0vq9sEdkR6HsXojQ2JzWl1I5Sqph0g2KlFCJyAfb80V+Ad4FfgYbAeUBT\nY0xCENt+FbjbGBMZrDacdn4A9hljLvJzrYIxJj3A7U0EzgdOBy41xiwI5P3zaTPnHNlkY8xXQWyn\nApBpjMkOVhtKqZOjR4oppcAe8fUH0N4Y86f3BRGJCXLbrp97GoSkLgroDjwM9Ad6YxOuMiHQz0sp\nFTg6FKuUAogHfvRN6gCMMftzvhaRRSLyvb8biMhPIjLL+bqxMwx5n4jcISKbROS4iCwXkfZenxkH\n3O18ne28sryu3y8iS0Rkv4gcFZEVItIjn/b7iMgyETkiIgecWC9xrm0FzgC6eLWzwLnmd16aiHQU\nkS+cex0WkVUicm8Rn+d1QCXgQ2AKcJ3Ty+Ubc7aIvCIi3UXkB+cZrRGRy3zqNRKR10VkvfMc9ovI\nVBFpXJRgROQG59kdFZF9IjJBROLyqfejMxS/WkSuEZHxzvPzjfsJn7I4ERkrIr96fR+3+Wnjn861\nnJ/TdyLSsyjfh1KqcNpjp5QCOwR7noicYYz5sYB67wFviUhrY8zanEIRORdoDjzpU783UBV4Ezsn\n6yFgmojEG2OynPI44BKnrm/v3b3AJ8BEoALQE5gqIn83xszyan8oMBRYAjwOpAMdgYuAecBgYBTw\nJ/Bfp509Xu3kmpMiIpcCM4FdwEvYoelWwFXAKwU8nxw3AynGmL0iMhl4DrgamOanbidsIvi6E9+9\nwEci0tgYc8Cpcy52WHwSsAM7vHs3kOL8LI7nF4iI3AqMBZZhexBPA/4PuEBE2hpjDjn1rgImA6uc\netHAO8BO3+fjp426zv2zsM9nP3AF8LaIVDXGvOLUuwN4GZiKfa6VgDbYn9XkgtpQShWRMUZf+tLX\nKf7CJlbpQAY2OXoOuBQo51OvGnAEeMan/GXgEBDlvG8MZAN7gepe9a7G/uN/pVfZq0BWPnFV9Hkf\nCawG5nqVNQUygQ8L+R5/ABb4KU9yYursvI8AtgCbgWon8SzrOM+yv1fZ18B0P3WzgWPA6V5lZznl\nd+f3HJyyDk693gV8L+WwSen3QAWvelc6nx3qVbYam+BX9irr5NTb4ifuJ7zev41NOGv61PsAOJAT\nPzADWO32n3d96assv3QoVimFMWYecAG2d6wN8AAwG9gpIld71fsT+BTolVMmIhHAjcAMY8xRn1tP\nNk6PkGMxtrcsvohx/eXVTk1sL9JioJ1XtWude/6nKPcsgrbYHrGXjJ+h6SLohU18pnuVTQKuEJEa\nfurPNcb8nPPGGPMDNkmO9yrzfg7lRKQWNvn8ndzPwld7oC7wuvGaF2eM+QJYj+2BRERigTOBd40x\nx7zqLcYmxIW5DtvDGSkitXNewBygpleMfwANvIfjlVKBpYmdUgoAY8wKY8z12OSpA/AMdhj1QxFp\n6VX1PaCRiPzNeX8pNnmY4Oe2233a+MP5MrooMYnI30XkWxE5hu352QsMArwTpHhsIrWuKPcsgqbY\noceChqQL0hs7LBkjIk1FpCm2x6wicIOf+tv9lP2O1zMSkUoi8h8R2Qb8hR3q3ItNmvwlizkaY7+X\nDX6urXeu4/XfzX7qbSrg/ohIHSeOO4F9Pq+xTvt1ner/Aw4Dy0Vkg4iMErsiWykVIDrHTimVizEm\nE0gFUkVkIzAOm5A85VSZjU0q+mCHGPtgh/vm+7ldlp8yKMJKWBHphO1BXIhN5nZjh4pvw6vHsCj3\nKqaTvp+INMPOhzPARp/LBpv0ve1TXpRnNAroB4wElgIHnftNoeBf0EtjxXFO+xOxW+X4sxrAGLNe\nRFoAfwcux/b03S0iTxpjfOdnKqVOgiZ2SqmCrHD+G5tTYIzJFpEPgH4i8jB2W4/RxpiT3RQzv89d\nh51/dpmTbAIgIgN86m3CJhetcRKIYrbjaxM2ITqT4m9R0gc7v64PthfRWyfgnyLSwBhT3E2LewDj\njTEP5hSISEVsT1lBfsZ+Ly2wCbK3Ftg5dXj9t5mfe/gr87YPu+gj0hRhrz5nqPdDbE9wOey8u3+L\nyLNGt1FRqsR0KFYphYh0yefSVc5/1/uUTwBqAaOBKsD7JWj+iBNDdZ/yLGwy5vkFVEROxyaS3j52\n6j0hIgX1UB2h8EQIIA3YCvxfPnPiCnIzsNgY85ExZrr3CxiOTbJ6FXwLv7LI+/f1vdjFJAVZge1d\nvUtEyucUisgV2FW+nwEYY3YDa4C+Yvfgy6mXhF3MkS9jNymeBvQQkTN8r4vXPojO3EDvz2Zih9Aj\ngPIopUpMe+yUUgCvOv+gz8AmcRWAC7GLIrYA470rG2O+F3uSww3AWmOM373tiigVm/C8KiKzsStk\np2CTjvuA2U4P4WnYLT42Yhd45MSyWUSeBh4DFovIdOw8tHOBncaYf3u1c5eI/BvbK7fXGJPiXBOv\n+xkRuRs7DPy92L32dgMtgdbGmCv8fRMi0hHbu+V3OxRjzG4RScMOxz5frCdkn8UtInIIWIs90eJi\n7Fy7PKF4tZkpIg9h57p9JSKTgHrYpHALdsuRHI9ik+RvnO+5FnAPdvFE1ULiexjoAiwTkTFOjLWA\nROyWMznJ3RwR+RW78noPtpf1HmCmMeZI4Y9BKVUot5fl6ktf+nL/BXQFxmAXDBJBRiAAACAASURB\nVBzEDoH+hJ3TVSefz9yPHW580M+1xthepiF+rmUBj3u9j+DEXnGZeG19AtyKTTSPOrH1xe5Xl2d7\nFOwctBVO3f3YYdSLvK7Xxa7o/cOJYYFTnmuLEK/65wNfOvUPASuBQQU8w5ed+5xeQJ0nnDpnej2L\nl/3U2wK84/W+OnZu3h7n5/M5dt9A33r5fS/Xez2bfdi5cLF+2r3Bec7HsPvZXYUdNv2xoJ+hUxaD\nTWp/Bo5j97+bA9zmVed2IAXbi3gUu6jjWaCq2/8P6EtfZeWlZ8UqpU6KiAwGXsQmMqV90L0qJSKy\nEtu7eVmhlZVSrgurOXYico+IbHWOu1nq7HafX90UOXF0kPdrZmnGrFQZdhuwUJO6skFEIp09Cb3L\nugBnY3vZlFJhIGzm2InITdjegTuB5cAQ7NybBON1lqWXa7HzhHLEYIcWpgY7VqXKKjlxuH0ydtVo\nN3cjUgHUAJgrIu9jj1JrBQx0vh7tZmBKqaILm6FYEVkKLDPGDHbeC3Zjz1eMMcOL8Pn/A4Zh55Uc\nK6S6UsoPsYfOb8VuoPuaMeaJQj6iwoSzKnk0dtFMHewq4nnAI8aYrW7GppQqurBI7Jxl+keBHsaY\nT73KxwM1jDHXFuEeq4ElxphBQQtUKaWUUspF4TIUG4Pdr2mPT/ke7CabBRKRDsAZQP8C6tQGLuPE\nii6llFJKqWCqhD2berYx5rdA3DBcErv8CEXbTX4AsMYYk1pAncso2SarSimllFInozfwQSBuFC6J\n3X7svkmn+ZTXJW8vXi4iUhm4Cbt5aUF+Bpg4cSKtWrU6uSjLmCFDhjBy5Ei3wwgZ+jxy0+eRmz6P\nE/RZ5KbPIzd9HiesW7eOPn36gJODBEJYJHbGmAwRScXutP4peBZPXEw+u7x7uQm7Oraw3rjjAK1a\ntaJdu3YlC7iMqFGjhj4LL/o8ctPnkZs+jxP0WeSmzyM3fR5+BWwKWFgkdo4RwLtOgpez3UkUzlFH\nIvIesMMY86jP5wYAHxtjfi/FWJVSSimlSl3YJHbGmKnOYdL/wQ7Jfg9cZozZ51RpgD2OyENEmgMX\nAJeWZqxKKaWUUm4Im8QOwBjzOvB6Ptcu8lO2EbuaVimllFKqzAurxE6Vrl69erkdQkjR55GbPo/c\n9HmcoM8it4Kex7Zt29i/39/hSWXXeeedR1pamtthlKqYmBgaNWpUKm2FxQbFpUFE2gGpqampOqlT\nKaVU0G3bto1WrVpx9OhRt0NRQRYVFcW6devyJHdpaWkkJiYCJBpjApLtao+dUkop5YL9+/dz9OhR\n3WarjMvZ0mT//v2l0muniZ1SSinlIt1mSwVShNsBKKWUUkqpwNDETimllFKqjNDETimllFKqjNDE\nTimllFKqjNDETimllFJhJTk5mfvuu8/tMEKSJnZKKaWUKrLRo0dTvXp1srOzPWVHjhyhfPnyXHzx\nxbnqpqSkEBERwc8//xy0eDIzM3nooYdo06YNVatWpX79+vTr14/du3cDsHfvXipUqMDUqVP9fn7A\ngAG0b98+aPGVNk3slFJKKVVkycnJHDlyhBUrVnjKFi9eTGxsLEuXLiU9Pd1TvmjRIho3bszpp59e\n7HYyMzMLrwQcPXqU77//nqFDh7Jy5UpmzJjBTz/9RPfu3QGoW7cuV111FWPHjvX72Y8++ojbb7+9\n2PGFKk3slFJKKVVkCQkJxMbGsnDhQk/ZwoULueaaa2jSpAlLly7NVZ6cnAzA9u3b6d69O9WqVaNG\njRrcdNNN7N2711P3ySefpG3btrzzzjvEx8dTqVIlwCZfffv2pVq1atSvX58RI0bkiqd69erMnj2b\nHj160Lx5czp06MCoUaNITU1lx44dgO2Vmz9/vud9jqlTp5KZmZnr2LfRo0fTqlUrKleuzBlnnMFb\nb72V6zPbt2/npptuonbt2lStWpWOHTuSmppagicaWLpBsVJKKRXKjh6F9esDe8+WLSEq6qQ/3qVL\nF1JSUnjwwQcBO+T60EMPkZWVRUpKCp07d+avv/5i2bJlnt6wnKRu8eLFZGRkMGjQIHr27MmCBQs8\n9920aRPTp09nxowZREZGAnD//fezePFiZs6cSZ06dXjkkUdITU2lbdu2+cb3xx9/ICLUrFkTgCuv\nvJK6desyfvx4HnvsMU+98ePHc91111GjRg0A3n33XZ5++mlGjRrF2WefTVpaGrfffjvVqlWjV69e\nHD58mM6dOxMfH8/nn39O3bp1SU1NzTUs7TpjjL7sebntAJOammqUUkqpYEtNTTVF+ncnNdUYCOyr\nhP/WjRkzxlSrVs1kZWWZQ4cOmQoVKph9+/aZSZMmmS5duhhjjJk/f76JiIgw27dvN3PmzDHly5c3\nO3fu9Nxj7dq1RkTMihUrjDHGDBs2zFSsWNH89ttvnjqHDx82FStWNNOmTfOUHThwwERFRZkhQ4b4\nje348eMmMTHR3HLLLbnKH374YdO0aVPP+02bNpmIiAizcOFCT9npp59uPvroo1yfGzZsmElKSjLG\nGPPaa6+Z6Ohoc+jQoSI/q4J+zjnXgHYmQPmM9tgppZRSoaxlSwj0UF/LliX6eM48u++++44DBw6Q\nkJBATEwMSUlJ3HbbbaSnp7Nw4UKaNm1KgwYNmDFjBg0bNiQuLs5zj1atWlGzZk3WrVtHYmIiAI0b\nN6ZWrVqeOps3byYjI4MOHTp4yqKjo2nRooXfuDIzM7nhhhsQEV5//fVc1wYMGMD//vc/Fi5cSJcu\nXRg3bhxNmjQhKSkJgD///JNffvmFfv36ceutt3o+l5WVRUxMDACrVq0iMTGRatWqlej5BZMmdkop\npVQoi4qCEDtLtmnTptSvX5+UlBQOHDjgSY5iY2Np2LAhS5YsyTW/zhiDiOS5j295lSpV8lwH/H7W\nV05St337dhYsWEDVqlVzXW/WrBmdOnVi3LhxJCUlMWHCBAYOHOi5/ueffwJ2eNb37N6cYeHKlSsX\nGofbdPGEUkoppYotOTmZlJQUTw9Yjs6dOzNr1iyWL1/uSexat27Ntm3b2Llzp6fe2rVrOXjwIK1b\nt863jWbNmlGuXLlcCzJ+//13NmzYkKteTlK3ZcsW5s+fT3R0tN/7DRgwgGnTpjFt2jR27dpFv379\nPNfi4uI47bTT2Lx5M/Hx8blejRs3BqBNmzakpaVx6NChoj+oUqaJnVJKKaWKLTk5ma+//ppVq1Z5\neuzAJnajR48mIyPDk/BdcsklnHXWWfTu3ZuVK1eyfPly+vXrR3JycoGLIKpUqcKAAQN44IEHSElJ\nYc2aNfTv39/TgwZ2qLRHjx6kpaUxceJEMjIy2LNnD3v27CEjIyPX/W644QbKlSvHwIED6dq1K/Xr\n1891fdiwYTz99NO89tprbNy4kR9++IGxY8fyyiuvANCnTx9q167Ntddey7fffsvWrVuZNm1arq1f\n3KaJnVJKKaWKLTk5mePHj9O8eXPq1KnjKU9KSuLw4cO0bNmSevXqeco/+eQToqOjSUpKomvXrjRr\n1ozJkycX2s7zzz9Pp06d6NatG127dqVTp06eOXkAO3bs4LPPPmPHjh2cc845xMXFERsbS1xcHN9+\n+22ue1WuXJmePXvyxx9/MGDAgDxtDRw4kDfeeIN33nmHNm3acNFFFzFx4kSaNGkCQIUKFZg3bx7R\n0dFcccUVtGnThueffz5Xouk2yRm/PtWJSDsgNTU1Nc/YulJKKRVoaWlpJCYmov/ulG0F/ZxzrgGJ\nxpi0QLSnPXZKKaWUUmWEJnZKKaWUUmWEJnZKKaWUUmWEJnZKKaWUUmWEJnZKKaWUUmWEJnZKKaWU\nUmWEJnZKKaWUUmWEJnZKKaWUUmWEJnZKKaWUUmWEJnZKKaWUCivJycncd999rrTdpEkTz9mxoUgT\nO6WUUkoV2ejRo6levTrZ2dmesiNHjlC+fHkuvvjiXHVTUlKIiIjg559/DmpMXbp0ISIigoiICCpX\nrkyLFi147rnngtpmqNLETimllFJFlpyczJEjR1ixYoWnbPHixcTGxrJ06VLS09M95YsWLaJx48ac\nfvrpxW4nMzOzyHVFhDvvvJM9e/awYcMGHnnkEZ544glGjx5d7HbDnSZ2SimllCqyhIQEYmNjWbhw\noads4cKFXHPNNTRp0oSlS5fmKk9OTgZg+/btdO/enWrVqlGjRg1uuukm9u7d66n75JNP0rZtW955\n5x3i4+OpVKkSAEePHqVv375Uq1aN+vXrM2LECL9xRUVFUadOHRo2bMitt95KmzZtmDt3rud6dnY2\nt99+O/Hx8URFRdGyZcs8Q6r9+/fn2muv5cUXXyQuLo6YmBj+8Y9/kJWVle/zePvtt4mOjiYlJaXo\nDzGIyrkdgFJKKaUKtvvP3ew+vDvf65XKVaJ1ndYF3mPtvrUczzxObNVYYqvFliieLl26kJKSwoMP\nPgjYIdeHHnqIrKwsUlJS6Ny5M3/99RfLli3j9ttvB/AkdYsXLyYjI4NBgwbRs2dPFixY4Lnvpk2b\nmD59OjNmzCAyMhKA+++/n8WLFzNz5kzq1KnDI488QmpqKm3bts03vsWLF7N+/XoSEhI8ZdnZ2TRs\n2JCPPvqI2rVr880333DnnXcSFxfH9ddf76mXkpJCXFwcCxcuZNOmTdx44420bduWAQMG5Gln+PDh\nvPDCC8ydO5f27duX6JkGiiZ2SimlVIgbnTqaJxc9me/11nVa8+PdPxZ4jxs+vIG1+9YyNGkow7oM\nK1E8Xbp04b777iM7O5sjR47w/fff07lzZ9LT0xk9ejRDhw5lyZIlpKen06VLF+bOncuaNWv4+eef\niYuLA2DChAmcccYZpKamkpiYCEBGRgYTJkygVq1agJ27N3bsWD744AO6dOkCwLvvvkuDBg3yxPTa\na68xZswY0tPTycjIoHLlygwePNhzvVy5cgwdOtTzvnHjxnzzzTdMnTo1V2JXq1YtRo0ahYiQkJDA\nVVddxfz58/Mkdg8//DATJ05k0aJFtGrVqkTPM5A0sVNKKaVC3MDEgXRr0S3f65XKVSr0Hh/e8KGn\nx66kcubZfffddxw4cICEhARiYmJISkritttuIz09nYULF9K0aVMaNGjAjBkzaNiwoSepA2jVqhU1\na9Zk3bp1nsSucePGnqQOYPPmzWRkZNChQwdPWXR0NC1atMgTU58+fXjsscc4cOAAQ4cO5YILLqBj\nx4656rz22muMGzeObdu2cezYMdLT0/P0/J1xxhmIiOd9bGwsa9asyVXnhRde4OjRo6xYseKk5g8G\nkyZ2SimlVIiLrVby4dPChmqLo2nTptSvX5+UlBQOHDhAUlISYJOghg0bsmTJklzz64wxuZKlHL7l\nVapUyXMd8PtZXzVq1KBJkyY0adKEKVOm0KxZM8477zwuuugiACZPnswDDzzAyJEjOe+886hWrRrD\nhw9n+fLlue5Tvnz5XO9FJNcKYIDOnTvz+eefM2XKFB566KFCYytNunhCKaWUUsWWnJxMSkoKCxcu\n9AyTgk16Zs2axfLlyz2JXevWrdm2bRs7d+701Fu7di0HDx6kdev8E85mzZpRrly5XAsyfv/9dzZs\n2FBgbFWqVGHw4MH861//8pR98803XHjhhQwcOJCzzz6b+Ph4Nm/eXNxvG4AOHTrw5Zdf8swzz/DC\nCy+c1D2CJawSOxG5R0S2isgxEVkqIucWUr+GiLwmIrucz6wXkctLK16llFKqrEpOTubrr79m1apV\nnh47sInd6NGjycjI8CR8l1xyCWeddRa9e/dm5cqVLF++nH79+pGcnFzgIogqVaowYMAAHnjgAVJS\nUlizZg39+/f3LKwoyMCBA9mwYQPTp08HoHnz5qxYsYI5c+awceNGnnjiCb777ruT/v47duzIrFmz\neOqpp3jppZdO+j6BFjaJnYjcBLwIDAXaAquA2SISk0/98sA8oBFwHdACuAPY6a++UkoppYouOTmZ\n48eP07x5c+rUqeMpT0pK4vDhw7Rs2ZJ69ep5yj/55BOio6NJSkqia9euNGvWjMmTJxfazvPPP0+n\nTp3o1q0bXbt2pVOnTp45eTn8DdVGR0fTt29fhg0bBthE77rrrqNnz56cd955HDhwgHvuuafY37d3\nWxdccAGfffYZTzzxBKNGjSr2vYJBcsavQ52ILAWWGWMGO+8F2A68YowZ7qf+XcC/gJbGmPw3oDlR\nvx2QmpqaSrt27QIbvFJKKeUjLS2NxMRE9N+dsq2gn3PONSDRGJMWiPbCosfO6X1LBObnlBmbkc4D\nzs/nY1cD3wKvi8ivIvKDiDwiImHxPSullFJKFVe4JDkxQCSwx6d8D1Avb3UA4oEbsN/jFcBT2B68\nR4MUo1IqH3v2wPHjbkehlFJlX7hvdyJAfmPJEdjE706nd2+liNQH7gf+m98NhwwZQo0aNXKV9erV\ni169egUmYqVOQXfcAUePwrx59n1mJpQL9799lFKqGL788kvPfL8cBw8eDHg74fJX634gCzjNp7wu\neXvxcuwG0k3uSYTrgHoiUs4Y4/d04ZEjR+pcB6UCbPhw2L/ffv3MM7BgAcyeDUVY2KaUUmXC5Zdf\nzqOP5h409JpjFzBhkdgZYzJEJBW4GPgUPIsnLgZeyedjSwDfbrYWwO78kjqlVHC0bHni6/POg8qV\noQj7jSqllCqmcJljBzACuFNE+opIS+BNIAoYDyAi74nIM1713wBqi8jLItJcRK4CHgFCYz2yUqeo\niy6CIUMgIpz+9lFKqTARFj12AMaYqc6edf/BDsl+D1xmjNnnVGkAZHrV3yEiXYGR2D3vdjpf59ka\nRSkVeOvXwx9/2B46pZRSpSNsEjsAY8zrwOv5XLvIT9ky4IJgx6WUyuuVV+xcuh9/zH8u3dGj8NFH\n0Ldv6camlFJllQ6GKKWC4tVXYc6cghdIfPEFDBwIW7aUXlxKKVWWaWKnlAqKyEho1KjgOj16wIYN\nEB9fOjEppVRZp4mdUso1ItCwodtRKKWKq3///kRERBAZGUlERITn6y0l7H7PysoiIiKCL774wlPW\nqVMnTxv+Xl27di3ptwPA559/TkREBNnZ2QG5n1vCao6dUiq0paXBlCnw5JNQqVLxP68bFysVPq64\n4grGjx+P93axderUKdE9/Z1fP3PmTNLT0wHYunUrF1xwAYsWLSIhIQGAihUrlqhN77ZFxG8M4UR7\n7JRSAbNmDSxadHLJ2fbtcOaZ8NVXgY9LKRV4FStWpE6dOtStW9fzEhG++OIL/va3vxEdHU1MTAzd\nunVj69atns+lp6czaNAg4uLiqFy5MvHx8bzwwgsANGnSBBHh73//OxERESQkJFCzZk3P/WNiYjDG\nUKtWLU9ZzmlR+/fvp1+/fsTExBAdHc1ll13G+vXrAcjOzubCCy/k+uuv98SxZ88eTjvtNF588UV+\n/PFHunXrBkD58uWJjIzk3nvvLa1HGVCa2CmlAqZvX/jmm5NL7OLi4JJLIDY28HEpFe5274Yffshb\n/v339ixmb/v3295zX2vXwo4dwYnP27Fjx3jggQdIS0tj/vz5GGPo0aOH5/qIESOYPXs206ZNY8OG\nDUyYMIFGzoTc7777DmMM77//Pr/++itLly4tcrvdu3cnPT2dBQsWsHz5cpo3b86ll17KkSNHiIiI\nYOLEicydO5dx48YBcNttt3HWWWfxr3/9i5YtWzJhwgQAdu3axe7du3n22WcD+FRKjw56KKUC6mQ3\nHo6MhFG6fbhSfo0eDW+/nTcx69wZhg2D++47Ufbxx/Z8Zt8RxRtugMsugxEjAhPTzJkzqVatmuf9\nlVdeyZQpU3IlcQBjxowhLi6ODRs2kJCQwPbt20lISOD8888HoKHXRNucodwaNWpQt27dIscye/Zs\ntm7dyuLFi4lw/hJ65ZVXmDFjBjNnzqRnz540adKEl19+mX/+85+sW7eOb7/9lh+cbDkyMpKaNWsC\nULduXc89wpEmdkqpEsvO1pMklAqmgQPtKnJfX32Vt5f7mmvA35HnH34I1asHLqaLLrqIN9980zMn\nrUqVKgBs3LiRxx9/nOXLl7N//37P3LVt27aRkJBA//796dq1Ky1btuTyyy/n6quv5uKLLy5RLKtW\nrWLv3r2eYdkcx48fZ/PmzZ73t956KzNmzOCFF17g/fffp379+iVqNxRpYqeUKpElS+w/OrNnQyD/\njlyyBGJioEWLwN1TqXAVG+t/msI55+Qti4mxL1+tWwc2pipVqtCkSZM85VdddRUJCQmMHTuW2NhY\n0tPTOfvssz0LINq3b88vv/zCrFmzmDdvHj169OCKK65g0qRJJx3L4cOHadasGbNmzcqz+KFWrVqe\nrw8dOsTq1aspV64cGzZsOOn2Qpn+jq2UKpGaNaFTJ6hXL3D3zMqyyWKghoyUUqVj7969bNq0iccf\nf5wuXbrQokULfvvtN0QkV71q1apx44038tZbb/HBBx8wZcoUDh8+TGRkJJGRkWRlZeXbhu+9ANq1\na8e2bduoUqUK8fHxuV45Q6wA99xzD7Vr1+bjjz/m6aefZvny5Z5rFSpUACiw7XCgPXZKqRI54wx4\n443A3jMyEr78MrDJolIq+GrXrk10dDSjR4+mTp06bN26lYcffjhXnRdffJGGDRtyjtPd+OGHH9Kg\nQQOqVq0KQKNGjZg3bx4dOnSgYsWKuRIz8L8lytVXX82ZZ55Jt27deOaZZ4iPj2fHjh3MnDmTW2+9\nlVatWjF16lSmT59OWloaLVq0YNCgQfTu3ZtVq1YRFRXF6aefDsCnn35KUlISUVFRREVFBeEpBZf2\n2CmlQlKDBrqnnVLhJjIykilTprBs2TLOPPNMHnjgAc9WJjmqVq3KM888Q/v27enYsSO7du3i888/\n91wfOXIkX375JY0aNaJDhw552vDXYxcZGcncuXNp164dt9xyC61ataJv377s27ePmJgYdu3axd13\n383zzz9PC2d+x/Dhw6lUqRKDBw8GoHnz5jz88MPcc8891KtXL09CGi4k3DfiCxQRaQekpqam0s7f\nrFOlVC4//wzOL7ilIiur4HNnlQo3aWlpJCYmov/ulG0F/ZxzrgGJxhg/m9QUn/bYKaWK7auvoGlT\n8JqeElT/+x907553+wallFK56UCHUqrYzj8f3nsPzj23dNpr08b+1xh7vqxSSin/NLFTShVb+fLQ\nu3fptXfFFfallFKqYDoUq5RSSilVRmhip5Qqsvffh2PH3I3h+HGYOtXdGPzZsAGc88ZVmMvMhMWL\n7YkqSoUbHYpVShXJhg3Qvz9UqwbdurkXx4wZNo4OHUp3VW5hpk+HRx+Fw4chDLe+Ul5277ZnsE6a\nBD17Br+9devWBb8R5ZrS/vlqYqeUKpKEBNi4ERo1cjeOnj2hY8fQSurAHsJ+ySWa1JUFDRvCrFlw\n6aXBbScmJoaoqCj69OkT3IaU66Kioojxd85bEGhip5QqssaN3Y7AroqNj3c7irwqVID27XOXzZoF\nR47Yw9t1NW94ufzy4LfRqFEj1q1bx/79+4PfmHJVTEwMjUrpt2JN7JRSYe2PP6BKFbtSt7Rt3mx7\nd5wjJvOYORO2b4frry/duFTxzZgBTZqAc8pVqWnUqFGp/YOvTg26eEKpMHTkCPzjH7B2be7yQE/2\nNgbuvRe++y6w9w2UzExISoKHHnKn7SuuAOc0Ir9efz00F3qo3LKz4YUX4M03817LyLDD7PPmlX5c\nSp0MTeyUCnH79sETT9hEIscff9jTHw4ezF33vvvgwgtzl2Vnw7hxsG1b8dv+/Xf45hsbQygqVw4e\nfxzuusudtj/4AAo7TrJy5dzv77wTXn01eHGp4ouIgNmz/f9cIiPtwqFffin9uJQ6GToUq1SI27oV\n3ngDbrwRzjzTltWvD6tX5617zTV2YYG3336D226zQ03eIz5vvmm3dHj//dz1f/zRLkyoUgVq1bLH\nhkWE8K+Abg5z+s6pK4wx9pnWqBGceNTJq1rVf3lEhB1S1zmSKlxoYqdUiOvQwfYWFGW1ZZcuecvq\n1LF7v/n+w1Szpk0Qvf31l00ex461W4pAaCd1/oTysWMi8NxzecsPHLAJnyo9e/bYX2IuuqjwuqH6\n50kpf8Lsr2ylyrbjx+Hf/847d66kW2hUrJh3gn/PnjB8eO6yyEg79Bqux3etXm170bZvD879jx2z\nzy2Q21L9+Se0bg2vvRa4e5a2I0dy/5k1BhYtci+eonjxRfvLy19/Fe9zR4/afe6UClWa2CkVYmbO\nhNRUd9ouVw7OPx/q1XOn/ZI67TRo2jT/VaoltXevXQkbyEUqVarYXrzu3QN3z9I2aBDccINN6AA+\n+QSSk/P+ghJKnn4aFi60v/QUx403wi23BCUkpQJCTM7/iac4EWkHpKamptKuXTu3w1GnsMxMm2Cp\n0FRaQ70ffQRXX138xMMNW7bY59K0qX1vDCxbBued525cwZCaanvQW7VyOxJVFqSlpZGYmAiQaIxJ\nC8Q9tcdOKRe9+WbelXia1IW20kjq1q+Hm26COXOC31Zx/fWX7VX2Fh9/IqkD+4xCLakzBpYuLfl9\nEhM1qVOhTRM7pVy0aZPt7VDBMWsWjBlTsntkZtpJ9qWpZUv46Sf4+99Lt92imDzZrkTesaPon0lP\nd39e2pw5dprBypXuxqFUsGlip5SLnn8eRo50O4qya948+OKLE3O/Tsabb9qVyXv3Bi6uomjWLHfv\n4N69do/CNWtKNw5fffrADz9AgwZF/8zdd8OVVwZ+A+3i6NoVUlKgbdvA3XP5cnjyycDdT6lA0MRO\nqVIyb56dYO79j5tuoxBcw4fbuWolec533GEXA9StG7i4TsahQ1C7NsTFlV6bmZn29Iw//zxRFhkJ\nCQnFu8+DD8JLL7m7dY6I/+2ASmL1avuLw9Gjgb1vsBkDb71lN2VWZY8mdkqVkkqV7HYmhw65Hcmp\nIzLSvkqiYkW45JLAxFMSzZrBp5/m3u8uOxtWrAhemzt32uPaSnqcVkKCBQN9FwAAIABJREFUPfqt\ntP3yS8l6awszYAAsWVLy7YhKmwhMm2Y3KAe7p98//wn797sblwoMTeyUChLff1D+9jc76bxmTXfi\nUfDxx+HXu1KQL76Ac88N3vBs48b25JNrrw3sfY8dC27CBfY4vMTE4E51EAmfxU7eRxICfPYZ/Pe/\n9uvISPs+lLenUUWniZ1SQbB1q52ovXGj25GoHLt32/lhH3xQeN1XX4Vnnw1+TCV15ZUwf/6Jo+ZK\nIjvbDs8tXJi7PCam5Pf2dvSoXTEb7PNyo6Nh9Gh7nF5pCdUzle+4w55R7K18+RNfx8TY/Rk7dy7d\nuFRwaGKnVBCcdpqdC5We7nYkKkdsLHz/vR0+K8zvv9szdkNdRETeI7G2bLHJTHGH1URg4sS8iV2g\nRUXZDX4vvji47QD06FF6PeRffAFNmsCGDaXTXnF06QKXXlpwnXA7OlDlL0w6kZUKbcbYV85fjlFR\nMH26uzGpvJo1K1q9J54I/lBhsGzZYhPY4s77EoG5c0tnQ+T77w/OfY8ds0Oj3r1RpSU52Z4gEh9f\n+m17O3jQjhS0b3+irHdv9+JRpS+scnQRuUdEtorIMRFZKiLnFlC3n4hki0iW899sESlDs2tUqMjM\nhKuuglGj3I5EFYcxdsg8P+G6YvmSS06cjpAjPT1vD97UqTB0aO4yt065CFQS3a8f3HxzYO5VXJUr\nwz/+4f6cu3/9yz6Dk9laxhh4+22b4KvwFTaJnYjcBLwIDAXaAquA2SJS0AyQg0A9r1fjYMepTj05\n56s2b+52JKo4Roywk+t//92+T0uDjAx3YwoU36R07FjbW3ngwImynTttz46be8uBnbB/4YXF2/A4\nP3feWbpz6kLRsGF2v76TGVoVsXNQFy0KeFiqFIXTUOwQYLQx5j0AEbkLuAq4DRiez2eMMSZEp7Oe\nnDfftL8Z9uvndiSntvT03AfNP/64e7GokzNggE12oqPtPm0XX2x7Ox57zO3IAu/666F69dxbpfzf\n/4VGr2TNmnbyfiDmeIXCtjRg/34YPtxuzOz9zANt8WL4/HM7BJyjOBtH+zN7tjtD2SpwwqLHTkTK\nA4nA/JwyY4wB5gHnF/DRqiLys4hsE5GPRaR1kEMNulWr7Eu5Z9gwu4t9uM7BUlbNmtC9u/26WjX7\nD9rgwe7GFCwxMXmHKEMhqQO7yOjTT09+4+WsrMDGEwj79tlVv19/Hdx2tm+3yV0gt/DRpC78hUuP\nXQwQCezxKd8DtMjnMz9he/NWAzWAB4BvROQMY8zOYAUabG+84f7QyakuKcmusDQmdP5xVCXXoYPb\nEajimjbNbkszb15o7Q9Zv77dPqRq1cDe99gxO2KTo1cv+9K/h5S3cEns8iOA334TY8xSYKmnosi3\nwDrgTuw8Pb+GDBlCjRo1cpX16tWLXr16BSLegPAessjOhttvh0GD7EalKviSk+1LKRV4CxbYXijf\nhR3+NG8OnTrZYeZQE+ikbto0uzhj7Vo7fQCCm9CtWgXLluXd/06dvEmTJjFp0qRcZQcPHgx4O+GS\n2O0HsoDTfMrrkrcXzy9jTKaIrAQK3PBg5MiRtGvX7qSCdMNvv9n/0Y8fdzuSsmvbNptAn36625Eo\nVfb98AN8841dyFLYsGCbNsE9WSJQjh+3i6xKsmL2b3+ziZ333N5gmjPHLrrp31+HZwPFXydRWloa\niYmJAW0nLObYGWMygFTAs6WliIjz/pui3ENEIoAzgd3BiNEtderAt9/a31pVcNx6q/7WqlRpGTzY\nbvZbVpKJ9HS7av5//yv6ZzIz7fF33vN4TzsN/v1vqFIl8DH6c++9NskuKz+HU0lYJHaOEcCdItJX\nRFoCbwJRwHgAEXlPRJ7JqSwij4vIpSLSRETaAu9jtzt5u/RDDy7f7vhNm+DGG0P3eJtwM3YsjBvn\ndhRKnToiI/2X791rV76uX1+68ZREhQowcCBcfXXRP/PVV/Z83rS04MVVmIoV3d+TT52csPmxGWOm\nOnvW/Qc7JPs9cJnXdiYNAO9jjqOBt7D71/2O7fE73xgTRn8lnJydO2HXruLvPK/80yFYpdwzaRK0\nbQstW9rhWZHSG44MlLvuKl795GQ7xaZVq+DEo8q2cOqxwxjzujHmdGNMZWPM+caYFV7XLjLG3Ob1\n/j5jTBOnbpwx5mpjzGp3Ii9dSUl28nFpddmXNQsWwIoVhddTSgVXejo88wxMmGDf169vT0Vw+9iu\nQNq1C3r2zL1Bs0joJHUHD8Irr5SdzbtPBWGV2Kmi8x2efeMNu/Gq7r1WMGPgqafsqQRKKXdVqGCH\nJf/7X7cjCZyVK+32LDmqVrVbo2zb5l5MBdm+HR58EL77zu1IVFGFzVCsKpljx+wmlrrfUcFEYMaM\n3HtFKaXck7O1R1nxzDO2FyznlIzq1WH58tD9u/nMM2H37rL3cyjLNLE7Rdx3n9sRhI9Q2uhUKVW2\njBmT9xfHUE3qcmhSF150KPYUZQzccAN88onbkbjvxRdh5ky3o1BKnQpq1rQrTpUKFk3sTlHHjtn9\niQK9O3q4yc62m6G6ua2AUkqFOmPs3MB169yORBVGh2JPUVFR8MEHbkfhvogImDo1/32zlFJK2V+C\n77zT7pH63HNuR6MKoj12yuOXX+DCC+0Gx2WZ78pgTeqUUqpgkZHw9dfw7LNuR6IKE5TETkTGi0jn\nYNxbBc/Ro1C7tj26pqzKzLS/cb72mtuRKKVUeImLC/2FHip4PXbRwFwR2Sgij4pI/SC1owKoVSv4\n9FOoVu1EWVnb9y4yEpo1g4YN3Y5EKaWUCrygJHbGmO7YI77eAG4CfhaRWSJyvYjokcJhZMwYu3o2\nM7PwuuFAxA4ldOvmdiRKKRWedu2yJ/So0BS0OXbGmH3GmBHGmLOBjsAmYAKwS0RGikjzYLWtAicm\nxh7fE86HQR86VPZ6HpVSyi1PPw0DB9oFFSr0BH3xhIjEApcCXYEs4AvgLGCtiAwJdvuqZK67Dv73\nv9xl4ZQk/fUXXHABPPmk25EopVTZMHSoPU87QpdfhqRgLZ4oLyI9ROQz4BfgBmAkEGuM6WeMuQS4\nEXgiGO2r4DEGune3h0KHg4oV4f774eab3Y5EKaXKhrp1oUYNt6NQ+QnWANtubNI4CehgjPneT50U\n4I8gta+CJCsL2ra1CxDCxa23uh2BUkopVTqCldgNAT40xhzPr4Ix5g+gSZDaV0FSrpz/Yc2srNDZ\nD27dOjsvUI/tUUqp4MnMhPnzoWtX3QYllARrhPxTIMq3UERqiUj1ILWpXLJjh90qZdkytyOBI0eg\nSxd46im3I1FKqbJt3jy4/HJYvdrtSJS3YCV2k4GefspvdK6pMqR8eZtMtWjhdiRQpQp8+CE89JDb\nkSilVNnWtSusXAlnn+12JMpbsBK7jtg5dL4WOtdUGXLaafDWW1Cz5okyY9zb+65z59ybLCullAq8\niAg45xy3o1C+gpXYVcT//L3yQOUgtalCyHvvQceOdmg02KZPh99/D347SimlVKgLVmK3HLjTT/ld\nQGqQ2lQhpHVruPpqOzQaTAcPwl13wdtvB7cdpZRS+duwAfbtczsKBcFbFfsYME9EzgbmO2UXA+di\nNypWZdy559qXt7/+CvxK1Ro17EaZevarUkq549gx6NABhgyxmxcrdwUlsTPGLBGR84EHsAsmjgGr\ngQHGmI3BaFOFNmPsmbPx8fDSS4G9d6NGgb2fUkqpoqtcGWbP1kUUoSJoJ4A6mxL3Dtb9Vfi58cbc\nCyxORnY2PP443H47NNFdEJVSKiR01GWRISPoR7uLSGXsogkPY8yhYLerQosI9OmTt/zYMfvbXlH9\n/jtMmwZt2mhip5RSSvkK1lmxUSIy6v/Zu+/4qur7j+OvD2HIEhCQIUNBgaoVBbXiXuBGxQkojrpq\nXVTratXWqlVbR7Xqz7oAFRTFgXsUFy6QiKOioqDIlCUQwkry+f3xPYGbSzb35ObevJ+Px3kkZ34/\n93BIPvmuY2Y/A3nA0qRFhAULQtPs+PGVP6d1a/jsMzjppPjiEhGR6lm1Cqarw1VaxTUq9h/AgcDv\ngDXAWcB1wFxgWExlSobZfPMwonXPPat2nl4VJiJSO51xBpxc2usJpMbEldgdBZzv7uOAAuA9d78B\nuBr1u5NI48ZhBFWbNhu2uUNe3ob1pUvhkENg0qSaj09ERKrmmmvgySfTHUXdFlditwUwM/p+ebQO\nMBHYN6YyJQs8+ST06BGaaQEaNgw1dPXielJFRCRldtgBtt023VHUbXENnpgBbA38CHxNmPJkEqEm\n75eYypQssPfecOml4TVlECY4rkofPBERkbosrnqQR4DiGW1uBn5vZmuAOwj970RK1alTSOxERCSz\nzZxZ8TGSenFNUHxHwvdvmlkvoC/wnbt/HkeZIiIiUjuMHQtDhsCMGZpEvqalvMbOzBqY2X/NbLvi\nbe7+o7s/o6ROREQk+x1xREjuttoq3ZHUPSmvsXP3dWa2U6qvKyIiIpmhaVMYNCjdUdRNcfWxewz4\nbUzXFhEREZFSxDUqtj5wppn1Bz4BVibudPc/xFSuiIiI1CK//BLmLdXk8jUjrhq7HYFcwhx2PYBd\nEpadYypTREREapGlS6FrVxg1Kt2R1B1xjYo9II7rioiISOZo1QruuQcOPjjdkdQdcTXFioiIiHDK\nKemOoG6JJbEzs7cAL2u/ux9Yzev+HrgMaA98Blzo7pMrcd7JwGjgOXfXOB0RERHJSnH1sZtKSLyK\nl6+AhkAf4IvqXNDMTgJuA64j9NX7DHjNzNpUcF5Xwtsu3q1OuSIiIrLp3GHZsnRHkf3i6mM3vLTt\nZvYXoFk1LzscuN/dR0XXOg84AjgTuLWM8uoRpl65FtgXaFHNskVERGQTnHgiFBTAs8+mO5LsVtN9\n7B4DJhGaUyvNzBoQXkl2U/E2d3czexPoV86p1wE/u/sjZrZvNeIVERGRFDj7bGjQIN1RZL+aTuz6\nAaurcV4bIAdYkLR9AdCztBPMbC/gDKB3NcoTERGRFBowIN0R1A1xDZ54JnkT0AHYFfhbKouilEEa\nZtYMeBQ4292XVuWCw4cPp0WLki22gwcPZvDgwZsSp4iIiNRhY8aMYcyYMSW2LYuh06G5lzl4tfoX\nNXskaVMRsBCY4O6vV+N6DYB84Dh3H5+wfQTQwt2PTTq+N2GC5EJC8gcbBooUAj3dfWbSOX2AKVOm\nTKFPnz5VDVFEREQqadWq8DaKui43N5e+ffsC9HX33FRcM67BE2ek+HrrzGwKcBAwHsDMLFq/q5RT\npgG/Ttp2I2HgxkXAT6mMT0RERCpnzBgYPhy++w6aVXc4pZQprqbY3YB67v5x0vbfAIXu/kk1Lns7\nMDJK8CYRRsk2AUZE1x4FzHb3q919LWGKlcSyfyGMuZhWjbJFREQkBfbaC/74R6gX14RrdVxct/Ue\noHMp27eK9lWZu48FLgWuBz4FdgIOcfeF0SGdCBMXi4iISC3VpQtceik0aZLuSLJTXKNityf0cUv2\nabSvWtz9XuDeMvaV+zaLVDcPi4iIiNQ2cdXYrQHalbK9A1AQU5kiIiKSQQoKwhspJHXiSuxeB/5u\nZuvnDTGzloQJht+IqUwRERHJEHPnwnbbwYQJ6Y4ku8TVFHsZ4d2sP5rZp9G2nQkTCp8aU5kiIiKS\nITp0gMGDYaut0h1JdolrupM5ZrYTMJTw5odVwCPAGHdfF0eZIiIikjnM4KabKj5Oqia2V4q5+0rg\nP3FdX0RERERKiqWPnZldZWZnlrL9TDO7Io4yRUREJHMVFaU7guwQ1+CJc4GvS9n+P+C8mMoUERGR\nDHT66XCFqn1SIq6m2PbAvFK2LyRMeSIiIiICwO67Q6tW6Y4iO8SV2P0E7AXMTNq+FzA3pjJFREQk\nA51/frojyB5xJXYPAHeaWQOgeIaag4BbgdtiKlNERESkTosrsfsH0Jrw+q+G0bbVwC3u/veYyhQR\nEZEM5x6mQpHqiWXwhAdXAG2BPQhz2W3h7tfHUZ6IiIhkvrFjYb/9NEJ2U8Q2jx2Au+cBk+MsQ0RE\nRLJD587QuzesWgVNm6Y7mswUW2JnZrsBJwBd2NAcC4C7D4qrXBEREclM/fqFRaovrgmKTwbeB34F\nHAs0ALYHDgSWxVGmiIiISF0X1wTFVwPD3f0oYC1wMSHJGwvMiqlMERERkTotrsSuO/BS9P1aoKm7\nO3AHcE5MZYqIiEgW+PHHMIhi+vR0R5J54krslgDNo+/nADtG37cEmsRUpoiIiGSBdu2gZUvIy0t3\nJJknrsET7wH9gS+Ap4B/mdmB0bb/xlSmiIiIZIHNNoPnn093FJkprsTuAmCz6PsbgXXAnsA44IaY\nyhQRERGp02JJ7Nx9ScL3RcDNcZQjIiIiIhvE1cdOREREZJO4w6WXwoMPpjuSzKHETkRERGolM1i7\nFtasSXckmSPWV4qJiIiIbIq77053BJlFNXYiIiIiWSLWxM7MtjWzQ8yscbRucZYnIiIiUpfF9a7Y\n1mb2JvAt8DLQIdr1kJndFkeZIiIikr1efBEuvjjdUdR+cdXY3QEUAF2A/ITtTwKHxlSmiIiIZKnl\ny2HmzDCYQsoW1+CJAcAh7j47qfV1OtA1pjJFREQkSw0ZEhYpX1w1dk0pWVNXbAtAg5ZFREREYhBX\nYvceMCxh3c2sHnA58FZMZYqIiIjUaXEldpcD55jZK0BD4FbgS2Bf4IqYyhQREZEsN2sW/Pa3sGxZ\nuiOpnWJJ7Nz9S6AHMBF4ntA0+wywi7t/H0eZIiIikv0aNICJE2H69HRHUjvF9uYJd18G3BjX9UVE\nRKTu6dABvv46vG5MNhZLYmdmO5Wxy4HVwCx31yAKERERqTIldWWLq8ZuKiGJAyi+/Z6wf52ZPQmc\n6+6rY4pBREREpE6Ja/DEsYQ5684BegM7R99/AwwBfgscCNwQU/kiIiKSxQoL4Y47YMKEdEdSu8RV\nY/cn4GJ3fy1h2+dmNhv4m7vvbmYrgduAy2KKQURERLJUvXrw7LOwbh0ceGC6o6k94qqx+zXwYynb\nf4z2QWiu7VDKMWUys9+b2UwzW2VmH5nZbuUce6yZTTazpWaWZ2afmtkpVSlPREREaiczeOstuPzy\ndEdSu8SV2H0NXGlmDYs3mFkD4MpoH8BWwILKXtDMTiLU8F0H7AJ8BrxmZm3KOGUxoal3D0Iy+Qjw\niJn1r9pHERERkdooJyfdEdQ+cTXF/h4YD8w2s88JAyd2AnKAI6NjugH3VuGaw4H73X0UgJmdBxwB\nnEmYALkEd383adNdZnYasDfwRhXKFREREckIsSR27v6BmW0NnEKYqNiAp4HR7r4iOubRyl4vqu3r\nC9yUUIab2ZtAv0pe46AolncqW66IiIjUfu+/D19+Ceeem+5I0i/OCYrzgP9L0eXaEGr7kptuFwA9\nyzrJzDYH5gCNgALgfHfX+BkREZEsMmECvPginH12GFRRl8WW2AGY2fZAF8L7Ytdz9/GpKoKS8+Ml\nW0GYbqUZcBBwh5nNKKWZdr3hw4fTokWLEtsGDx7M4MGDUxCuiIiIpNrll8Of/1y7Jy4eM2YMY8aM\nKbFtWQwvvDX38vKial7UrBvwLGHQgpM0SbG7V6m7Y9QUmw8cl5gUmtkIoIW7H1vJ6zwAdHL3w0rZ\n1weYMmXKFPr06VOV8ERERESqLDc3l759+wL0dffcVFwzrgrLfwEzgXaEhGwHYF/gE2D/ql7M3dcB\nUwi1bgCYmUXrH1ThUvUIzbIiIiIiWSeuxK4fcK27LwSKgCJ3nwhcBdxVzWveDpxjZsPMrBeh/14T\nYASAmY0ys/WDK8zsSjM72My2MbNeZnYpYTBHpQdtiIiISOZYuBBuvTW8laKuiquPXQ6QF32/COhI\neJ3Yj5Qz2KE87j42mrPuekJN4FTgkCh5BOhEGCBRrClwT7R9FWH+vKHu/nR1yhcREZHabdYsuP56\nOOQQ6N073dGkR1yJ3ZeEeetmAB8Dl5vZWsL7YmdU96Lufi9lzH3n7gcmrV8DXFPdskRERCSz9O0L\n8+ZB8+bpjiR94krsbiDUmAFcC7wIvEd4G8RJMZUpIiIidVxdTuogvgmKX0v4/jugl5ltASz1OIbh\nioiIiEjqB0+YWX0zKzCzHRO3u/sSJXUiIiISt6IiePZZ+PbbdEdS81Ke2Ll7ATCLMIBCREREpEYV\nFMCFF8K4cemOpObF1cfuRuAmMzvV3ZfEVIaIiIjIRho2hE8/hbZt0x1JzYsrsbsA2BaYa2Y/AisT\nd7q7Xu0gIiIisamLSR3El9g9F9N1RURERKQMcY2K/Wsc1xURERGpiu+/h5kz4eCD0x1JzYirxg4z\nawkcD3QH/uHuS8ysD7DA3efEVa6IiIhIsRtvDP3tcnPBLN3RxC+WxM7MdgLeBJYBWwMPAEuAQUAX\nYFgc5YqIiIgkuuUWaNq0biR1EMN0J5HbgRHuvh2wOmH7y8C+MZUpIiIiUkLbttCkSbqjqDlxJXa7\nAfeXsn0O0D6mMkVERETqtLgSuzXA5qVs7wEsjKlMERERkVKtXg3jx6c7ivjFldiNB641swbRuptZ\nF+AWoA7OAy0iIiLp9PLLcMwx8N136Y4kXnEldpcCzYCfgcbAO8B3wArgTzGVKSIiIlKqo4+GadNg\n223THUm84prHbhnQ38z2BnYiJHm57v5mHOWJiIiIlCcnB3r2THcU8YtrupPO7v6Tu08EJsZRhoiI\niIiUFFdT7A9m9raZnRVNVCwiIiJSK+TmwuLF6Y4iHnFOdzIZuA6Yb2bPmtlxZtYopvJEREREKrRs\nGey9N4wYke5I4hFLYufuue7+R8JbJg4DFhHePrHAzB6Oo0wRERGRirRoARMnwsUXpzuSeMRVYweA\nB2+5+9nAwcBM4LQ4yxQREREpT58+UD+WUQbpF2tiZ2adzexyM5tKaJpdCVwQZ5kiIiIidVVco2LP\nAYYCewHfAI8Dx7j7D3GUJyIiIlJVy5fD/PnQo0e6I0mduCoirwGeAC5296kxlSEiIiJSbUOGhOTu\n3XfTHUnqxJXYdXF3L22Hme3o7l/GVK6IiIhIpdxyC7Rqle4oUiuuN0+USOrMrDkwGDgL6AvkxFGu\niIiISGXtsEO6I0i9uAdP7GtmI4B5wGXABGCPOMsUERERqatSXmNnZh0IU5r8FtgcGAs0Igye+CrV\n5YmIiIhsCnf49tvseJdsSmvszGw88DWwE3AJ0NHdL0xlGSIiIiKp9PDDsNNOsGBBuiPZdKmusTsc\nuAu4z92np/jaIiIiIil3/PHQpQtsuWW6I9l0qe5jtw/QHPjEzD42swvMrG2KyxARERFJmRYtoH9/\nMEt3JJsupYmdu38YvT6sA3A/cDIwJyqnfzQ6VkRERERiEMuoWHfPd/eH3X1v4NfAbcCVwM9RPzwR\nERGRWmf+fFi3Lt1RVF+s050AuPs37n450Ikwl52IiIhIrTNvHmy9NTz5ZLojqb643jyxEXcvBJ6L\nFhEREZFapUMHGDkSDjkk3ZFUX40ldiIiIiK13UknpTuCTRN7U6yIiIiI1IyMSuzM7PdmNtPMVpnZ\nR2a2WznHnmVm75rZkmh5o7zjRURERIoVFsLSpemOouoyJrEzs5MIo2uvA3YBPgNeM7M2ZZyyHzAa\n2J/wftqfgNejV56JiIiIlOmww+D3v093FFWXSX3shgP3u/soADM7DzgCOBO4Nflgdz81cd3MzgKO\nAw4CHos9WhEREclYl14KrVunO4qqy4jEzswaAH2Bm4q3ubub2ZtAv0pepinQAFiS+ghFREQkm2Tq\nyNhMaYptA+QAya/nXQC0r+Q1biG8BePNFMYlIiIiUmtkSmJXFgO8woPMrgROBI5x97WxRyUiIiJZ\nIy8v3RFUXkY0xQKLgEKgXdL2Ldm4Fq8EM7sMuBw4yN3/V1FBw4cPp0WLFiW2DR48mMGD9dIMERGR\nuuY//4G//AVmzIDNNqv+dcaMGcOYMWNKbFu2bNmmBVcKc6+wwqtWMLOPgI/d/eJo3YBZwF3u/o8y\nzvkjcDUwwN0nV3D9PsCUKVOm0KdPn9QGLyIiIhnp++9hwgQ47TRo2DC1187NzaVv374Afd09NxXX\nzJQaO4DbgZFmNgWYRBgl2wQYAWBmo4DZ7n51tH45cD3h/bSzzKy4ti/P3VfWcOwiIiKSgbp3D0um\nyJjEzt3HRnPWXU9okp0KHOLuC6NDOgEFCaf8jjAK9umkS/01uoaIiIhIVsmYxA7A3e8F7i1j34FJ\n69vUSFAiIiIitUSmj4oVERERkYgSOxEREZEsocROREREJEsosRMRERHJEkrsRERERLKEEjsRERGR\nLKHETkRERCRLKLETERERyRJK7ERERESyhBI7ERERkSyhxE5EREQkSyixExEREckSSuxEREREsoQS\nOxEREZEsocROREREJEsosRMRERHJEkrsRERERLKEEjsRERGRLKHETkRERCRLKLETERERyRJK7ERE\nRESyhBI7ERERkSyhxE5EREQkSyixExEREckSSuxEREREsoQSOxEREZEsocROREREJEsosRMRERHJ\nEkrsRERERLKEEjsRERGRLKHETkRERCRLKLETERERyRJK7ERERESyhBI7ERERkSyhxE5EREQkSyix\nExEREckSSuxEREREsoQSOxEREZEskVGJnZn93sxmmtkqM/vIzHYr59jtzezp6PgiM7uoJmMVERER\nqWkZk9iZ2UnAbcB1wC7AZ8BrZtamjFOaAN8DVwDzaiRIERERkTTKmMQOGA7c7+6j3P1r4DwgHziz\ntIPd/RN3v8LdxwJrazBOERERkbTIiMTOzBoAfYH/Fm9zdwfeBPqlKy4RERGR2iQjEjugDZADLEja\nvgBoX/PhiIiIiNQ+9dMdwCYywFN5weHDh9OiRYsS2wYPHszgwYNTWYyIiIjUIWPGjGHMmDElti1b\ntizl5WRKYrcIKATaJW3fko1r8TbJHXfcQZ8+fVJ5SREREanjSqta4LhJAAAgAElEQVQkys3NpW/f\nviktJyOaYt19HTAFOKh4m5lZtP5BuuISERERqU0ypcYO4HZgpJlNASYRRsk2AUYAmNkoYLa7Xx2t\nNwC2JzTXNgS2MrPeQJ67f1/z4YuIiIjEK2MSO3cfG81Zdz2hSXYqcIi7L4wO6QQUJJzSEfiUDX3w\nLouWd4ADayRoERERkRqUMYkdgLvfC9xbxr4Dk9Z/JEOamkVERERSQYmPiIiISJZQYiciIiKSJZTY\niYiIiGQJJXYiIiIiWUKJnYiIiEiWUGInIiIikiWU2ImI1GJzls/h5ekvU1hUmO5Q0mbuirlMmDmB\ngqKCig8WqeOU2ImI1GLPTHuGI0YfQdc7u3LtW9cyc+nMdIdUo16e/jI73LsDR405Kt2hiGQEJXYi\nIrXYBbtfwOSzJ3NkjyO586M76XZXN/o/2p8nv3ySNQVr0h1ebAqLCrn2rWs5YvQR7NNlH3LPyaV+\nvfLn1H/tu9f4auFXFHlRDUUpUvtk1JsnRESyzbrCdQx7bhjn9DmHA7Y5YKP9ZsauHXdl1467ctuA\n23jqq6d46NOHOHncybRu3JrbD7mdYb2HpSHy+CzKX8TQZ4by5ow3ufHAG7ly7yupZ+XXQ7g7Q58Z\nyuJVi2nesDm7dtyV3bfand067sbuW+1Op807YWY19AlE0keJnYhImrg7v3vpdzz91dP8dpffVnh8\n04ZNOX3n0zl959P5etHXPJT7EF1bdK2BSGvO5DmTOf6p48lfl89rp7zGwd0OrtR5ZsaMi2cwZe4U\nJs2ZxKS5k3j8i8e55f1bAGjfrD2PHvtopa8nkqmU2ImIpMkN797AQ58+xMhjRlY54ejVphf/GPCP\nmCJLj7y1eRz6+KFst8V2PHXCU3Ru0blK52/eaHMO2OaAEjWfc1fMZfKcyUyeO5lurbqlOmSRWkeJ\nnYhIGoyYOoJr376WGw64oWRT6uzZ8NFH0KEDdOsG7dvDJjQhvvPDO+yw5Q60adImBVHHq1nDZrw6\n9FV2arcTjeo3Ssk1OzbvyNG9juboXkdXeOw1E67h1e9fZbeOu7FX5704aceTKuzXJ1Lb6IkVEalh\nr3//Ome/cDZn9zmbq/e5Gr7/HsaNC8ukSSUP3mwz2Hpr2GabkOhts82GpVs3aNGizHIKiwoZPG4w\ni1ct5phex3DWLmdxULeDKuyvlk67bbVbWsv+aflPvP3D29z3yX089OlDjDluDO2atUtbTCJVZe6e\n7hhqBTPrA0yZMmUKffr0SXc4IpKlps6fyj6P7MO+W/Th+QUHUP+Z5+Czz6BxYzj0UDjuODjoIFi0\nCGbOhBkzwtfE71eu3HDBVq1KJnqJiV/XriwsXMGjnz/Kg7kPMm3RNLq26MqpO53Kqb1PpUfrHum7\nEbXc2z+8zclPn0xOvRyeOuEp9uy8Z7pDkiyUm5tL3759Afq6e24qrqnELqLETkRi5Q5Tp/KnZy/g\ntWW5vP1/q2nWsBkceWRI5g47DJo2rdx1ykv6Zs2CgmgiXzPo2BG22QbfZms+6taQh1vMYOzqKSxf\nu4I9Ou3By0NeplXjVrF+9Ew1d8VcTnr6JD6a/RH/7P9PLvrNRRpZKykVR2KnplgRkbgUFYWm1XHj\n4JlnYMYMbmjVkiuPHkSzp0+G/v1DU2tVmEHbtmHZffeN9xcUwJw5GyV99t339HtjJv3mz+euBvDC\nUT15Owda/jAferXcpH58VbFw5UJmL5/NLh12qZHyNkXH5h2ZMGwCV/33KqYumJrucEQqRTV2EdXY\niUhKFBbCxIkbkrk5c2DLLeGYY0LN3AEHQIMG6YtvwQJ46SV44QV4/XXIz4fttoOBA8Oy555QP56/\n+T+e/THHP3U8rRu35tNzP82o2q8iL6rVfRMlM6nGTkQk1QoKQgK2YsWmXccdJk+G556Dn3+GrbaC\nQYNCMrf33pCTk5p4N1W7dnDmmWFZtQomTIDx42H0aLjtNthiCzj8cBg4kKX77c5dX43g1N6nbtJU\nIe7OfZ/cxyWvXsKuHXflqROeyqikDsjapG7O8jm89cNb1LN6NG3QlCYNmtCkQRO2b7u9mugzlGrs\nIqqxE6mDCgrglFPgySdTc71u3TYkc7vvDvUyKBkoKoIpU0KSN348fP45b3fP4aghkJdTyF5b7sqw\n3c/mhO1PqNIv/JVrV3LeS+fx2OePceHuF/LPAf+kYU7DGD+IVKSwqJB/T/o3T331FO//9H6px7ww\n+AWO7HFkmdd4dtqzXPPWNesTwaYNNySFTeo3ocVmLbj54JvLjWPm0pmsK1q34RoNmtIwp2HGJf2b\nQjV2IhI7d+eNGW/w9aKvueg3F6U7nPgUFsLpp8PTT4dm00GD0h1RetWrB7vtFpa//Q1++IH9X3iB\nBS8+y3ML3uHRHT/hdws+4cIXzmdgx/05dd8LOXS7w8pN0qYvns6gsYOYsXQGoweNZvCvB9fgB6oG\nd/j4Yxg1Ct55J9S0DhoUms8bZk8ymlMvh1Gfj6Jj846MOmYUR/Y4kkb1G5G/Lp+Va1eSvy6fTpt3\nKvcaHZt35OBuB5O/Ln/9snzNcubnzSd/XT45VnEN9bkvnssbM94osa2e1Vuf5J3W+zRu6X9Lmeev\nLljNTe/dtP740pLMHdruQIvNyp4SKBupxi6iGjup6/LX5fPoZ4/yr4//xbRF09ij0x5MPGMiOfXK\n/gG9at0qGjdoXINRpkhRUWiKfOwxGDMGTjgh5UXkzsuld7ve5d6/jLFsGbz6KvNeepIxs19hVM/V\nfNYeBq7uyvP73AsHHrjRIJDpi6ez6wO70r5Ze8adOI4dt9wxTcFXwqxZ8OijIaH79tvQjN6/P7z7\nbhiE0rIlHHVUqIkdMCBMTRMp8iLOfP5MTt3pVA7qdlAaP0TVFBYVpv3ZnLZwGgvzF65PJhOXletW\nslO7nRjYc2CZ5y/OX8wu9++y/vjVBas3OmbCsAmlvoO52OgvRnPTezeVrHFMSBTbNGnD9Qdcn5LP\nWxpNdxIjJXZSV81ePpt7Jt3Df3L/wy+rf+HonkdzyR6XsE+XfcptElmUv4gOt3Wgd7ve9OvUj36d\n+7Fn5z3p2qJr7W5KKSqCc86BRx4Jid3g1NciffDTBxw06iBuOOAGLt3z0pRfP63WrYP33+fzFx9i\n9bsT2H3y3DBNy4ABYfDFEUdA27a4O3d8dAdn9TmLzRttnu6oN7ZiRaipHTUK3noLmjQJiduwYaGG\nLicn1OB9/nnogzluHPzvf+GzHn54qMk7/HBWNDKOG3sc/535X2444Aau2PuKtPbHm7N8DuOmjWPo\nr4fSuknrtMWRDkVexKp1q9Ynevnr8unSokuYVqgME2dN5Omvng7JZUF+iVrL/HX5NG3YlPfOeC+2\nmJXYxUiJndQ16wrXMey5YTz1v6do2rApZ+1yFhfsfgHbtNqmUucvW72MJ758gg9mf8CHP33I9CXT\ngfCy9T0770m/Tv04p+85teuXujv87nfwn//AyJFw6qkpL+Lbxd+y50N7sn3b7Xn91NfZrH4VpzPJ\nJO4wbdqGfnkffRS277svDBkCxx8fBmPUFoWFYbDIqFEhWVu1KiRxw4aFRK158/LP/+abcN4zz8An\nn4Tm2QEDKDz2GP7afhp/m3wbR/U4ipHHjKzRgQfFydxTXz3FxFkTaVCvAeMHj+fQbQ+tsRikepTY\nxUiJndRFZ48/m53a7cTpO59O80YV/FKrwMKVC/lo9kd8OPtDPvjpA6bOn8rcS+fSpEGTFEW7idzh\nwgvhnnvg4YfhjDNSXsTPK3+m30P9aJTTiIlnTmSLxrUoqakJCxbAiy/C2LHw5puh1uuww0KSd9RR\noVYsHb76KiRzjz0Wpp/p0QNOOy0MnOnSpXrX/PFHePbZUJP3/vtQrx4vDfo1p+74La2atWXckOfY\nuf3Oqf0cCUpL5gZ0H8CJO5zIwJ4DablZy9jKltRRYhcjJXYiqVWZPjx/+u+fWLp6Kb3a9KJXm170\nbN2Tzi06p74pyx2GD4d//SvU1p19dmqvTxj9ecDIA/hp+U989NuP6Nqya8rLyCjz54cEb/ToMCCh\nWTM49tiQ5B18cGxz5a23aFHoPzlqVKhda9UqNLsPGxZGLKeyu8D8+WGam2eeYWbufzn+uCK+aleP\ne5oez5kn3RLe9ZtiAx4dwNs/vK1kLsMpsYuREjvJRu5eq/u7XfzKxUz4YQLfLv6WtYVrAWhcvzE9\nWvegV5teDOs9jMO3O7zK13V3lq1ZxuL8xXRv1Q3++McwR9t998F555U49twXzuW5b56jyItKvdbR\nPY/mwYEPlllWkRfR7p/tWFOwBsd59/R3M+KtCjXqu+9CkvX446E5s21bOOmkkOTtsUfqkqw1a+Dl\nl0Mz+0svhW1HHBGSuSOOgEaNUlNOeZYsYfXz47go90ZebfAj/7sHmu/YJ/TfGzQIevVKSTHTF0+n\nbdO2SuYynBK7GGVKYvfhTx8yL28eHZt3pGPzjrRv1l5zQkkJRV7Ea9+9xp0f38k+Xfbhz/v+Od0h\nhb5Nb70V3riw774b/SIvLCrkx2U/8s2ib/h60dd8szh8PXOXMxnWe1iZl/1iwRfcO/leFuYvZFH+\novXL4lWLKSgK70tds+oyGt7yT7j7brjggo2u8cSXT/D9ku/LrF3s1aYXx/Q6pswY3J1b3g9TMgzo\nPoA+HWrvz4+0i96Xy+OPh0Rv7lzYZpuQ4A0ZAttvX71rTp4ckrknnoAlS2DXXUMyd/LJIYlMk0U/\n/0Cbt6NXyr30EqxcCb/6VUjw9t8/xNly48RszvI5NMxpSNum6YtdaoYSuxhlSmJ3+nOnM/KzkSW2\ntW3Sdn2id+A2B3LZnpelKTpJp5VrVzLqs1H86+N/8c3ib+jboS9/3vfP5SYlsfvmm/ALd9So0LcJ\nwtQYt9wSfqltog9++oALX7mQNk3ahKVxmw3fN2lDmyfHs8+Nj1H/n7eHplipPQoL4b33QpL39NPw\nyy/QuzcMHRoSss6dyz//p582TFHyzTdhipJTTgkJXXUSxLitWgVvvBEGXowfD0uXhu09esBuuzGn\n73aM6/ALY/M+5v05H3L9/tdzzX7XpDdmiZ0SuxhlSmJX5EUsWbWEuSvmMnfFXOatmLf++7l5c9lp\ny5346wF/Lff8QU8Ool3TduuTwQ7NO6z/vm2Ttmmf20iqZtayWfx70r95IPcBlq9ZzqBfDeKS31zC\nnp33TE8z7C+/hDc5jBgRRkm2bBl+UZ92GixcCFdeGTqzn3gi3HgjbLttPHFcfz1cdx3cemtoipXa\na80aePXVkOS98EJYL21kbV5eySlKGjcOtV/DhoU/GGrLa9sqUlQE337LnA9fY9y0Zxi7Jpf3t8ij\nQSH0n2GcuLwzAzseQKtd9w4TRu+wQ/x9EiUtlNjFKFMSu021cu1KBo8bvD4ZXLByQYm+RTmWwytD\nX6F/9/5lXmNd4Tpy6uVk7bsTK8vdeXn6yzRr2KzE0rxRc5o2aFojCfKUuVP4zYO/oVnDZpzd52wu\n2P2C9HTaLywMtREjRoRO5OvWwSGHhDc7DBxYcvLagoLwi/naa8MoynPPhWuuCe8wTZWbboI//Sl8\nveqq1F1X4rd8eXiGRo8Oz1RODhx6KLRoEWq78vPDFCWnnVa5KUpqqb+98zeufftaGtRrQP/u/Tmx\nxyAGFnSn1dSvQ9PypEnhD6CiopDA9ukTkrzddw9fu3dP7QAQSQsldjGqK4ldsoKiAn5e+fOGWr8V\nczmqx1FstflWZZ5z18d3cdnrl5Wo6evYrOP677u27Mr+W+9fcx+imt7+4W2+WPDFhr5ZqxaV6Kd1\nSPdDePjoh8s8P39dPk1valrm/sb1GzPuxHEctt1hZR4zdf5UXvz2xQ1JYcPmJZLEzRttznattyvz\n/CIvYuTUkZywwwnlTsIZm6++Ck2tjz0W+kttv31I5oYOhY4dyz931arQ7+2mm0Kyd9llcOmlm/6L\n+tZb4Yor4K9/DcmjZK4FCzaMrF2xIoxqPeUU6Jr5I44/nv0xXy/6moE9B5Y9511eHnz6aUjyJk8O\ny4wZYV+rVhteAVec8HXoUHMfQFJCiV2M6mpiVx1f/vwl7/zwzvrm38Rm4cWrFtOzdU++vuDrcq/x\nyvRXaFS/UWgKbtaBzRttXqVmw4KiAhbnLy6RiC3KX1SiE/3IY0aWW2t2yjOn8PRXT9O2aduS/bKi\nflp9OvThqJ5HlXl+kRexIG8BeWvz1i8r1q4osX7UdkeyTZOO4Qd0Xl745VT8fV4eY+a9ziWLHifP\nV5PPuo3KaF6Qw/JXdt5wzsqV4Qd6p05lL+3axdsktXRp6KQ+YkT4hdOqVWgyO/106Nu36rUIS5bA\n3/8ekrwWLUIydvbZ1Xs35x13wB/+EGoAr4/vNUAiabNoUZi+pbhWb/LkkABD6GdYXKO3225lDs7I\nakVFoVY3cVm5MnXre+yxYcR1Ciixi5ESu9RYXbCaX1b/Qvtm7cs9rssdXfhp+U/r15s0aLKh9q95\nR87Y+QwGdB9Q5vmvfvcqhz1esiasntWjdePW6xO0l4a8VO6ku+sK11G/Xv2KE8rCQpg3L0xIOmtW\nGARQnKAlJWqlrhcWln/9+vWheXMKmzclv0UT8lo0Jm/zxuQ1b8Sapo3Yo/7WoRarWbMwweuSJTB7\ndsllzZoN18vJCbVl5SV/HTqEEaqVVVAAr78ekrnnnw+f6bDDQjJ35JGpmUZi1qzQJ27kSOjWLfS/\nO+GE8HL6yrj7brjootD0euONaqaSusE9/AwoTvImTQqJ34oVYX80OGN9wrfzziXedVujiopCTX2q\nk63E71dv/L7YUtWrF14P16TJhq/J35e23r176PeZIkrsYqTErmblr8svMfBjXt68Es3B5+92Psdv\nX/Z/noUrF/Lh7A9L1LS13Kxl9fr9rVgRkoripTiBK15mzy6ZnDVrFv4KbtZsw1KceFVnvWHDTUtC\n3GHx4o2TveJlzpwwgnDlyg3nmIWavfKSv622CvOPFTe1zp8PO+4Y3tgwZAi0Lz95r7YvvoCrrw5v\nMOjbN4ygPaiCl6vfdx+cf35ozr31ViV1UrdFgzNKNOF++imsXRv+kPz1r0s24W6/fUh0ipOuipKn\n6q5XJ+mqTLJVnfUGDWrFzwkldjFSYpelimvbEhO15ATul182HJ+TExKaLl02LF27bvi+c+fQXJhp\n3EOn9LKSv+Il8V4Ua9069Jk77TTYZZea+2H4zjuhr9zHH4eBGDffHGobkj3wAJxzDlxyCdx+e634\nYS1S66xdG/5oSmzCLR6ckZNTcctCsXr1Up9sJe/b1D92M4gSuxhlRGL33XdhqH+jRuHBr+hrRcdU\ntomrNsvLK7umrbi2raBgw/Gbb14yUUtO4Dp0qNvTCuTlhRq+4kSvZcvQ5Fqd/m6p4B7ex3nVVaEG\nYuhQuOGGDa9oeuQROPPMMPHwXXfVmV8GIimRlwe5uSHBa9CgcolYHUq6aoISuxhlRGL3yithRNia\nNeGvr3Ubd7avkpyccpPCMStWMLhjx8onklVNLMv72qBB+Ety/vyya9pmzdowySeERDWxtq20BG4T\natvGjBnD4MGDN+2eZ5EavR8FBfDww6EP3pIlodl1u+1CQnfuuXDvvWn/ZaPnYwPdi5J0P0rS/dig\nzid2ZvZ74DKgPfAZcKG7Ty7n+BOA64GtgW+BK939lTKOrf2JXTL3kOCtXbsh2Uvh14EvvcT4/far\n3jXWrAnxbYp69UJyV6x589KTteJtHTvGWts2cOBAxo8fH9v1M01a7sfKlXDnnaHf3YoVcNZZcP/9\ntaL2Wc/HBroXJel+lKT7sUEciV3GtDmZ2UnAbcA5wCRgOPCamfVw90WlHN8PGA1cAbwEDAGeM7Nd\n3P2rmos8RmahhqtRo3gm6Rw4MEwkW10FBeUngBUlh0VFJWvg6tqwfdlY06Zh4uFzz4W33w4T1NaC\npE5EpLbImMSOkMjd7+6jAMzsPOAI4Ezg1lKOvxh4xd1vj9avM7MBwAXA+TUQr9SvH5YmTdIdiWSb\nNm1SOuWAiEi2yIg/dc2sAdAX+G/xNg9tyG8C/co4rV+0P9Fr5RwvIiIiktEypcauDZADLEjavgDo\nWcY57cs4vqzJtzYDmDZtWjVDzD7Lli0jNzclTf5ZQfejJN2PknQ/NtC9KEn3oyTdjw0Sco7Nyjuu\nKjJi8ISZdQDmAP3c/eOE7bcCe7v7nqWcswYY5u5PJmw7H/izu2/0EkszGwI8Hkf8IiIiIuUY6u6j\nU3GhTKmxWwQUAu2Stm/JxrVyxeZX8fjXgKHAD0Alp8cWERERqbbNCDN3vJaqC2ZEjR2AmX0EfOzu\nF0frBswC7nL3f5Ry/BNAY3c/OmHb+8Bn7q7BEyIiIpJ1MqXGDuB2YKSZTWHDdCdNgBEAZjYKmO3u\nV0fH/wt4x8z+QJjuZDBhAMbZNRy3iIiISI3ImMTO3ceaWRvChMPtgKnAIe6+MDqkE1CQcPyHZjYY\nuDFapgNHZ80cdiIiIiJJMqYpVkRERETKlxHz2ImIiIhIxZTYiYiIiGSJOpHYmdlVZjbJzJab2QIz\ne9bMelRwzmlmVmRmhdHXIjPLr6mY42Rm55nZZ2a2LFo+MLNDKzjnBDObZmaronMPq6l441bV+5HN\nz0ay6P9OkZndXsFxWft8JKrM/cjm58PMrkv4TMVLuf2Ws/nZqOr9yOZno5iZdTSzR81skZnlR//m\nfSo4Z38zm2Jmq83sWzM7rabijVtV74eZ7VfKM1VoZltWtsw6kdgB+wB3A78BDgYaAK+bWeMKzltG\neFNF8dI1ziBr0E/AFYRRwn2BCcDzZvar0g42s37AaOABYGfgOeA5M9u+ZsKNXZXuRyRbn431zGw3\nwijyzyo4LtufD6Dy9yOSzc/Hl4QBbMWfbe+yDqwjz0al70cka58NM2sJvA+sAQ4BfgVcCiwt55yt\ngRcJrwztTZjR4kEz6x9zuLGrzv2IOLAdG56RDu7+c6ULdvc6txBeUVZEeGtFWcecBixJd6w1eE8W\nA2eUse8JYHzStg+Be9Mdd5ruR9Y/G0Az4BvgQOAt4PZyjs3656OK9yNrnw/gOiC3Csdn9bNRjfuR\ntc9G9PluBt6p4jm3AJ8nbRsDvJzuz5Om+7Ef4YUMm1e33LpSY5esJSEjXlLBcc3M7Aczm2Vm2fZX\nJgBmVs/MTibMCfhhGYf1A95M2vZatD2rVPJ+QPY/G/cAL7j7hEocWxeej6rcD8ju52M7M5tjZt+b\n2WNm1rmcY+vCs1GV+wHZ/WwcBXxiZmMtdHvKNbOzKjhnD7L3GanO/QAwYKqZzTWz181so9emlqfO\nJXZmZsCdwEQvf067b4AzgYGEV43VAz4ws63ijzJ+Zrajma0gVBHfCxzr7l+XcXh7Nn4V24Joe1ao\n4v3I9mfjZEKz2VWVPCWrn49q3I9sfj4+Ak4nNCudB2wDvGtmTcs4PqufDap+P7L52QDoBvyO8DkH\nAP8H3GVmp5RzTlnPyOZm1iiWKGtOde7HPOBc4DhgEKGr0NtmtnNlC82YCYpT6F5ge2Cv8g5y948I\n/2kBMLMPgWnAOYTq90z3NaE/Q0vCAzTKzPYtJ5lJZoRaz2xR6fuRzc+GmXUi/OHT393XbcqlyILn\nozr3I5ufD3dPfJ/ll2Y2CfgROBF4pJKXyYpnA6p+P7L52YjUAya5+zXR+mdmtgMhuXmsCtex6Gum\nPydVvh/u/i3wbcKmj8ysO+FtW5UaVFKnauzM7N/A4cD+7j6vKue6ewHwKbBtHLHVNHcvcPcZ7p7r\n7n8idAi/uIzD5xM6Byfako3/yspYVbwfG51L9jwbfYG2wBQzW2dm6wh9Pi42s7VRjXeybH4+qnM/\nSsiy56MEd19G+CVU1mfL5mdjI5W4H8nHZ9uzMY+QqCaaBnQp55yynpHl7r42hbGlQ3XuR2kmUYVn\npM4kdlFSdzRwgLvPqsb59YAdCf9Q2ageUFa194fAQUnb+lN+H7RMV979KCHLno03gV8Tmh57R8sn\nhL8ue3vUuzdJNj8f1bkfJWTZ81GCmTUDulP2Z8vmZ2Mjlbgfycdn27PxPtAzaVtPQi1mWUp7RgaQ\nHc9Ide5HaXamKs9IukeN1NDIlHsJw4v3IfxlULxslnDMSOCmhPVrCD+AtgF2IYzSWQn0SvfnScH9\nuJEwJL8r4YfK3wnv2T0w2j8q6V70A9YCf4geyr8Aq4Ht0/1Z0nQ/svbZKOP+lBgFWsr/lax+Pqpx\nP7L2+QD+Aewb/V/ZE3iDUPvWOtpf1352VPV+ZO2zEX2+XQn9lK8iJLhDgBXAyQnH3ASMTFjfGsgj\njI7tCZwfPTMHp/vzpOl+XEzog9kd2IHQFWQdoaWxUuXWlT525xHa6t9O2n4G4T8eQGfCEONirYD/\nEDp2LgWmAP288n3QarN2hM/dgTCn0ufAAN8w4q8TIbEBwN0/NLPBhAToRmA6cLSXP/gkk1TpfpDd\nz0ZpkmulSvxfqQPPR7Jy7wfZ/Xx0IsxL1xpYCEwE9nD3xQn769LPjirdD7L72cDdPzGzYwnTfFwD\nzAQudvcnEg7rQPg/U3zOD2Z2BHA7cBEwG/ituyePlM041bkfQEPgNqAjkE/4fXSQu79b2XItyhBF\nREREJMPVmT52IiIiItlOiZ2IiIhIllBiJyIiIpIllNiJiIiIZAkldiIiIiJZQomdiIiISJZQYici\nIiKSJZTYiYiIiGQJJXYiIiIiWUKJnYhIipnZOWY2y8wKzOyidMcjInWHXikmIpVmZo8ALdx9ULpj\nqa3MrDmwCLgEGAcsd/fV6Y1KROqK+ukOQEQky3Ql/Gx92d1/Lu0AM6vv7gWl7RMR2RRqihWRlDGz\nzmb2vJmtMLNlZvakmW2ZdMyfzWxBtP8BM/u7mX1azjX3M7MiMxtgZrlmlm9mb5pZWzM7zMy+iq71\nuJltlnCemdlVZjYjOudTMzsuYX89M3swYf/Xyc2mZvaImVozPiUAACAASURBVD1rZpea2VwzW2Rm\n/zaznDJiPQ34PFqdaWaFZtbFzK6Lyv+tmc0AVlcmxuiYw83sm2j/f83stOh+bB7tvy75/pnZxWY2\nM2nbWdG9WhV9/V3Cvq7RNY81swlmttLMpprZHknX2MvM3or2LzGzV8yshZmdGt2bBknHP29mI0r/\nlxWROCixE5FUeh5oCewDHAx0B54o3mlmQ4GrgT8CfYFZwO+AyvQJuQ44H+gHdAHGAhcBJwOHAwOA\nCxOOvxo4BTgH2B64A3jUzPaJ9tcDfgKOB34F/BW40cyOTyr3AKAbsD8wDDg9WkrzRPS5AXYFOgCz\no/VtgUHAscDOlYnRzDoTmnOfB3oDDwI3s/H9Ku3+rd8W3fe/AFcBvaJyrzezU5POuQG4NSrrW2C0\nmdWLrrEz8CbwJbAHsBfwApADPEW4nwMTymwLHAo8XEpsIhIXd9eiRYuWSi3AI8AzZezrD6wFOiZs\n+xVQBPSN1j8E/pV03ntAbjll7gcUAvsnbLsi2tY1Ydt9hOZPgIZAHvCbpGs9ADxWTll3A2OTPu8M\nov7I0bYngdHlXKN3FFuXhG3XEWrptkjYVmGMwE3AF0n7/x5df/OEa+cmHXMxMCNhfTpwUtIxfwLe\nj77vGv07nZ70b1cI9IjWHwfeLedz3wO8mLD+B2B6up9ZLVrq2qI+diKSKr2An9x9bvEGd59mZr8Q\nkoQpQE9CApBoEqFWrCJfJHy/AMh39x+Ttu0Wfb8t0AR4w8ws4ZgGwPpmSzP7PXAGoQawMSHZSm4W\n/p+7J9aIzQN2rES8yX509yUJ6+XFmBt93wv4OOk6H1alUDNrQqg5fcjMHkzYlQP8knR44j2eBxiw\nJaH2bmdCLWlZHgAmmVkHd58HnEZIjEWkBimxE5FUMUpvEkzennyMUTnrkq6xLmm/s6F7SbPo6+HA\n3KTj1gCY2cnAP4DhwEfACuByYPdyyk0upypWJq1XGCNl39NERWx8DxP7uhWXcxYhiU5UmLSefI9h\nw2ddVV4Q7j7VzD4HhpnZG4Sm5ZHlnSMiqafETkRS5Sugi5lt5e5zAMxse6BFtA/gG0Li9HjCebvG\nFMsaQlPtxDKO2ZPQFHl/8QYz6x5DLGWpTIxfAUclbeuXtL4QaJ+0bZfib9z9ZzObA3R39ycoW0UJ\n5OfAQYS+iGV5kJAodwLeLH4ORKTmKLETkapqaWa9k7Ytdvc3zewL4HEzG06oNboHeMvdi5s37wYe\nMLMpwAeEgQ87Ad9XUGZla/UAcPc8M/sncEc0gnUiIcHcC1jm7o8S+p2damYDgJnAqYSm3BlVKau6\n8VYyxv8D/mBmtxKSpl0JTZyJ3gb+bWaXA08DhxEGLSxLOOYvwL/MbDnwKtAoulZLd7+zkjH/Hfjc\nzO6J4lpHGFAyNqGJ+XHgn4TaweSBGSJSAzQqVkSqaj9CH7DE5dpo39HAUuAd4HXgO0LyBoC7jyYM\nCPgHoc9dV2AE0fQf5ajyTOrufg1wPXAloebrFUKzZ/E0IPcDzxBGsn4EbMHG/f+qq1LxVhSju/8E\nHEe4r1MJo2evSrrG14TRwudHx+xKuL+JxzxESLbOINS8vU1IEBOnRCl3ZK27TyeMPN6J0O/vfcIo\n2IKEY1YQRvHmEUbyikgN05snRCStzOx1YJ67J9dESSnMbD9gAtDK3ZenO55kZvYmYSTv8HTHIlIX\nqSlWRGqMmTUGzgNeI3T6H0zot3VweefJRqrUNF0TzKwlYXTzfoS5CUUkDZTYiUhNckJT458I/by+\nAQa5+1tpjSrz1Mamlk8Jk1NfHjXbikgaqClWREREJEto8ISIiIhIllBiJyIiIpIllNiJiIiIZAkl\ndiIiIiJZQomdiIiISJZQYiciIiKSJZTYiUidZWbnmVmRmW2Z7ljKY2Y3m9mqdMchIrWfEjsRiV2U\nPFW0FJrZvlW4ZnMzu87M9tyE0JwqTvZrZndF8T6yCeVWVZXjFJG6SW+eEJGacErS+mmE14idQsnX\nY02rwjU3B64DVgEfbFJ0lWRm9YATgZnAsWZ2nruvqYmyRUQqQ4mdiMTO3UcnrptZP+Bgdx+zCZdN\nx/tSDwHaAicAbwEDgafSEIeISKnUFCsitY6ZtTOzEWb2s5mtMrNPzWxwwv6ewCxC8+TNCc25l0f7\ndzGzUWY2Izp/rpndb2YtNjG0oUCuu78HvBOtJ8d+SBTLQDP7i5nNMbN8M3vNzLomHXuAmT1tZrPM\nbLWZ/WBmt5hZw4oCMbP6ZnZ99BnXRF//Ymb1k47LMbMbo3uQZ2avm9l2ZjbfzO6NjukVxXxuKeUc\nGO07uor3SkTSQDV2IlKrmFlTYCKwFXAXMBs4CXjczJq5+wPAXOBC4G7gCeDF6PRPo6+HRec/CCwA\nfg2cC/QE9q9mXI2Bo4Fro01jgH+bWSt3X1rKKdcBa4CbgdbA5cAI4ICEY04i/Bz+N7AU2AO4FGhP\naK4uz6OEZuExwPvAXlFs21Ey4bydcK/GAf8F+gKvAQ2KD3D3r81sSnTe/UnlDAWWAC9VEI+I1Abu\nrkWLFi01uhASssIy9l0BFALHJGyrD3wCLAY2i7ZtBRQBl5dyjUalbDstum7fhG3nRtu2rETMQ4EC\nYKtovRUhcTsn6bhDorhygZyE7X+MyupWQZzXAeuAtgnb/g7kJ6zvHpVxZ9K5d0Vl/CZa7xTF/FjS\ncTdF59+bsO3C6NiuifEREs570v3MaNGipXKLmmJFpLY5DPjR3Z8r3uDuBYRksCVQ4ShYTxjQYGab\nmVlr4GNCv7w+1YxrCPC+u8+JylgKvE4pzbGRB929MGH9vehrtzLibBLF+QGhm8zO5cRyOKEZ+o6k\n7bcRPuMR0fqAaP2+pOPuLuWaYwhJ4ZCEbUcRBqk8Vk4sIlKLKLETkdqmK/BtKdunEZKUrqXsK8HM\n2pjZv81sAZAPLAS+IiRDVe5nZ2Ztgf7Au2bWvXghagI1s86lnPZT0vrSKP5WCdfd2sweM7MlQF4U\n52vR7vLi7AqsdfcfEzdG66vYcI+6RF+/SzpuHuG+JG5bBLxKyUR1KDDT3T8sJxYRqUXUx05EaptU\njHZ9jtCv7lbgC2AlsBnwAtX7g/Zkws/Lq4E/Je1zQi3XLUnbCymdQRj8AEyI4rqBkMzmA1sDD1QQ\np7Hp89qVdp9HAWPNbGfgB0Lt6c2bWI6I1CAldiJS2/wA9Chl+68IyUxxLVWpiY2ZtSM01/7R3W9L\n2L7jJsQ0hNBn7qZS9l1EqNlKTuwq0peQxJ3g7uOKN5rZkVSc3P4ANDKzrom1dmbWBWgc7YcN92pb\nwiCS4uM6RMclewFYRvg83xIGWDxe2Q8kIumnplgRqW1eBromTq8R1W5dAPxCaP6EUAsHod9douKa\nsuSfb8OpRi1X1OT6G2C0uz+TvAAjgR3M7NcJp1WmnI3iNDMDLq7E+S8Tkr9LkrZfGp37crT+RrR+\nftJxF5V2UXdfC4wlJLLDgMnuPr2CWESkFlGNnYjUNvcAZwGjzezfhL5qJxMGPax/04O7LzOzGcAp\nZvYjIen7zMPUHZOAP0dTpywgNCl2onrNvKcQkqMXytj/YrR/KHBltK0y5XxBmIvvbjPrRkhUTwSa\nVXSiu08ysyeAi6L+f8XTnQwBxrj7x9Fxs83sPuB8M9sMeJNQU7g/4X6VlkCOAs4hTLlSagIoIrWX\nauxEJF1KrZVy95XAPoSaozOAfwBNgKEe5rBLdDrwM3AnMJrwJgiA4wn91y4i9F9bFu2rzjtXhwDf\nllVz5e4LgUmE5HP95jKutX57lKAeAXxJ6Lf3Z+AzQlJb7rmRYcDfCM3Od0Rf/xptT3QxoZ/cnoQ+\nh1sRRsvWB1aX8nk+IAy2KACeLCMWEamlzF3vlRYRqUuifojz4P/Zu+/wqqq07+PfO6FDKBKQ0IOA\ngAIDQUQdgYBiG3tlZACFR6yPDyqgvhacUWcExNFRRqzYBsWCZbACQRGlJYIFFEEQEEQQpZeQrPeP\nnYScFEg5++yck9/nus5lztp7r3XngOTOqtzsnCu4ZQpmtgxY5Zw7O+LBiUi5RFWPnZldZ2arc44I\nmm9mxx3m/npm9ljOUTp7zOxbMzs9UvGKiATNzKoXUZw733BOEff/EeiAN3dQRKJM1MyxM7NL8Tbf\nvApv2GMk8IGZtc/Zf6ng/VXx5pP8DFyAdwRRK7x5JSIilcUQM7sYb4+63XhHml0EvOmcyz2CjZzF\nHyl4R5+tAaZHPlQRKa+oGYo1s/nAAufcjTnvDW9S9SPOuXFF3H813gqxDgV2fxcRqTTMrCfeNi1d\n8E6R2Ig3d26sc25vvvv+DtyCtxH0/+QuwBCR6BIViV1O79tu4ELn3Nv5yqcA9Zxz5xfxzAy8cyX3\n4B3cvRlvcvUDzrnsSMQtIiIiEknRMhSbCMSTb4PNHJuAo4t5pg3QD++MwzOAdsCknHruLXhzzhmN\np+ENQRRaKSYiIiISZjXwNir/wDn3azgqjJbErjiHOlYnDi/xu8p53ZJfmFkzvKGGQokdXlKnHdZF\nREQk0i7HG1Ust2hJ7Lbg7dJ+ZIHyxhTuxcu1Ee+Q7PyJ33KgiZlVcc4dKHD/GoAXX3yRjh07lj/i\nGDBy5EgeeqjQTgiVlj6PUPo8QunzOEifRSh9HqH0eRy0fPlyBg0aBAePASy3qEjsnHOZZpYO9Afe\nhrzFE/2BR4p5bB4wsEDZ0cDGIpI6yBl+7dixI927dw9L3NGuXr16+izy0ecRSp9HKH0eB+mzCKXP\nI5Q+jyKFbQpYNO1jNxG4yswGm1kH4HG83einAJjZ82aW/4DufwMNzexhM2tnZmcBtwGPRjhuERER\nkYiIih47AOfcNDNLBP6KNyS7BDgt5zgf8M6BPJDv/vVmNgDvqJ2lwE85XxfaGkVEREQkFkRNYgfg\nnJuEt7K1qGv9iihbgHc+ooiIiEjMi6rETiJr4MCCUxQrN30eofR5hNLncZA+i1CH+jzWrl3Lli2F\nDk+Kab169SIjIyPoMCIqMTGRli1bRqStqNigOBLMrDuQnp6erkmdIiLiu7Vr19KxY0d2794ddCji\ns1q1arF8+fJCyV1GRgYpKSkAKc65sGS76rETEREJwJYtW9i9e7e22YpxuVuabNmyJSK9dkrsRERE\nAqRttiScomm7ExERERE5BCV2IiIiIjFCiZ2IiIhIjFBiJyIiIlElNTWVm266KegwKiQldiIiIlJi\nkydPpm7dumRnZ+eV7dq1i6pVq9K/f/+Qe9PS0oiLi2PNmjW+xXPgwAHGjBlDly5dqFOnDs2aNWPI\nkCFs3LgRgF9++YVq1aoxbdq0Ip8fNmwYPXr08C2+SFNiJyIiIiWWmprKrl27WLx4cV7Z3LlzSUpK\nYv78+ezfvz+v/OOPP6ZVq1a0bt261O0cOHDg8DcBu3fvZsmSJdx999188cUXTJ8+ne+++45zzz0X\ngMaNG3PWWWfxzDPPFPnsa6+9xvDhw0sdX0WlxE5ERERKrH379iQlJTFnzpy8sjlz5nDeeeeRnJzM\n/PnzQ8pTU1MBWLduHeeeey4JCQnUq1ePSy+9lF9++SXv3nvuuYdu3brx9NNP06ZNG2rUqAF4ydfg\nwYNJSEigWbNmTJw4MSSeunXr8sEHH3DhhRfSrl07evbsyaOPPkp6ejrr168HvF65WbNm5b3PNW3a\nNA4cOBByOsjkyZPp2LEjNWvW5JhjjuGJJ54IeWbdunVceumlNGzYkDp16nD88ceTnp5ejk80vLSP\nnYiISEW2ezd8+2146+zQAWrVKvPjffv2JS0tjdGjRwPekOuYMWPIysoiLS2N3r17s2/fPhYsWJDX\nG5ab1M2dO5fMzEyuueYaLrvsMmbPnp1X78qVK3njjTeYPn068fHxANxyyy3MnTuXd955h0aNGnHb\nbbeRnp5Ot27dio3v999/x8yoX78+AGeeeSaNGzdmypQp3HHHHXn3TZkyhQsuuIB69eoB8Nxzz3Hf\nfffx6KOP0rVrVzIyMhg+fDgJCQkMHDiQnTt30rt3b9q0acOMGTNo3Lgx6enpIcPSgXPO6eUdq9Yd\ncOnp6U5ERMRv6enprkQ/d9LTnYPwvsr5s+7JJ590CQkJLisry23fvt1Vq1bNbd682U2dOtX17dvX\nOefcrFmzXFxcnFu3bp378MMPXdWqVd1PP/2UV8eyZcucmbnFixc755wbO3asq169uvv111/z7tm5\nc6erXr26e/311/PKtm7d6mrVquVGjhxZZGx79+51KSkp7i9/+UtI+a233uqOOuqovPcrV650cXFx\nbs6cOXllrVu3dq+99lrIc2PHjnV9+vRxzjn32GOPuQYNGrjt27eX+LM61J9z7jWguwtTPqMeOxER\nkYqsQwcI91Bfhw7lejx3nt2iRYvYunUr7du3JzExkT59+nDllVeyf/9+5syZw1FHHUXz5s2ZPn06\nLVq0oGnTpnl1dOzYkfr167N8+fLc81Jp1aoVRxxxRN49q1atIjMzk549e+aVNWjQgKOPPrrIuA4c\nOMDFF1+MmTFp0qSQa8OGDeOBBx5gzpw59O3bl2effZbk5GT69OkDwI4dO/jxxx8ZMmQIQ4cOzXsu\nKyuLxMREAJYuXUpKSgoJCQnl+vz8pMRORESkIqtVCyrYkWNHHXUUzZo1Iy0tja1bt+YlR0lJSbRo\n0YJ58+aFzK9zzmFmheopWF67du1C14Einy0oN6lbt24ds2fPpk6dOiHX27Zty8knn8yzzz5Lnz59\neOGFFxgxYkTe9R07dgDe8GzBI95yh4Vr1qx52DiCpsUTIiIiUmqpqamkpaXl9YDl6t27N++99x4L\nFy7MS+w6derE2rVr+emnn/LuW7ZsGdu2baNTp07FttG2bVuqVKkSsiDjt99+Y8WKFSH35SZ1P/zw\nA7NmzaJBgwZF1jds2DBef/11Xn/9dTZs2MCQIUPyrjVt2pQjjzySVatW0aZNm5BXq1atAOjSpQsZ\nGRls37695B9UhCmxExERkVJLTU3l008/ZenSpXk9duAldpMnTyYzMzMv4TvllFPo3Lkzl19+OV98\n8QULFy5kyJAhpKamHnIRRO3atRk2bBijRo0iLS2Nr7/+miuuuCKvBw28odILL7yQjIwMXnzxRTIz\nM9m0aRObNm0iMzMzpL6LL76YKlWqMGLECAYMGECzZs1Cro8dO5b77ruPxx57jO+//56vvvqKZ555\nhkceeQSAQYMG0bBhQ84//3w+//xzVq9ezeuvvx6y9UvQlNiJiIhIqaWmprJ3717atWtHo0aN8sr7\n9OnDzp076dChA02aNMkrf+utt2jQoAF9+vRhwIABtG3blpdffvmw7YwfP56TTz6Zc845hwEDBnDy\nySfnzckDWL9+Pf/9739Zv349f/jDH2jatClJSUk0bdqUzz//PKSumjVrctlll/H7778zbNiwQm2N\nGDGCf//73zz99NN06dKFfv368eKLL5KcnAxAtWrVmDlzJg0aNOCMM86gS5cujB8/PiTRDJrljl9X\ndmbWHUhPT08vNLYuIiISbhkZGaSkpKCfO7HtUH/OudeAFOdcRjjaU4+diIiISIxQYiciIiISI5TY\niYiIiMQIJXYiIiIiMUKJnYiIiEiMUGInIiIiEiOU2ImIiIjECCV2IhJR778PEyZAdjZs3gzLlwcd\nkb8+/BAKbH4vIuIbJXYiElFLl8Ls2WAGgwfD1VcHHZF/fvwRzjgDpk0LOhIpyu7dUODIUZGop8RO\nRCJqzBh45x0vsfvXv+DVV4OOyD+tWnmJ7KWXBh2JFOWmm+Css+DAgaAjkdJKTU3lpptuCqTt5OTk\nvLNjKyIldiIScbnHKrZtC40bBxuL3449FqpUgd9/h2uvhY0bg46o8tq+HfKfonnPPfDyy96fj5Tc\n5MmTqVu3LtnZ2Xllu3btomrVqvTv3z/k3rS0NOLi4lizZo2vMfXt25e4uDji4uKoWbMmRx99NP/4\nxz98bbOiUmInIhIBWVneEPQ33wQdSeW0fTt07QqTJh0sO/JIyHeWvJRQamoqu3btYvHixXllc+fO\nJSkpifnz57N///688o8//phWrVrRunXrUrdzoBRdqWbGVVddxaZNm1ixYgW33XYbd911F5MnTy51\nu9FOiZ2I+O7bbyE1FdavL/6eN96A556LXEx+SkuDJUtCyxo29JK6U04JJqbKrm5dGDUK/vSn4u8p\n2KMnRWvfvj1JSUnMmTMnr2zOnDmcd955JCcnM3/+/JDy1NRUANatW8e5555LQkIC9erV49JLL+WX\nX37Ju/eee+6hW7duPP3007Rp04YaNWoAsHv3bgYPHkxCQgLNmjVj4sSJRcZVq1YtGjVqRIsWLRg6\ndChdunTho48+yruenZ3N8OHDadOmDbVq1aJDhw6FhlSvuOIKzj//fB588EGaNm1KYmIi119/PVlZ\nWcV+Hk899RQNGjQgLS2t5B+ij9QBLSK+27kTEhIgMbH4ez76yLtvyJDIxeWXceOgWjV4663Q8twh\naAnGtdcWf23XLujRA0aMgJtvjlxMJbVxx0Y27ix+HL9GlRp0atTpkHUs27yMvQf2klQniaSEpHLF\n07dvX9LS0hg9ejTgDbmOGTOGrKws0tLS6N27N/v27WPBggUMHz4cIC+pmzt3LpmZmVxzzTVcdtll\nzJ49O6/elStX8sYbbzB9+nTic/6HueWWW5g7dy7vvPMOjRo14rbbbiM9PZ1u3boVG9/cuXP59ttv\nad++fV5ZdnY2LVq04LXXXqNhw4Z89tlnXHXVVTRt2pSLLroo7760tDSaNm3KnDlzWLlyJZdccgnd\nunVj2LBhhdoZN24cEyZM4KOPPqJHjx7l+kzDxjmnl/crWnfApaenOxGJvP37ncvODjqK8Ni/37nN\nmw99z44dsfP9VkTTpzt3wQXOZWWV/JlJk5xbtcq/mApKT093Jf25c3fa3Y6xFPvq9Finw9bR6bFO\njrG4u9PuLnfsTz75pEtISHBZWVlu+/btrlq1am7z5s1u6tSprm/fvs4552bNmuXi4uLcunXr3Icf\nfuiqVq3qfvrpp7w6li1b5szMLV682Dnn3NixY1316tXdr7/+mnfPzp07XfXq1d3rr7+eV7Z161ZX\nq1YtN3LkyLyyvn37umrVqrk6deq4atWqOTNztWrVcvPnzz/k93H99de7iy++OO/90KFDXXJyssvO\n9z/nJZdc4gYOHJj3vnXr1u7hhx92Y8aMcc2aNXPLli07ZBuH+nPOvQZ0d2HKZ9RjJyIVQtWqQUcQ\nPlWrHrp3cvNm6NbN69n7858jF1dlUrcu1KgBe/dCrVole+aaa/yNqTxGpIzgnKPPKfZ6jSo1DlvH\nqxe/mtdjV1658+wWLVrE1q1bad++PYmJifTp04crr7yS/fv3M2fOHI466iiaN2/O9OnTadGiBU2b\nNs2ro2PHjtSvX5/ly5eTkjPZsVWrVhxxxBF596xatYrMzEx69uyZV9agQQOOPvroQjENGjSIO+64\ng61bt3L33Xdz4okncvzxx4fc89hjj/Hss8+ydu1a9uzZw/79+wv1/B1zzDGYWd77pKQkvv7665B7\nJkyYwO7du1m8eHGZ5g/6SYmdiPhm/35vSLIsDhyI3dWKjRrBjTfCH/8YdCSxq18/71Ueznnb8lQE\nSQnlHz493FBtaRx11FE0a9aMtLQ0tm7dSp8+fQAvCWrRogXz5s0LmV/nnAtJlnIVLK9du3ah60CR\nzxZUr149kpOTSU5O5pVXXqFt27b06tWLfjl/EV5++WVGjRrFQw89RK9evUhISGDcuHEsXLgwpJ6q\nBX7LNLOQFcAAvXv3ZsaMGbzyyiuMGTPmsLFFkhZPiIgvtm2Ddu28RRGldf31cMUV4Y/JT5s2wf33\ne5velsSoUdCypb8xVRZZWV7vZzh31Fi8GE48EfLN7ZcCUlNTSUtLY86cOfTt2zevvHfv3rz33nss\nXLgwL7Hr1KkTa9eu5aeffsq7b9myZWzbto1OnYpPONu2bUuVKlVCFmT89ttvrDjMztK1a9fmxhtv\n5OZ8EyY/++wzTjrpJEaMGEHXrl1p06YNq1atKu23DUDPnj15//33uf/++5kwYUKZ6vCLEjsR8UWV\nKt5CiAIjISVy8slw6qnhj8lP8+bBI494Q38SWTt3wuOPw6xZ4aszMRGaNYM4/ZQsVmpqKp9++ilL\nly7N67EDL7GbPHkymZmZeQnfKaecQufOnbn88sv54osvWLhwIUOGDCE1NfWQiyBq167NsGHDGDVq\nFGlpaXz99ddcccUVeQsrDmXEiBGsWLGCN3J+u2zXrh2LFy/mww8/5Pvvv+euu+5i0aJFZf7+jz/+\neN577z3+9re/8c9//rPM9YRbjA50iEjQateGv/61bM9G40kNF1wAp59e8vlc+X30EXTp4u2rJqVX\nrx589ZX3dy5cWreG114LX32xKDU1lb1799KxY0caNWqUV96nTx927txJhw4daNKkSV75W2+9xQ03\n3ECfPn2Ii4vjjDPOKNEJDuPHj2fXrl2cc845JCQkcPPNN7N9+/aQe4oaqm3QoAGDBw9m7NixXHDB\nBYwYMYIlS5Zw2WWXYWYMHDiQ6667jvfee69U33f+tk488UT++9//ctZZZ1GlShWuv/76UtXlB8sd\nv67szKw7kJ6enk737t2DDkdEKoldu6BNG2/4+c47g44mOuza5e0TeNJJQUdSPhkZGaSkpKCfO7Ht\nUH/OudeAFOdcRjjaUyeziITVhg3enKdw+e03b4PjWFW7Nnz+OdxxR9CRRI/77vN6SPfsiVybb73l\nDfeKVHRK7EQkbJyDc8+FK68MX52DB0MR+4JWCM7ByJGQb153mbRpU3FWX0aD22+HTz6BmjUj1+Yn\nn3gnimiQSyo6zbETkbAx887iDOcJCxMnhnfuVDht3+4tmshZ+Cc++fVXOOKIg8lvnTpQxDZmvho3\nzmtfCbhUdOqxE5GwOu44COd0oXbtIN+ephVKvXqwdL7ArwAAIABJREFUYAGcfXZ46jtwAK6+GqZN\nC099sWDLFujYEZ5+Otg44uO1Qlaig/6aioiUQzh7capUgX37Ijt3rKJLTIR77/WG+CuSl16C338P\nOgqRwjQUKyLltmGD90PuEPuMhsWMGd6w3ODB/rYTpGefDTqC4BU88eGqq4KLpSibN8MNN8COHV4P\nq0hFElU9dmZ2nZmtNrM9ZjbfzI47xL1DzCzbzLJy/pttZiXcE15ESmPCBBgwADIz/W1nxgz473/9\nbaMkHn8cbrlFE+n98Nxz3orXAic4VSiNGnn75impk4ooanrszOxS4EHgKmAhMBL4wMzaO+e2FPPY\nNqA9kPu7n/4ZFvHB3/8OQ4dCgSMWw+6f//S/jZI4cMDb0sXvifQ7d3rn7eY7Ez3mNWkCzZt7n3FZ\nzxmOhGbNgo5ApGhRk9jhJXKTnXPPA5jZ1cBZwJXAuGKecc65zRGKT6TSql7dOznBbxXlB30kNpd3\nzjvE/uij4YUX/G8vKAWHXU87zXtFk+xsb8Nk7TEsFUFUDMWaWVUgBcg7CdB5R2bMBE44xKN1zGyN\nma01szfNzOcZQCISSeHcCLmiMfN6QseODToS/yxZAsccA/nOhY9KTz8NJ54Y/d+HxIaoSOyARCAe\n2FSgfBPQpPDtAHyH15t3DnA53vf6mZmpA10kDPbuhX/9y1vFGYSbb/aGfyMp0nPq+veHo46KbJuR\n1KYN9OzpDTdHs6FD4f33K9fw7BVXXEFcXBzx8fHExcXlff3DDz+Uq96srCzi4uJ4991388pOPvnk\nvDaKeg0YMKC83w4AM2bMIC4ujuyKPMGzBKJpKLYoRjHz5pxz84G8/eDN7HNgOd4cvbuLq3DkyJHU\nq1cvpGzgwIEMHDgwHPGKxIxPPoExY7xhs/btI9/+ccd5c9AKDuX55fvvvUn9r74KHTr4316s+e03\neOYZuPFGb1sXgLp1YcqUQMMKi6pVoW/foKOIvDPOOIMpU6aQ/8z5Ro0alavOos6vf+edd9ifk/2v\nXr2aE088kY8//pj2Of/wVK9evVxt5m/bzIqMIRzef/99xhbogt+2bVv4G3LOVfgXUBXIBM4pUD4F\nmF6KeqYBLxVzrTvg0tPTnYiUzObNQUcQOd9959ygQc7t3h1M+3PmODdjRjBth8MXXzhXs6ZzCxcG\nHYn/9u51bteuw9+Xnp7uovXnztChQ935559f5LUZM2a4k046ydWvX981bNjQnX322e6HH37Iu75v\n3z539dVXu6SkJFejRg2XnJzsxo8f75xzrnnz5i4uLs6ZmTMz165du5C6V65c6czMffPNN4Xa3bx5\nsxs8eLBr2LChq1+/vhswYIBbvny5c865rKwsd+KJJ7oLL7ww7/6ff/7ZNW7c2E2YMMF9/fXXzszy\n2o6Li3M33HBDuT8n5w7955x7DejuwpQzRcVQrHMuE0gH+ueWmZnlvP+sJHWYWRxwLLDRjxhFKqPE\nxKAjiJz27b1FDJE8nzS/f/0r+NMXSmNzgWVrf/gDbNzo9bTGuosuCu95yeB9dl99Vbh8yRLYVGCS\n0pYtkJFR+N5ly2D9+vDGVZQ9e/YwatQoMjIymDVrFs45LrzwwrzrEydO5IMPPuD1119nxYoVvPDC\nC7Rs2RKARYsW4ZzjpZde4ueff2Z+KQ5iPvfcc9m/fz+zZ89m4cKFtGvXjlNPPZVdu3YRFxfHiy++\nyEcffcSzOZtFXnnllXTu3Jmbb76ZDh068ELOKqUNGzawceNG/v73v4fxU4mcaBqKnQg8Z2bpHNzu\npBZerx1m9jyw3jl3e877O/GGYlcC9YHRQCvgqYhHLiK+2r4dfv45mCHhSHn22Yp7Zm5BH38Mp57q\nJR35N60uMMslZl17LSQkhLfOyZPhqacKJ2a9e3sLbG666WDZm2/C//xP4TmhF1/sTZ2YODE8Mb3z\nzjsk5PtGzzzzTF555ZWQJA7gySefpGnTpqxYsYL27duzbt062rdvzwkneGsfW7RokXdv7lBuvXr1\naNy4cYlj+eCDD1i9ejVz584lLufst0ceeYTp06fzzjvvcNlll5GcnMzDDz/MDTfcwPLly/n888/5\nKidbjo+Pp379+gA0btw4r45oFDWJnXNumpklAn8FjgSWAKe5g9uZNAcO5HukAfAE3uKK3/B6/E5w\nzn0buahFYotz3sa8l19esbZ2GDLE69H4/PPwz7fbt8/bziVo4U4U/HTCCfDww9CqVdCRBOOMM8Jf\n54gRUCBfAry5rklJoWXnnVf0/5+vvurNawyXfv368fjjj+fNSaud85vH999/z5133snChQvZsmVL\n3ty1tWvX0r59e6644goGDBhAhw4dOP300zn77LPp37//oZo6rKVLl/LLL78UmiO/d+9eVq1alfd+\n6NChTJ8+nQkTJvDSSy/RLAZXvERNYgfgnJsETCrmWr8C728CbirqXhEpm99+g5kzvf3VKpIHHoAa\nNcKf1GVnw0knwSWXwOjR4a27vLKzK8ah9N9+C3ff7S2MyO1RrFYNrrkm2LgqknAs8ElKKpzAgTfE\nXVBiYtHTJMJ95F/t2rVJTk4uVH7WWWfRvn17nnnmGZKSkti/fz9du3bNWwDRo0cPfvzxR9577z1m\nzpzJhRdeyBlnnMHUqVPLHMvOnTtp27Yt7733XqHFD0fk2+F7+/btfPnll1SpUoUVK1aUub2KrAL8\nsyAi0eKII7y5O2eeGXQkodq3h5wpOnn+9Cf497/LV69zMGyYN9xVkYwdC4MGBR2Fp3p1WLkyMnO3\notGGDdCrFyxaFHQkkfHLL7+wcuVK7rzzTvr27cvRRx/Nr7/+ihXIbBMSErjkkkt44okn+M9//sMr\nr7zCzp07iY+PJz4+nqxDbFJZsC6A7t27s3btWmrXrk2bNm1CXrlDrADXXXcdDRs25M033+S+++5j\n4cKFedeq5eyAfqi2o4ESOxEplfj4yGwvUh7Z2dC5M+SbugN48/B27Ch5PfHxXs9Tr17hja+8OnXy\nFiFEel+9rCyvxza/5GRIT/dOyJDCGjTw9iLMP5T+9tuQklKxz8Mtq4YNG9KgQQMmT57MDz/8wKxZ\nsxg1alTIPQ8++CDTpk1jxYoVrFixgldffZXmzZtTp04dAFq2bMnMmTPZtGkTv//+e6E2CvbIAZx9\n9tkce+yxnHPOOcyePZs1a9bw6aefMmbMGJYvXw7AtGnTeOONN3jppZc488wzueaaa7j88svZvds7\nRr5169YAvP3222zZsiWvPNoosRORmBMX553a8Kc/hZaPHQvHHx9ISGF1ySUwcmTkE+wPP/QWRXz5\nZWTbjWY1a8J//hO692HTpt4Q/969wcXll/j4eF555RUWLFjAsccey6hRo5gwYULIPXXq1OH++++n\nR48eHH/88WzYsIEZM2bkXX/ooYd4//33admyJT179izURlE9dvHx8Xz00Ud0796dv/zlL3Ts2JHB\ngwezefNmEhMT2bBhA9deey3jx4/n6JzfQsaNG0eNGjW48cYbAWjXrh233nor1113HU2aNOHWW28N\n50cTMVZU5lsZmVl3ID09PZ3uFWlWuEgFMHq01/Nw221BR1I+a9bA2rWhQ6u//AKvvAKDBx9ctblr\nl5c01aoVSJgR5ZzXk1m7dujE+vR0b3Vr/tWW2dmwdCl06xb5OGNRRkYGKSkp6OdObDvUn3PuNSDF\nOVfEJjWlpx47ETmsOnW8V7Rr3brwfLlFi7wTNDIzD5Y98AB06RJaVlHt3g2fFdjNc88eeOIJKHi6\n01NPeb19BbVqBS++GFqWng4TJoQO98bFKakTqeiialWsiATjrruCjsA/Z53lbeiav3du6FDvcPqq\nVQMLq8RGj/a2vMg/PHrgAFx9NUyb5p3HmqtBA2jePPR5M3jnncIrJq+6ynuJSHRRYicilV7BIdc2\nbUIToops3DhYvDi0rE4dL7kruB3KhRcWvRfaaaf5F5+IRJaGYkWkSB984G3OKxVbrVqFh5fNKsYe\ndyISefpfX0QK2bQJLrggus4mFRERDcWKSBGOPBIWLgzdokFERCo+JXYiUqRjjgk6ApHKIXcDXYlN\nkf7zVWInIgDs3+9tmBrOQ8JFpHiJiYnUqlWLQRXlfDjxTa1atUgs6gBfHyixExHA28ttzhxvX7cq\n+pdBxHctW7Zk+fLlbNmyJehQxGeJiYm0LHigtU/0z7eIAN6+ZyedpKROJJJatmwZsR/44fDNN/DS\nS3DffRX/zOjKSqtiRQTwDnG/6KKgoxCRimzdOm/j619+CToSKY5+NxcREZESOe00+O47iI8POhIp\njnrsRCqpX3+Fvn3hiy+CjkREooWZkrqKTomdSCWVmQm1a0P9+kFHIiIi4aLETqSSatIEZsyA5OSg\nIxGRaLNrF/zjH7B2bdCRSEFK7ERERKRUnIOHH4b584OORArS4gmRSuSjjyA725sALSJSVnXqwOrV\nUKNG0JFIQUrsRCqRKVNgxw4YMEB7UIlI+Sipq5iU2IlUIs8/7x0bpqRORCQ2aY6dSCUSH++thBUR\nCZeZM72FWFIxKLETiXELFgQdgYjEssmT4bnngo5CcmkoViSGzZoFp5wCCxfCcccFHY2IxKJnn9VI\nQEWixE4khvXrB2lpSupExD916gQdgeSnoViRGGbmHRsmIiKVgxI7kRizZ4+3eaiISCRt2ABPPRV0\nFKLETiSGOAfnngv/939BRyIilc3s2XDLLbBlS9CRVG6aYycSQ8xg6FBISgo6EhGpbC69FM45B+rW\nDTqSyk2JnUiM+fOfg45ARCqjqlW9lwRLQ7EiIiIiMUKJnUiUW7HCGwL5/fegIxERgQMH4JVX4Lff\ngo6kclJiJ1IBbd4Mb74JmZmh5ZddBjfdFFr2+++wcmXkYhMROZStW725vjpmLBiaYycSIXv2wJo1\n0KGDt8gh13XXQceOcP31B8syMuD882H1amjd+mD5KadA/fqh9R53HKSn+xm5iEjJNW4Mq1ZB06ZB\nR1I5qcdOxAd//Su8/XZo2VtvQadOsGNHaHmtWlCjRmhZ797w88/QsmVo+fDhcNFFoWX5k0QRkYpA\nSV1w1GMn4oMFCyAhIbSsf3+YO7dwEjd+fOHna9b0XiIiIqWhxE7EB0XNLWnUyHuJiFQW330H27fr\nvOpIUmInEgYLF0K7dtCgQdCRiIhUHNdcA7VrwzvvBB1J5aHETqScsrJg0CDo2xeeeCLoaEREKo7n\nnvMWU0jkKLETKaf4ePjww8Jz6kREKrsWLYKOoPJRYicSBvm3JBEREQmKtjsRKaPs7KAjEBGJDrt3\nw8yZQUdROSixEymDtWuhc2dvI2ERETm0Z56BP/1Jx4xFghI7kTKoXh1SUjQEKyJSEkOHwrJl2jkg\nEqIqsTOz68xstZntMbP5ZlainXHM7DIzyzazN/yOUSqHI4+E55+HI44IOhIRkYqvTh1o0yboKCoH\nXxI7M5tiZr3DXOelwIPA3UA3YCnwgZklHua5VsB44JNwxiMiIiJS0fjVY9cA+MjMvjez282sWRjq\nHAlMds4975z7Frga2A1cWdwDZhYHvAjcBawOQwxSia1Zo002RUTKa8EC2Ls36Chily+JnXPuXKA5\n8G/gUmCNmb1nZheZWdXS1pfzTAowK18bDpgJnHCIR+8GfnHOPVvaNkUKevJJuPFG2Lcv6EhERKLT\nunVwwgnw2mtBRxK7fJtj55zb7Jyb6JzrChwPrAReADaY2UNm1q4U1SUC8cCmAuWbgCZFPWBmJwFX\nAMNLHbxIEe69F+bN8xZOiIhI6bVoAZ99Bn/+c9CRxC7fNyg2syTgVGAAkAW8C3QGlpnZaOfcQ+Wp\nHnBFtFkHL4n8H+dcqRZXjxw5knr16oWUDRw4kIEDB5YjTIkFZpCUFHQUIiLRrVevoCMIxtSpU5k6\ndWpI2bZt28LejnkjmmGu1Bs6PQevx2wA8CXwFPCSc25Hzj3nA8845w67+Dmnvt3Ahc65t/OVTwHq\nOefOL3B/VyADL5G0nOLc3sks4Gjn3OoCz3QH0tPT0+nevXvpvmGJWbt2eQdYi4iIhFtGRgYpKSkA\nKc65sOyM6tdQ7EbgSeBHoKdzrodz7vHcpC5HGvB7SSpzzmUC6UD/3DIzs5z3nxXxyHK8XsE/AF1z\nXm8Ds3O+Xlfab0gqn8xM6NMH7r476EhERGLP1q3www9BRxF7/BqKHQm86pwrdt2Lc+53ILkUdU4E\nnjOzdGBhThu1gCkAZvY8sN45d7tzbj+wLP/DZva716xbXppvRCqvKlXg2muha9egIxERiT1nneXt\nCfrmm0FHElv8Suzexku6QhI7MzsCOOCc217aCp1z03L2rPsrcCSwBDjNObc555bmwIFyRS2Sjxlc\nWexmOiIiUh6TJkGzcGyGJiH8SuxeBt4BJhUovwRv7t2ZZanUOTepiDpzr/U7zLNXlKVNERERCb9u\n3YKOIDb5NcfueLw5dAXNybkmUiHt3Qu33w7bS92nLCIiEjy/ErvqFN0bWBWo6VObIuX29dfw9NOw\nWueUiIhEhHPw3XdBRxE7/ErsFgJXFVF+Nd7qVpEKqUcP7+gwLZgQEYmMhx7y/u31YUu3SsmvOXZ3\nADNz9pPLPQasP3Ac3r52IhVWTfUpi4hEzKBBXmJXt27QkcQGv86KnYd3hus6vAUTZ+MdKdbFOTfX\njzZFymrPHtiyJegoREQqp8aNoXdvbycCKT/fjhRzzi0BLverfpFwufNOePtt+OYbqFo16GhERETK\nLhJnxdbEWzSRpyz72In4ZeRI74QJJXUiIsFav947kzs+PuhIopcvQ7FmVsvMHjWzX4CdwG8FXiIV\nRrNmcPbZQUchIlK5rV4Nycnw1ltBRxLd/FoVOx7oB1wD7AOGA3cDG4DBPrUpIiIiUSo5GZ5/Hk49\nNehIoptfid3ZwLXOudfxjvma65y7F7gdzbuTCmD0aPjww6CjEBGR/AYOhISEoKOIbn4ldkcAuVu8\nbs95D/Ap0NunNkVKZN8++Oor+OmnoCMREREJL78WT/wAtAZ+BL7F2/JkIV5P3u8+tSlSItWrw4wZ\nWlovIlJRZWbCjh1wxBGHv1dC+dVj9yyQu3f/P4DrzGwf8BDe/DuRQMXFKbETEamo+vXzdiyQ0vOl\nx84591C+r2eaWQcgBVjpnPvSjzZFDmfRIjjuuKCjEBGRw/l//w+aNg06iugU9h47M6tqZrPMrF1u\nmXPuR+fcG0rqJChpadCzJyxcGHQkIiJyOKefDl26BB1FdAp7YuecywT0xyEVSt++MHOml9yJiIjE\nKr/m2L0IDPOpbpFSM4P+/YOOQkRESmvbtqAjiC5+rYqtAlxpZqcCi4Fd+S86527yqV2RPD//DDVq\nQP36QUciIiJl8eijcP/98MMP3r/ncnh+JXbHAhk5X7cvcM351KZInv37oXt3GDIE/v73oKMREZGy\nOP10b8NinR1bcn6tik31o16RkqpWzTuaJiUl6EhERKSs2rb1XlJyfvXYiUTUvHmQlQW9851rcsop\nwcUjIiISBF8SOzNL4xBDrs65fn60K5XXPfd4O5T31oF1IiIxafduqFlTm8sfjl89dksKvK8K/AFv\n7t1zPrUpldjUqdCgQdBRiIiIH1at8rarevNNOPnkoKOp2PyaY1fkQSBmNhao40ebUnm88AJ89RWM\nG3ewrGHD4OIRERF/tWkDN90EyclBR1Lx+bWPXXFeBK6McJsSY3btgi1bIDs76EhERCQSzLxjxpo3\nDzqSii/Sid0JwN4ItylRbvfu0PdXXw3PPANxkf7bKyIiUsH5tXjijYJFQBLQA/ibH21KbHr6afjb\n3+Cbb6B27aCjERGRiiAzE6pWDTqKismvxRMFDwDJBr4D7nLOfehTmxKDUlNh+3b9DywiIp4//Qk6\ndIAJE4KOpGLya/HEFX7UK7HNOZg7N3TLkjZtYGSRS3FERKQyuuACaNYs6CgqLr+GYo8D4pxzCwqU\nHw9kOecW+9GuRLd33/V+E1u6FLp0CToaERGpiK7UEsxD8mv6+WNAiyLKm+VcEynkjDPgs8+U1ImI\niJSVX4ldJyCjiPIvcq5JJbdjB9x9N2zderAsLg5OOCG4mEREJLpo26vC/Ers9gFHFlGeBBzwqU2J\nIrt2weOPw4IFh79XRESkoGeegR49lNwV5Neq2A+Bv5vZuc65bQBmVh+4H/jIpzYlijRpAmvWeOf+\niYiIlFbnznDuubB/P9SoEXQ0FYdfPXa34M2x+9HM0swsDVgNNAFu9qlNqaB27YKzzoK33gotV1In\nIiJlddxx3pQeJXWh/Nru5Ccz6wJcDnQF9gDPAlOdc5l+tCkVV61a3tJ0/c8nIiLiL7+GYnHO7QKe\n8Kt+qbj27fOOAWvQwHtvBk/ob4KIiPjEOe9njfg0FGtmt5lZoZ1mzOxKMxvjR5tSMTgHffrAzRpw\nFxGRCFi1Co491jt6UvzrsRsB/LmI8m+Al4EHfGpXApD/NyUzuOsuSE4ONiYREakcWrSA449Xj10u\nvxK7JsDGIso34215IjHAOTjlFDjtNBg9+mD5mWcGF5OIiFQu1ap5W5+Ix69VseuAk4ooPwnY4FOb\n4qNdu+CNN7z5c7nMvNMiunYNLi4RERE5yK8euyeBf5pZVWB2Tll/YBzwoE9tio9WroQLL4RPPoGT\nTz5YfsstwcUkIiIiofxK7MYDDYFJQLWcsr3AA865v/vUpoTJs8/CrFnw4osHy7p0gR9+0Nw5ERGp\nmJyD4cOhY8fK3eng1z52DhhjZn8DOuLtY/e9c27foZ+USNu4EbKyoHnzg2V16kDdut4xLXE5g/Vm\nSupERKTiMvMWUjRqFHQkwfJtHzsA59xOYJGfbUjZOQcnnOAdyfLwwwfLL77Ye4mIiESTsWODjiB4\nfi2ewMyOM7NxZvaymb2R/1WOOq8zs9VmtsfM5pvZcYe493wzW2Rmv5nZTjP7wswGlbXtaLd6NQwZ\nAps3Hywzg2nTvO1JREREJPr5tUHxZcA8vGHY84GqQCegH7CtjHVeirfw4m6gG7AU+MDMEot55Ffg\nXqAX0BnvSLNnzezUsrQfTZwLTeDAO9ZryRJYvz60vGdPaNgwcrGJiIiIf/zqsbsdGOmcOxvYD9yI\nl+RNA9aWsc6RwGTn3PPOuW+Bq4HdQKETLgCcc584595yzn3nnFvtnHsE+BL4Yxnbjxp33OFt1ujc\nwbIjj4SlS6Fbt+DiEhERiYTXXoOLLgr9OVhZ+JXYHQXMyPl6P1A7Z0HFQ8BVpa0sZ9uUFGBWbllO\nfTOBE0pYR3+gPfBxaduvqJyDJ5+E2bNDyy+7DB59tHL+hRYREalTBxISYO/eoCOJPL8Su61AQs7X\nPwHH5nxdH6hVhvoSgXhgU4HyTXinXBTJzOqa2Q4z2w+8A9zgnJtd3P0VXVZWaLJm5m1NMmdO6H2d\nO3unP8T5NoNSRESk4jr9dO/nY82aQUcSeX6tip0LnAp8BbwKPGxm/XLKZh3qwVIy4FD9UjuArkAd\nvA2SHzKzH5xzn4Qxhoj48kvo1w8+/hiOOeZg+SefQBVf1zaLiIhItPArJbgeqJHz9X1AJnAi8Dre\ngobS2gJkAUcWKG9M4V68PDnDtT/kvP3SzDoBtwHFJnYjR46kXr16IWUDBw5k4MCBZQi7bFasgK+/\nhgsuOFjWvj1cc423v1x+SupEREQqvqlTpzJ16tSQsm3byrSe9JDMRclELDObDyxwzt2Y897wFmI8\n4pwbX8I6ngaSnXP9irjWHUhPT0+ne/fuYYy89O69FyZN8lawajhVRESkbH78Ea6/Hh5/HJo1Czqa\nwjIyMkhJSQFIcc5lhKPOaEobJgJXmdlgM+sAPI43X28KgJk9b2b3595sZrea2SlmlmxmHczsZmAQ\n8EIAsRfr0kvhn/8MLfvf//WO71JSJyIiUnZHHAHbt8PPPwcdSeREzUCec25azp51f8Ubkl0CnOac\ny92xrTlwIN8jtYHHcsr3AN8ClzvnXotc1AcdOACffeZtQ1K9+sHyDh2gadPQewsOt4qIiEjpJSR4\nc9Mrk6hJ7ACcc5OAScVc61fg/Z3AnZGIqyS+/hr69IGPPoJTTjlYfs89wcUkIiIisSWqErto1rUr\nLFoEAU/fExERkRjm6ywuM2trZqeZWc2c9+ZnexWZGfTooXlzIiIikeYc3Hkn/Oc/QUfiP7/Oim1o\nZjOBFcC7QFLOpafN7EE/2hQREREpipm3QrYyLKLwayj2IbyFDC2B5fnKX8Fb3XqzT+2KiIiIFPL8\n80FHEBl+JXYD8Fasri8w+vo90MqnNkVEREQqNb9mfNUGdhdRfgSwz6c2RURERCo1vxK7ucDgfO+d\nmcUBo4E0n9oUEREROaSZM+HWW4OOwj9+DcWOBmaZWQ+gGjAOOAavx+4kn9oUEREROaT162HhQti3\nL/TAgFjhS4+dc+5roD3wKfAW3tDsG0A359wqP9oUEREROZwhQ2D27NhM6sDHDYqdc9uA+/yqX0RE\nRKS0Yn1HXV8SOzPrUswlB+wF1jrntIhCREREJIz8WjyxBPgi57Uk3/slwLfANjN7zsxq+NS+iIiI\nSLE2boT//V/Yti3oSMLLr8TufLw9664CugJ/yPn6O+DPwDCgH3CvT+2LiIiIHNKbb8I33wQdRXj5\nNcfu/wE3Ouc+yFf2pZmtB/7mnOtpZruAB4FbfIpBREREpEhJSbB6NcTHBx1JePnVY9cZ+LGI8h9z\nroE3LJtUxD0iIiIivou1pA78S+y+BW41s2q5BWZWFbg15xpAM2CTT+2LiIiIVDp+DcVeB7wNrDez\nL/FWw3YB4oE/5dzTBpjkU/siIiIih+UcPPUUtGkD/fsHHU35+ZLYOec+M7PWwCC8jYoNeA34j3Nu\nR849L/jRtoiIiEhJmcFLL0Hv3krsDsk5txN43K/6RURERMLhww+hWrXD3xcNfEvsAMysE9AS77zY\nPM65t/1sV0RERKSkYiWpA/9OnmgDTMdbAets5YIvAAAgAElEQVTwhmLJ+Rq8uXYiIiIiEkZ+rYp9\nGFgNHAnsBo4BegOLgb4+tSkiIiJSZkuWwOTJQUdRPn4ldicAdznnNgPZQLZz7lPgNuARn9oUERER\nKbNZs+DhhyEzM+hIys6vxC4e2Jnz9Ragac7XPwJH+9SmiIiISJldfz189RVUrRp0JGXn1+KJr/H2\nrfsBWACMNrP9eOfF/uBTmyIiIiJlVr160BGUn1+J3b1A7Zyv7wL+C8wFfgUu9alNERERkUrNl6FY\n59wHzrk3cr5e6ZzrACQCjZ1zs/1oU0RERCQctm+Hf/4T9u0LOpLSC3tiZ2ZVzOyAmR2bv9w5t9U5\n54p7TkRERKQi2LgRbrsNFi0KOpLSC/tQrHPugJmtRXvViYiISBQ6+mgvuatfP+hISs+vVbH3Afeb\n2RE+1S8iIiLim2hM6sC/xRPXA22BDWb2I7Ar/0XnXHef2hURERGptPxK7N70qV4RERGRiHAOZs6E\nxo2ha9egoykZXxI759w9ftQrIiIiEinOwY03wumnw8SJQUdTMn712GFm9YGLgKOA8c65rWbWHdjk\nnPvJr3ZFREREwiEuDtLSvB67aOFLYmdmXYCZwDagNfAksBW4AGgJDPajXREREZFwOvLIoCMoHb9W\nxU4Epjjn2gF785W/C/T2qU0RERGRSs2vxO44YHIR5T8BTXxqU0RERMQXGzbAe+8FHcXh+ZXY7QPq\nFlHeHtjsU5siIiIivnjkERgxAg4cCDqSQ/MrsXsbuMvMqua8d2bWEngAeN2nNkVERER8MWYMfPUV\nVPFt2Wl4+JXY3QzUAX4BagIfAyuBHcD/86lNEREREV80aAD16gUdxeH5tY/dNuBUM/sj0AUvyctw\nzs30oz0RERER8W+7kxbOuXXOuU+BT/1oQ0RERCTSDhyAGTPg7LO9fe4qGr9CWmNmc8xseM5GxSIi\nIiJRLz0dzjsP5s0LOpKi+bndySLgbuBnM5tuZheaWXWf2hMRERHx3fHHw7JlcPLJQUdSNF8SO+dc\nhnNuFN4pE2cAW/BOn9hkZs/40aaIiIhIJHTsGHQExfN1dNh50pxz/wOcAqwGhvjZpoiIiEhl5Wti\nZ2YtzGy0mS3BG5rdBVxfjvquM7PVZrbHzOab2XGHuHe4mX1iZltzXh8d6n4RERGR0vjuO/jxx6Cj\nCOVLYmdmV5nZxxzsoZsGHOWc+6Nz7t9lrPNS4EG8eXvdgKXAB2aWWMwjfYD/AH2BXsA64EMzSypL\n+yIiIiK5srLglFNg4sSgIwnl1/7JdwIvAzc655aEqc6RwGTn3PMAZnY1cBZwJTCu4M3Oub/kf29m\nw4ELgf7Ai2GKSURERCqh+Hh4911o3z7oSEL5ldi1dM65oi6Y2bHOua9LU1nO0WQpwP25Zc45Z2Yz\ngRNKWE1toCqwtTRti4iIiBSlc+egIyjMr1WxIUmdmSXkDM8uxBtCLa1EIB7YVKB8E9CkhHU8APwE\n6PQLERERiUl+L57obWZTgI3ALcBsvPluYWsCKLJnsEActwKXAOc55/aHsX0RERGp5PbsgSXhmnhW\nTmEfis1ZnDAEGAbUxVs4UR0vqVpWxmq3AFnAkQXKG1O4F69gPLcAo4H+zrlvDtfQyJEjqVfglN+B\nAwcycODAUgUsIiIilcOYMTB9OqxZ4829K8rUqVOZOnVqSNm2bdvCHosVMxWubJWZvY23GnUG8BLw\nvnMuy8wyga7lSOwws/nAAufcjTnvDVgLPOKcG1/MM6OA24EBzrlFh6m/O5Cenp5O9+7dyxqmiIiI\nVDJr18L+/dC2bemey8jIICUlBSDFOZcRjljC3WN3JvAI8G/n3Pdhrnsi8JyZpQML8VbJ1gKmAJjZ\n88B659ztOe9HA38FBgJrzSy3t2+nc25XmGMTERGRSqply6AjOCjcc+xOBhKAxWa2wMyuN7NG4ajY\nOTcNuBkvWfsC6AKc5pzbnHNLc0IXUlyDtwr2NWBDvtfN4YhHREREpKIJa4+dc+5z4HMzuxG4DG+P\nuYl4CeSpZrbOObejHPVPAiYVc61fgffJZW1HREREpCy++irYbVD82u5kt3PuGefcH4HOeCdG3Ar8\nkjMPT0RERCSmzJ0LXbrAggXBxeDrdicAzrnvnHOj8YZKtbRUREREYtJJJ8GMGdCjR3Ax+HXyRCHO\nuSzgzZyXiIiISEyJi4Mzzww4hmCbFxEREZFwUWInIiIiEma//QZbAzidXomdiIiISBgdOOCtjB03\nLvJtR2yOnYiIiEhlUKUKPP00dOsWQNuRb1JEREQktp12WjDtaihWREREJEYosRMRERHxiXOwcWPk\n2lNiJyIiIuKT//s/6N8fsrMj057m2ImIiIj4ZNgwuOACMItMe0rsRERERHzSpUtk29NQrIiIiEiM\nUGInIiIiEgGROIlCiZ2IiIiIzz7+GJKS4Ntv/W1HiZ2IiIiIz3r1ggcfhGbN/G1HiydEREREfFa9\nOlx/vf/tqMdOREREJEaox05EREQkgg4c8F5+UI+diIiISIRkZsIxx8Cjj/pTv3rsRERERCKkalUY\nNQqOP95L8sJNPXYiIiIiETR8OHTu7E/dSuxEREREYoQSOxEREZEYocROREREJEYosRMRERGJEUrs\nRERERGKEEjsRERGRGKHETkRERCRGKLETERERiRFK7ERERERihBI7ERERkRihxE5EREQkRiixExER\nEYkRSuxEREREYoQSOxEREZEYocROREREJEYosRMRERGJEUrsRERERGKEEjsRERGRGKHETkRERCRG\nKLETERERiRFK7ERERERihBI7ERERkRihxE5EREQkRkRVYmdm15nZajPbY2bzzey4Q9zbycxey7k/\n28z+N5KxioiIiERa1CR2ZnYp8CBwN9ANWAp8YGaJxTxSC1gFjAE2RiRIERERkQBFTWIHjAQmO+ee\nd859C1wN7AauLOpm59xi59wY59w0YH8E4xQREREJRFQkdmZWFUgBZuWWOeccMBM4Iai4RERERCqS\nqEjsgEQgHthUoHwT0CTy4YiIiIhUPNGS2BXHABd0ECIiIiIVQZWgAyihLUAWcGSB8sYU7sUrl5Ej\nR1KvXr2QsoEDBzJw4MBwNiMiIiKVyNSpU5k6dWpI2bZt28LejnlT1So+M5sPLHDO3Zjz3oC1wCPO\nufGHeXY18JBz7pFD3NMdSE9PT6d79+5hjFxERESksIyMDFJSUgBSnHMZ4agzWnrsACYCz5lZOrAQ\nb5VsLWAKgJk9D6x3zt2e874q0AlvuLYa0MzMugI7nXOrIh++iIiIVDZbdm/hs3WfMW/tPAZ2Hsgf\nmvzB1/aiJrFzzk3L2bPur3hDskuA05xzm3NuaQ4cyPdIU+ALDs7BuyXn9THQLyJBi4iISKXhnOO7\nX79j3tp5XjK3bh7f/fodAE0TmtKreS8ldvk55yYBk4q51q/A+x+J/sUhIiKBcc7x7vfv4nAMOGoA\n1eKrBR2SSIV2wtMnsOCnBcRZHJ0bd6Z/cn/u6nMXJ7U4iZb1WuLNIvNXVCV2IiISWXek3cGSn5dw\nRM0juKTTJQzqMogTW5wYkR9QItHm1j/eSq2qtejVvBd1q9cNJAYldiIiUiQzY86QOazdtpaXvnqJ\n/3z1Hx5Pf5zk+sn8ufOfGdRlEB0SOwQdpogvsl02yzcvzxtS/WzdZywYvoAGNRsU+8x5Hc6LYIRF\nU2InIiLFqlejHp1rdOYfR/6D+/vfz9wf5/Lily/y6MJHuW/ufay+cTWt67cOOkyRcsvMysxL4uat\nm8fn6z7nt72/EW/xdG3SldPbns7eA3uDDvOwlNiJiFRCWdlZ/HfFf4mzOM4++uwSPRNncfRp3Yc+\nrfvwrzP/xdwf5yqpk5ixL2sf/Z7vR51qdTih+QmM7DWSk1qeRM9mPalTrU7Q4ZWYEjsRkUpk5/6d\nTFkyhYcXPMzKrSsZ3HVwiRO7/GpUqcGpR5162PuyXTZxpnVsEqys7Cw27txI87rNi72nTrU6LL9u\nOf+/vfMOj7LK/vjnUENogdCkCggI0hEQsIOuq4BKUQELCCK4q6C7ulhBXXtZKy4/sSBKsaxIsSKK\nighICaggShMpCSUCIZB6fn/ciZkMySQTMjPM5Hye530y8773ve95b+7MfN97zj23eY3mlC1TNoTW\nlSwm7AzDMEoBvx/8nReWv8CUlVM4lHaIQW0G8eblb9K9YXf/J377LVSpAu3bB3zN3Sm76TSlEwNb\nD+Tq9lfTvUF3m3RhhISU9BSW71jOkt88btXflxIXE8e28dv8ntcyvmWILAweJuwMwzCimKTDSdz2\nyW3M/nE2seVjuaHzDdzc7WaaxDXxf+K+ffDPf8Lrr0OlSjB7NvQLfGTv6nZXM+OHGby44kWa12jO\nsHbDGNZ+WFT8gBonFhv2bmDyisks2b6EhN0JZGkWcTFx9GzUkzt63kGvxr1Q1ah/uIiYJcWCjS0p\nZhhGNHI08yjnTTuPq067ius7XU/VilX9n6AKM2fC+PGQkQGPPgqffgpz5sCUKTBqVMA2ZGVnsXjb\nYt5c+ybv/vQuh9IP0bV+V0Z0HMHYrmOLeWeGkZflO5Yz9L2h9Grci16N3Na6dusTOhQgGEuKmbDz\nYMLOMIxSz9atMHYsfPwxXHEFPPss1KsHWVlwyy0weTJMmgT33QfFHPU4knGE+Rvn8+a6NykrZfnf\nlf/zW3ZawjS/9fVv1Z/6VesXePyHpB/45rdv8j1WoWwFBrYeSPWY6kUz3ggLB9MO8t3v3xFbPpYz\nG58ZbnNKlNK+VqxhGIYRDDIz4bnn4N57IT4e5s2Dvn1zj5ctCy+8AA0bwl13wY4dTuSVC/wnpFL5\nSgw+bTCDTxtMtmb7LZuSnsLfP/y73zKta7X2K+y+3vY1N390c77HsjSLF1e8yIobVpzQozqlCVVl\n24Ftf8bGfbv9W9YlrSNbs7nytCujTtgFAxN2hmEYwSI9He68E5Yvh+uvhyFDICamxKrfnLyZh756\niKvaXlWkGar5sno13HADrFoFN98M//43VM3HXSvi7qV+fRg5EhITncs2NrbY9hcmpmpXrk3mfZl+\nyxTG2K5jC3T3btq/iV/3/2qi7gRh8orJPPT1Q+w8tBNwExl6NerFzd1uplfjXrSKbxVmCyMDE3aG\nYRjBYPt2585cuRJ69XLCbsIE5+ocOxbq1i121TmCblrCNGrF1uKSlpcEXklqqnOrPv00tGkD330H\n3boVft511znbBw2CPn3c6F58fODXPwFoXrM5zWs2D7cZhodG1RpxdTu3ZF3PRj2pXbl2uE2KSOwx\nxTAMo6RZuBA6d3Yuy2++gS++gJ9/hsGD4YknoHFjGD4c1qwJqNotyVsYNXcUrV5oxYJfFvDEBU+w\nedxmBrQeEJh9n30Gbds69+uDDzrxWRRRl8NFF7l7+vVXJ1q3bg3s+kapQFXZnLyZ6QnTGTN/TIGx\njjn0a9WPxy54jEtPvdRE3XFgws4wDKOkyM6Ghx6CCy+ETp2cezNHMLVs6eLUfv/dlfniC1fmvPPg\ngw/cBIUC2J2ym1FzR9HyhZbM3zifx/s8zuZxm7m1x63Elg/AFbp3L1x7rbOvaVNYt865V8uXD/xe\nu3Z1Oe4yMqBnT0hICLwOI6pIz0pn2e/LeHrp0wx8eyD1n65P8+eac+2ca/lq21fsObwn3CaWCswV\naxiGURIkJ8M118CCBW7W6H33uUkHvtSo4fLDjR8P778PzzwDl10GzZu7macjRuQb4/b5ls95rM9j\njDl9TGBiDlwKkzffhFtvdeLztdecS/V483mdcooTd5dcAmef7e7n/POPr84TiI37NtKsRjPKlbGf\nyqJw9mtns2zHMmLKxdCtQTeGdxhOr8a96NGwB/Gxkemuj0Qs3YkHS3diGEaxWbXKxZz98YcTUBdf\nHNj5y5e71CJvv+0mI4wc6SYyNG36Z5FiL821eTOMGePcr0OGOCFZp07g9fgjJcXd/6JF8MYbcNVV\nJVt/GDiaeZRTnjuFU2qewqxBs6hXpV64TQorRUnsu2jLIiqXr0ynkzpRoWyFEFkW2QQj3Ym5Yg3D\nMI6HV15xrsiaNZ3AC1TUgXPXvvUWbNkCf/sbTJvmRsMGDoSvvwbVwEVdZqaL52vb1sX3LVgAM2aU\nvKgDt+TYvHlOOA4ZAv/5T8lfI8TElIth5sCZbNy3kU5TOrF46+JwmxRS0jLT+Hb7tzyx5Akum3UZ\ndZ+sy46DO/yec37T8+nesLuJujBjws6IGo5mHiUru+A4JYABswcw+J3BTPl+Cpv2bwqRZUZUcuSI\nW4Vh1Cjn1vzmGzj55GJVte2PbWw/sN3liXv4YTej9qWXYP165+I8/XSYPt2lTykKOZMhJkxwo3U/\n/lg8wRkI5cu75ccmTIDbbnPu5mz/eepOdM5qcharblzFqbVOpfcbvXl8yeNEq5crIyuDBRsXcMdn\nd9Dr1V5Ue7QavV7txcQvJ3Ig7QCju4y2tDCRgqra5j6onQFduXKlGpFDVnaWLt66WEd9MEqrP1Jd\nP/31U7/lH1z8oPZ8paeWvb+sMglt+kxTvWHuDTr7h9m65/CeEFkduWRnZ4fbhBODTZtUO3VSjYlR\nfe21YlezNXmrjp47Wss/UF7HzBtzbIHsbNWPP1a96CJVUK1XT/XBB1WTkvKvMCVF9bbbVMuUUe3Q\nQXX58mLbdlw8/7yqiOqQIappaeGxoQTJyMrQOxfeqUxC+8/sr8lHksNtUomTmp6qlf5dSes/VV8H\nvz1Yn1n6jK7YsULTM9PDbVpUs3LlSgUU6KwlpWdKqqJI30zYRRY/Jf2kdy28S5v8p4kyCT35mZP1\nns/v0W1/bCvS+QeOHtC5G+bqLR/eom1ebKNMQpmEfrjxwyBbfuKSlpmma3ev9Vtm8vLJeuH0C/Wb\nbd+EyKoTkHnzVOPiVJs3V129ulhVeAu6Wo/X0se/eVxT0lL8n/TTT6pjxqhWqqRasaLqyJGqa73+\nXx9/rHryyU5sPvaYanqYf5DfecfZ2bu36oED4bXFm8xM1a+/Vv3nP1W7d1e97z7V/fuLdOrcDXM1\n7tE4bfZsM01MSQyyoaHn9wO/28NbiDFhZ8Ku1DM9Ybp2mdJFmYTGPRqno+eO1q+3fX3cX0Y7Du7Q\nN9a8oftS95WQpZFDwu4EHf/ReK31eC2Nfyze7xP6go0LtO3ktsoktPe03rp46+IQWhpmMjNV777b\nfW3276+aHPiozdbkrXrjvBsDE3S+7N2r+sgjqg0aOFv69FG94orc17/+GrBdQWPxYtXq1VU7dlTd\nuTN8dhw+rDpnjuqIEaq1a7u2qltX9bLLnFCuVk31nntc2xbCpv2b9N5F90aMAEo+kqyzf5itY+eP\n1azsrHCbY/hgws6EXannwcUP6mWzLtP3fnpPj2YcDfn1p66cqi8se0E37NkQMV/s+bEvdZ8+v+x5\n7TylszIJrfNEHf3HJ//QdYnrCj03KztL3/3xXW3/UntlEnru6+fqos2LIro9CiUpyY08lSmj+uij\nqlmB/0DuOLhDKzxY4U9Bdyjt0PHZlJ6uOnOmarduzkU7bZpz3Z5orFvnROjJJ6tu2BC66+7erTp1\nqmq/fm4UE1Rbt1adMEF16dLc/+Hu3W70LjZWtUoV1TvvVN0TuWEZ2dnZumHPBn1yyZN67uvnarkH\nyimT0HaT2+mOgzvCbZ7hQzCEnaU78WDpToyiMHzOcGasm0FGdgYNqzWkT7M+9Gnah97NekdEOoSU\n9BRGzh3JnA1zyNZsLmlxCSM6juDiFhdTvmxgSWqzNZt5P8/j/sX3s3r3as5qfBZvDXiLRtUbBcn6\nMPHdd27FiPR0mDXLJRQuJu/99B5/OeUvVKlQpQQNjAC2b3erVSQmwvz5cMYZwbnOhg0u2fPcubB0\nqcvT16sX9O8Pl14KLVoUfG5Sklte7YUX3PubbnITQIIxizgIpGakctfndzF/43w2JW8iplwM5zc9\nn74t+nJJy0toXL1xuE00MjPhhx9ceqNly2DZMlbddBNd/vY3KMF0JybsPJiwCz8/JP1ARlYGnU7q\nFG5T/JKSnsLX275m4eaFfLb5M9YlrQOgbZ22PNbnMS5uEeTZh8eBqjL4ncH0bNSTq9tfTZ3Kx/+j\npaos+GUBL696mbcHvU3FchVLwNITAFV48UU3w7NrV5djrkGDcFsVuSQnO3H1/feuLfv2Pf46s7Kc\ngJs71wm6jRtdHsALL3TXuuQSqB3g0lR797p0Lc8/736Ix46F22+Heif2g5uq0uOVHnSs15G+Lfty\nftPzA09kbZQcqvDbb3lEHCtXutn0ZctCu3bQrRurzjmHLsOGgQm7kseEXXjYdWgXM9bNYPra6SQk\nJjCozSDeGfxOuM0KiN0pu1m0ZRELNy9kdJfRnNGw4NGINbvX8OEvH1K/an0aVG1Ag2oNqF+1PtUr\nVi80+acRQlJSYPRomDkTxo1z+eD8LLuVkZXBgl8W0K1BN+pXrR9CQyOMo0dh2DCYMwemTHGpYgIl\nNdUlW/7gAzf6t2cP1K0L/fo5Mde7N1SqdPy27t/vkjk/+6wbrb3xRrjjDqjv//97OP0wFcpWCHgE\n3IhwDhyAFSucgMsRc4mJ7liTJi79UPfu7m/nzlC5MhCcBMUm7DwEW9glpiRy2ezLqBVbi9qxtfP+\nrez+tq/bvlQ8YaWkp/D++veZvnY6n2/5nPJlytOvVT+uaX8NF51yUVQnt5yxbga3fHQL+47sy7M/\ntnwsDao2oEV8CxYMXVCsulWVr7Z9RaeTOlGtYrWSMLd0sm6dWzlh2zaXfPjKKwssumHvBl5d/Spv\nJLxB4uFEpvSdwuguo0NobASSleWWTps8Ge6/H+69t/ClzZKSXALkuXOdqDtyBFq3znWxdu8OZYKU\nYy05GZ57zom8I0fghhvgX/9yOQfz4ap3r2LnoZ3MGjTruEX+4fTDfL7lcxZsXMDnWz4nYUwClStU\nPq46jRIgIwPWrs0r4jZscMeqVcsr4rp18zvaGwxhZwvghYhszaZ1rdbsTd3L+r3r2Zu6lz2H93Ag\n7cCfZdaOWUu7uu0KrGPJb0tYs3tNHjFYO7Y28bHxESOGPvn1Ewa8PYDUjFTObnI2U/pOYVCbQcTF\nxIXbtJAwtN1QhrYbytHMo+w6tIsdh3aw4+AOdh7ayY5DO8jMziy0juFzhrMndY8b8avqRvx2p+zm\n9YTX2Zy8mWmXTePaDteG4G4CY8lvS9iTuof+rfqfmIlOVZ377Y47XCzW8uXQps0xxVLSU3jnx3d4\nZfUrLNm+hJqVanJN+2sY2Wmk38+v4aFsWRfH1qAB3H037NjhXN7lfH6ONmzIdbHmxMv17AkPPFB4\nvFxJUqMGTJzo1vZ9/nkXh/d//+eWfZswARrnjV37e7e/c+W7V9J5SmdmDZrFuSefG9Dltv6xlQUb\nF7DglwUs2rKItKw0WtRsQf9W/UnNSDVhF2pU3Yow3i7V1avd6HO5ctChg4u7nTDBibmWLYP3kFFE\nbMTOQ7hcselZ6exL3cfe1L20iG9BTLmYAsve/+X9/Pvrf+f741+9YnXObHwm84fO93u97Qe2U61i\nNapVrBYW11/S4SSmrprKsHbDaBLXJOTXjwbuXXQvCYkJf4rBxJREYsvHMvi0wYzoOIKzGp91Qrp1\nx388nmeXPUv7uu257+z7uLz15SeOwEtKghEj4MMP3WjSY49BzLGfxf9+/19u/+x2Dqcfpk+zPozs\nNJLLTr0seuIKQ83rrzt37CWXuCXVEhKckMuJl6tUCf7yFzcy17dv4PFyweDgQSdEn3rKvb7+evej\n7rXqSGJKIkP/N5Qvt37JQ+c/xB297ii0rx/NPEq3l7uxLmkd5cqU4+wmZ/858aFlfMsg35TxJ8nJ\nuSJu+XK37dnjjjVrlnc0rlOn43b7mys2iERKjJ2qcjDtIHtS9/w56rc3dS97U/dSrWI1bjz9Rr/n\n13uyHomHEylfpjy1YmsdM/o3pO0QejXuFaK7MUqCzOxMsrKzIkJcfLXtKx786kEWbl5IsxrNaFaj\nGfGV4omvFM91Ha+jW4NuoTfqo49g+HD3+rXX/C699cWWL1i8bTEjOo6wB5OS4qOPYNAg597KyHCz\nUHPi5fr0KZl4uWCQkuLcyU8+6cTA8OFw553uxx/Iys5i4pcTeejrh+jXsh/TLptGjUo1/FY58YuJ\ntKvbjguaXUD1mOohuIlSTlqae5jwdqn+8os7VqPGsS7VIDxYmLALIpEi7I6XL7d+SWJKohOFqbmi\nMOf13WfdzRWnXVHg+Uu3L+W2T2/LN04wPSud1btW81Lfl0J4R0Yk8u32b5mxbgZJh5PYd2Qf+1L3\n8eB5D9KvVb8Cz/l006eM+3gc8ZXiqVmpJvGx8X+KwvjYeGrF1mJA6wF+r7tixwp2p+x2bzLSYdo0\nmDvPBTOPH0/9Rm3oUr9LSd6qURRWr3ajpeef735Ay5YNt0VF5/Bh+O9/4fHHYd8+uPZauOsuOOUU\nABZsXMA1719DXEwc84bM47Q6p4XZ4FKKKvz6a16X6po1bmJMhQrQsWOukOve3f3/QuD5MGEXREqL\nsDteEnYn8OyyZ/OIwZxYQUE4r+l5zL1qrsWBGCXO2sS1vL7m9T+FoPff5CPJiAhZ92X5rWPA7AG8\nv+H9Ao9fedqVzBo0q6RNN0oDqaku9u6xx5xrf9gwuOceaNmSrX9s5eaPbublfi9HRL7LqGDv3mNd\nqvv3u2MtWuQVcR06QMXweDxM2AURE3bHR3pWOmmZaVStWDXcphilkKzsLA6kHaBmpZp+y/1xJJm0\nV6bAxEkuBcFLL8FpuSMoFctVLDUTeYwgceQITJ0Kjz4Ku3e7Gdb33ONm8RrB4ehRN+rr7VLdvNkd\ni4/PFXA5LtWa/r8nQonNijVOWCqUrRAxM3ON6KNsmbKFijr27CFu5EiXNuOmm1xs1Ikav2VELpUq\nwc03u7Qor74KjzziHh6uuMJNzDn9dPJ0uZMAABUCSURBVOf6M4pHdrabWOPtUk1IcMmkK1Z0YRX9\n+uWKuaZNQ+JSPZEwYWcYRvTz2Wcu9ikjw8247N8/3BYZ0U5MjHuAGDnSzf59+GGYPduJjy5doEeP\n3K2QpMelmsTEY12qBzxpwk491Y3AXX+9E3Ht2ploxoSdYRjRTFqay5X21FNwwQVussRJJ4XbKqM0\nUbGiW7Xi+uudu3DpUre9847rl+By4Z1xRq7Q69SpdAqU1FRYtSqvS3XbNnesTh0n3m6/3Ym5rl0h\nzsIm8sOEnWEYoWfnThcD06SJS1QbjISeGzbAkCHw44/uB3T8+LAnDjVKMeXL58Z4jRvn9u3c6UTe\nd9+5vxMmuIeRnFE9b7EXbesUZ2fD+vV5Xarr1rmVSSpVcvc/cGCuS7Vx41LnUi0uJuwMwwguBw+6\nxa9z3CjLlrnVBnKoVMnNUmvZMnfLeR8fH/iXuSq8/LITco0bu+t16lSy92QYJUH9+k68DBzo3qen\nuxQcOaN6773nVroAaNQoV+SdcYbr02GayVksdu7M61JdsQIOHXKf7zZtnOAdM8b9bdvW79rMhn9s\nVqwHmxVrHDfr1ztX37JlboHnatWgalW3FfV1pLtfMjLcU7e3iFu/3omtKlWc+yQnzUCLFvDbby4Q\n2nvbvj23vho18go+b+FXOZ+UOvv2uaD199+H0aPdj2J+5QwjUti5M3dEb+lS+P773FG9zp3zir0C\n1q8NOSkp7mHO26X6++/u2Ekn5Z2levrp7ruvlGLpToKICTujWOzfD7NmueDoFSucEOnd2z15Hzrk\nRqsOHcp9ffiw//oqVAhMCOa8rl7dxZvExTkbKlcOvttC1blTvUWc9xqK7dvnTTHQqlXREs+mprpE\nohs3uizw3qJv797ccg0a5B3pq1ED7rsvN93E5ZcH794NI1ykp7tZoDlCb+nS3Di0hg3zTsoIxahe\nVpYLd/B2qf74o3O1Vq7shJt3zrgGDcyl6oUJuyBiws4oMhkZ8PHHbnRu3jz3xXbxxXDddW49S39f\npFlZTtz5Cr6ivvbed+iQE1f5UbZsrtDLEXv+3vvui4k59st3zx4nXnOE3PLlboQMoHnzvCKuY8fg\npBLZv/9YsZezpaa6xbinT4++eCTD8MeuXXlj9b7/3j1gVaiQd1SvR4/jG9VTdSNv3iJu5Ur3nVam\njHOhei/D1aaNe8gzCsSEXRAxYWcUSkKCG5mbMcNllu/QwYm5oUOhbt3Q25Od7cTMoUNu+v8ffxy7\nJScXvC852eV+yo8KFfKKvaQk2LLFHatVK6+I69rVxcKFE1UnMosTk2cY0UZho3rekzI6dy74YfTg\nQScSvV2qu3bl1uPtUu3SxYVbGAFhwi6ImLAz8iUpCd56y43OJSS4KffDhjlB16FDuK07PlSd27Io\nAjAuLlfInXyyiSfDiDR27To2Vs93VK97d/eZzxmNy4mPrVo1b3xst26We6+EMGEXREzYGX+Slgbz\n57vRuY8+cm7Nfv2cmLvoIputZRhG5JMzquct9rZudd937drlHY079dSixccaAWNLikUyo0a5dQNz\nAt6rVSva66pV7QMVClRd/Ni0aTBzphul6toVnnvOrfV4Aq0taBiGcdxUqOC+47p2dUuggfNQVKkC\nsbHhtc04LkzYhYoaNdyMvt27XaB3TiD8wYMuTsofsbFFF4L+XodipmSksWMHvPmmE3Tr1zv3wujR\nbnTOFu02DKM0UadOuC0wSgATdqHiiScKPpaZ6fL+eM98LMrrbduO3Z+WVvB1RPKOBB6PWMxv1mSk\nkJoKc+Y4MbdwoXtyHTAAnnnGpSqxEVLDMAwjQokoYScifwP+CdQDEoCbVXWFn/KDgQeAk4GNwARV\n/SgEpgZGuXK5aSaOl7S0vCkyfNNkFCQUd+8+Zv/MrCyG+LPZV+xVrepGBStXdqOMOZv3+6Icq1ix\n5EWjKixZ4uLm3nnH3eOZZ8KUKTB4sMsDVwgzZ85kyJACW6TUYe2RF2uPXKwt8mLtkRdrj+ASMcJO\nRK4EngJGA8uBW4FPRKSlqu7Np3wPYAbwL2ABMBSYIyKdVPWn0FkeYipWdFutWsdXjyoz+/ZlyKuv\nBjaSmJrq8p2lpuZuhw/nvi4KIsUThPm9j4mBL76AN96ATZvc2qTjx8O117rcawFgX0Z5sfbIi7VH\nLtYWebH2yIu1R3CJGGGHE3JTVPUNABEZA1wCXA88nk/5ccBHqupZaI+JInIh8HfgphDYG9mIOJdk\n3boll6MtJ71GfoLP931Br3PytiUm5l/u6NFjr1u5shuVmzoVzj7bFoI3DMMwopaIEHYiUh7oAjyc\ns09VVUQWAj0KOK0HboTPm0+AS4NipFE4OSNxwZxxlZ2dKx5zRF+TJrZeqGEYhlEqiAhhB9QCygKJ\nPvsTgVYFnFOvgPL1StY044SiTJncOL/atcNtjWEYhmGElEgRdgUhQCAZlv2VjwFYv3798doUNRw4\ncIBVq0okX2JUYO2RF2uPvFh75GJtkRdrj7xYe+TipTliSqrOiFh5wuOKTQUGqupcr/2vA9VV9fJ8\nztkGPKWqz3ntmwRcqqqd8ik/FHir5K03DMMwDMPwyzBVnVESFUXEiJ2qZojISqA3MBdARMTz/rkC\nTluaz/ELPPvz4xNgGLAVyCcC3zAMwzAMo0SJwaVk+6SkKoyIETsAEbkCmAbcSG66k0HAqaq6R0Te\nAH5X1bs85XsAi4EJuHQnQzyvO0d1uhPDMAzDMEotETFiB6Cqb4tILVzC4brAGuAvqrrHU6QhkOlV\nfqmIDAEe8my/4NywJuoMwzAMw4hKImbEzjAMwzAMw/CPZWo1DMMwDMOIEkzYGYZhGIZhRAmlQtiJ\nyJ0islxEDopIooi8LyItCznnOhHJFpEsz99sESniYqcnNiIyRkQSROSAZ/tWRC4q5JzBIrJeRI54\nzv1rqOwNNoG2RzT3DV88n51sEXm6kHJR2z+8KUp7RHP/EJGJXveUs/mNW47mvhFoe0Rz38hBROqL\nyHQR2SsiqZ7/eedCzjlXRFaKyFER2Sgi14XK3mATaHuIyDn59KksEalT1GuWCmEHnAU8D3QH+gDl\ngU9FpFIh5x3ArVSRszUJppEhZDvwL9wybV2ARcAHItI6v8KeGcYzgJeBjsAcYI6ItAmNuUEnoPbw\nEK19409EpCtwA5BQSLlo7x9A0dvDQzT3jx9wE9hy7u3MggqWkr5R5PbwELV9Q0TigCVAGvAXoDXw\nDyDZzzknA/OBz4EOwLPAVBG5IMjmBp3itIcHBVqQ20dOUtWkIl9YVUvdhluiLBs400+Z64D94bY1\nhG2yDxhRwLFZwFyffUuByeG2O0ztEfV9A6gC/AycD3wBPO2nbNT3jwDbI2r7BzARWBVA+ajuG8Vo\nj6jtG577exRYHOA5jwFrffbNBD4M9/2EqT3OAbKAasW9bmkZsfMlDqeI9xdSroqIbBWR30Qk2p4y\nARCRMiJyFRBLwcmbewALffZ94tkfVRSxPSD6+8aLwDxVXVSEsqWhfwTSHhDd/aOFiOwQkU0i8qaI\nNPJTtjT0jUDaA6K7b/QDvheRt8WFPa0SkVGFnHMG0dtHitMe4JY/XSMiO0XkUxHpGchFS52wExEB\nngG+Uf857X4Grgf641akKAN8KyINgm9l8BGRtiJyCDdEPBm4XFU3FFC8HpDosy/Rsz8qCLA9or1v\nXIVzm91ZxFOiun8Uoz2iuX98BwzHuZXGAE2Br0SkcgHlo7pvEHh7RHPfAGgGjMXd54XAf4HnRORq\nP+cU1EeqiUjFoFgZOorTHrtwCzEMBAbgQoW+FJGORb1oxCQoLkEmA22AXv4Kqep3uA8tACKyFFgP\njMYNv0c6G3DxDHG4DvSGiJztR8z4IrhRz2ihyO0RzX1DRBriHnwuUNWM46mKKOgfxWmPaO4fquq9\n7NEPIrIc2AZcAbxWxGqiom9A4O0RzX3DQxlguare63mfICKn4cTNmwHUI56/kd5PAm4PVd0IbPTa\n9Z2INMettlWkSSWlasRORF4ALgbOVdVdgZyrqpnAauCUYNgWalQ1U1U3q+oqVb0bFxA+roDiu3HB\nwd7U4dinrIglwPY45lyip290AWoDK0UkQ0QycDEf40Qk3TPi7Us094/itEceoqx/5EFVD+B+hAq6\nt2juG8dQhPbwLR9tfWMXTqh6sx5o7OecgvrIQVVNL0HbwkFx2iM/lhNAHyk1ws4j6i4FzlPV34px\nfhmgLe4fFY2UAQoa9l4K9PbZdwH+Y9AiHX/tkYco6xsLgXY412MHz/Y97umyg3qie32I5v5RnPbI\nQ5T1jzyISBWgOQXfWzT3jWMoQnv4lo+2vrEEaOWzrxVuFLMg8usjFxIdfaQ47ZEfHQmkj4R71kiI\nZqZMxk0vPgv3ZJCzxXiVmQY87PX+XtwXUFOgE26WzmHg1HDfTwm0x0O4KflNcF8qj+DW2T3fc/wN\nn7boAaQDt3k65STgKNAm3PcSpvaI2r5RQPvkmQWaz2clqvtHMdojavsH8ARwtuez0hP4DDf6Fu85\nXtq+OwJtj6jtG577Ox0Xp3wnTuAOBQ4BV3mVeRiY5vX+ZCAFNzu2FXCTp8/0Cff9hKk9xuFiMJsD\np+FCQTJwnsYiXbe0xNiNwfnqv/TZPwL3wQNohJtinEMN4P9wgZ3JwEqghxY9Bu1Epi7uvk/C5VRa\nC1youTP+GuKEDQCqulREhuAE0EPAL8Cl6n/ySSQRUHsQ3X0jP3xHpfJ8VkpB//DFb3sQ3f2jIS4v\nXTywB/gGOENV93kdL03fHQG1B9HdN1DV70Xkclyaj3uBLcA4VZ3lVewk3Gcm55ytInIJ8DRwC/A7\nMFJVfWfKRhzFaQ+gAvAUUB9Ixf0e9VbVr4p6XfEoRMMwDMMwDCPCKTUxdoZhGIZhGNGOCTvDMAzD\nMIwowYSdYRiGYRhGlGDCzjAMwzAMI0owYWcYhmEYhhElmLAzDMMwDMOIEkzYGYZhGIZhRAkm7AzD\nMAzDMKIEE3aGYRiGYRhRggk7wzCMEkZERovIbyKSKSK3hNsewzBKD7akmGEYRUZEXgOqq+qAcNty\noiIiVYG9wHjgPeCgqh4Nr1WGYZQWyoXbAMMwjCijCe679UNVTcqvgIiUU9XM/I4ZhmEcD+aKNQyj\nxBCRRiLygYgcEpEDIjJbROr4lLlHRBI9x18WkUdEZLWfOs8RkWwRuVBEVolIqogsFJHaIvJXEfnJ\nU9dbIhLjdZ6IyJ0istlzzmoRGeh1vIyITPU6vsHXbSoir4nI+yLyDxHZKSJ7ReQFESlbgK3XAWs9\nb7eISJaINBaRiZ7rjxSRzcDRotjoKXOxiPzsOf65iFznaY9qnuMTfdtPRMaJyBaffaM8bXXE83es\n17EmnjovF5FFInJYRNaIyBk+dfQSkS88x/eLyEciUl1ErvG0TXmf8h+IyOv5/2cNwwgGJuwMwyhJ\nPgDigLOAPkBzYFbOQREZBtwF3A50AX4DxgJFiQmZCNwE9AAaA28DtwBXARcDFwI3e5W/C7gaGA20\nAf4DTBeRszzHywDbgUFAa+B+4CERGeRz3fOAZsC5wLXAcM+WH7M89w1wOnAS8Lvn/SnAAOByoGNR\nbBSRRjh37gdAB2Aq8CjHtld+7ffnPk+7TwLuBE71XPcBEbnG55x/A497rrURmCEiZTx1dAQWAj8A\nZwC9gHlAWeAdXHv297pmbeAi4NV8bDMMI1ioqm222WZbkTbgNeB/BRy7AEgH6nvtaw1kA10875cC\nz/qc9zWwys81zwGygHO99v3Ls6+J176XcO5PgApACtDdp66XgTf9XOt54G2f+92MJx7Zs282MMNP\nHR08tjX22jcRN0pX02tfoTYCDwPrfI4/4qm/mlfdq3zKjAM2e73/BbjSp8zdwBLP6yae/9Nwn/9d\nFtDS8/4t4Cs/9/0iMN/r/W3AL+Hus7bZVto2i7EzDKOkOBXYrqo7c3ao6noR+QMnElYCrXACwJvl\nuFGxwljn9ToRSFXVbT77unpenwLEAp+JiHiVKQ/86bYUkb8BI3AjgJVwYsvXLfyjqnqPiO0C2hbB\nXl+2qep+r/f+bFzleX0qsMynnqWBXFREYnEjp6+IyFSvQ2WBP3yKe7fxLkCAOrjRu464UdKCeBlY\nLiInqeou4DqcMDYMI4SYsDMMo6QQ8ncJ+u73LSMUjQyfOjJ8jiu54SVVPH8vBnb6lEsDEJGrgCeA\nW4HvgEPAHUA3P9f1vU4gHPZ5X6iNFNym3mRzbBt6x7rlXGcUTkR7k+Xz3reNIfdej/gzQlXXiMha\n4FoR+QznWp7m7xzDMEoeE3aGYZQUPwGNRaSBqu4AEJE2QHXPMYCfccLpLa/zTg+SLWk4V+03BZTp\niXNFTsnZISLNg2BLQRTFxp+Afj77evi83wPU89nXKeeFqiaJyA6guarOomAKE5Brgd64WMSCmIoT\nyg2BhTn9wDCM0GHCzjCMQIkTkQ4++/ap6kIRWQe8JSK34kaNXgS+UNUc9+bzwMsishL4FjfxoT2w\nqZBrFnVUDwBVTRGRJ4H/eGawfoMTmL2AA6o6HRd3do2IXAhsAa7BuXI3B3Kt4tpbRBv/C9wmIo/j\nRNPpOBenN18CL4jIHcC7wF9xkxYOeJWZBDwrIgeBj4GKnrriVPWZItr8CLBWRF702JWBm1DytpeL\n+S3gSdzooO/EDMMwQoDNijUMI1DOwcWAeW/3eY5dCiQDi4FPgV9x4g0AVZ2BmxDwBC7mrgnwOp70\nH34IOJO6qt4LPABMwI18fYRze+akAZkC/A83k/U7oCbHxv8VlyLZW5iNqrodGIhr1zW42bN3+tSx\nATdb+CZPmdNx7etd5hWc2BqBG3n7EicQvVOi+J1Zq6q/4GYet8fF/S3BzYLN9CpzCDeLNwU3k9cw\njBBjK08YhhFWRORTYJeq+o5EGfkgIucAi4Aaqnow3Pb4IiILcTN5bw23LYZRGjFXrGEYIUNEKgFj\ngE9wQf9DcHFbffydZxxDQK7pUCAicbjZzefgchMahhEGTNgZhhFKFOdqvBsX5/UzMEBVvwirVZHH\niehqWY1LTn2Hx21rGEYYMFesYRiGYRhGlGCTJwzDMAzDMKIEE3aGYRiGYRhRggk7wzAMwzCMKMGE\nnWEYhmEYRpRgws4wDMMwDCNKMGFnGIZhGIYRJZiwMwzDMAzDiBJM2BmGYRiGYUQJ/w8ZENEx6Cfl\nKAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from __future__ import division\n", + "import matplotlib.pyplot as plt\n", + "import copy\n", + "import multiprocessing\n", + "import numpy as np\n", + "\n", + "\n", + "def compute_accuracies(model, freq):\n", + " # mean_freq will contain analogies together with the mean frequency of 4 words involved\n", + " mean_freq = {}\n", + " with open(word_analogies_file, 'r') as r:\n", + " for i, line in enumerate(r):\n", + " if ':' not in line:\n", + " analogy = tuple(line.split())\n", + " else:\n", + " continue\n", + " try:\n", + " mfreq = sum([int(freq[x.lower()]) for x in analogy])/4\n", + " mean_freq['a%d'%i] = [analogy, mfreq]\n", + " except KeyError:\n", + " continue\n", + " \n", + " # compute model's accuracy\n", + " model = Word2Vec.load_word2vec_format(model)\n", + " acc = model.accuracy(word_analogies_file)\n", + " \n", + " sem_correct = [acc[i]['correct'] for i in range(5)]\n", + " sem_total = [acc[i]['correct'] + acc[i]['incorrect'] for i in range(5)]\n", + " syn_correct = [acc[i]['correct'] for i in range(5, len(acc)-1)]\n", + " syn_total = [acc[i]['correct'] + acc[i]['incorrect'] for i in range(5, len(acc)-1)]\n", + " total_correct = sem_correct + syn_correct\n", + " total_total = sem_total + syn_total\n", + "\n", + " sem_x, sem_y = calc_axis(sem_correct, sem_total, mean_freq)\n", + " syn_x, syn_y = calc_axis(syn_correct, syn_total, mean_freq)\n", + " total_x, total_y = calc_axis(total_correct, total_total, mean_freq)\n", + " return ((sem_x, sem_y), (syn_x, syn_y), (total_x, total_y))\n", + "\n", + "def calc_axis(correct, total, mean_freq):\n", + " # make flat lists\n", + " correct_analogies = []\n", + " for i in range(len(correct)):\n", + " for analogy in correct[i]:\n", + " correct_analogies.append(analogy) \n", + " total_analogies = []\n", + " for i in range(len(total)):\n", + " for analogy in total[i]:\n", + " total_analogies.append(analogy)\n", + "\n", + " copy_mean_freq = copy.deepcopy(mean_freq)\n", + " # delete other case's analogy from total analogies \n", + " for key, value in copy_mean_freq.items():\n", + " value[0] = tuple(x.upper() for x in value[0])\n", + " if value[0] not in total_analogies:\n", + " del copy_mean_freq[key]\n", + "\n", + " # append 0 or 1 for incorrect or correct analogy\n", + " for key, value in copy_mean_freq.iteritems():\n", + " value[0] = tuple(x.upper() for x in value[0])\n", + " if value[0] in correct_analogies:\n", + " copy_mean_freq[key].append(1)\n", + " else:\n", + " copy_mean_freq[key].append(0)\n", + "\n", + " x = []\n", + " y = []\n", + " bucket_size = int(len(copy_mean_freq) * 0.06)\n", + " # sort analogies according to their mean frequences \n", + " copy_mean_freq = sorted(copy_mean_freq.items(), key=lambda x: x[1][1])\n", + " # prepare analogies buckets according to given size\n", + " for centre_p in xrange(bucket_size//2, len(copy_mean_freq), bucket_size):\n", + " bucket = copy_mean_freq[centre_p-bucket_size//2:centre_p+bucket_size//2]\n", + " b_acc = 0\n", + " # calculate current bucket accuracy with b_acc count\n", + " for analogy in bucket:\n", + " if analogy[1][2]==1:\n", + " b_acc+=1\n", + " y.append(b_acc/bucket_size)\n", + " x.append(np.log(copy_mean_freq[centre_p][1][1]))\n", + " return x, y\n", + "\n", + "# a sample model using gensim's Word2Vec for getting vocab counts\n", + "corpus = Text8Corpus('proc_brown_corp.txt')\n", + "model = Word2Vec(min_count=5)\n", + "model.build_vocab(corpus)\n", + "freq = {}\n", + "for word in model.wv.index2word:\n", + " freq[word] = model.wv.vocab[word].count\n", + "\n", + "# plot results\n", + "word2vec = compute_accuracies('brown_gs.vec', freq)\n", + "wordrank = compute_accuracies('brown_wr_ensemble.vec', freq)\n", + "fasttext = compute_accuracies('brown_ft.vec', freq)\n", + "\n", + "fig = plt.figure(figsize=(7,15))\n", + "\n", + "for i, subplot, title in zip([0, 1, 2], ['311', '312', '313'], ['Semantic Analogies', 'Syntactic Analogies', 'Total Analogy']):\n", + " ax = fig.add_subplot(subplot)\n", + " ax.plot(word2vec[i][0], word2vec[i][1], 'r-', label='Word2Vec')\n", + " ax.plot(wordrank[i][0], wordrank[i][1], 'g--', label='WordRank')\n", + " ax.plot(fasttext[i][0], fasttext[i][1], 'b:', label='FastText')\n", + " ax.set_ylabel('Average accuracy')\n", + " ax.set_xlabel('Log mean frequency')\n", + " ax.set_title(title)\n", + " ax.legend(loc='upper right', prop={'size':10})\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This graph show the results trained over Brown corpus(1 million tokens).\n", + "\n", + "The main observations that can be drawn here are-\n", + "1. In Semantic Analogies, all the models perform poorly for rare words as compared to their performance at more frequent words.\n", + "2. In Syntactic Analogies, FastText performance is way better than Word2Vec and WordRank.\n", + "3. If we go through the frequency range in Syntactic Analogies plot, FastText performance drops significantly at highly frequent words, whereas, for Word2Vec and WordRank there is no significant difference over the whole frequency range.\n", + "4. End plot shows the results of combined Semantic and Syntactic Analogies. It has more resemblance to the Syntactic Analogy's plot because the total no. of Syntactic Analogies(=5461) is much greater than the total no. of Semantic ones(=852). So it's bound to trace the Syntactic's results as they have more weightage in the total analogies considered.\n", + "\n", + "Now, let’s see if a larger corpus creates any difference in this pattern of model's performance over different frequencies." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAATbCAYAAAAgfznvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XdclWUbwPHfzXCgiCia4EQFxZWKuXoVcKUNNc1tzt7M\nkea2bW9vS0vLVfTmKE3TTC1zDzD3ALeYW1Tc4h6s+/3jAQIERTjwnAPX9/M5Hz33uZ/nvjgH5eKe\nSmuNEEIIIYSwfnZmByCEEEIIIdJHEjchhBBCCBshiZsQQgghhI2QxE0IIYQQwkZI4iaEEEIIYSMk\ncRNCCCGEsBGSuAkhhBBC2AhJ3IQQQgghbIQkbkIIIYQQNkISNyFEjqaU8lNKxSmlGpsdS2Zl19cS\n38YHWdmGECJjJHETIhdQSlVXSi1USp1SSt1TSp1VSq1WSg0yOzZLUUr1V0r1TONli5/tp5RqFZ/g\nnLX0vR8jO84p1NnUjhDiCSk5q1SInE0p1RBYD5wGfgQuAKWB+kAFrbW3ieFZjFJqP3BZa90kldfy\naK2jLNzeHKABUA5orrVeb8n7p9GmH8ZnGaC1/isL28kDxGit47KqDSFExjiYHYAQIsu9C1wH6mit\nbyV9QSnlZk5I2SsLkjYnoA0wBugNdMNIqHIES79fQgjLkaFSIXK+8sDBlEkbgNb6SsoypVR3pdQu\npdRdpdRVpdQ8pVSpFHWClVL74odgg5VSd5RSR5VS7eNf91NKbYu/x2GlVNMU15dRSk2Lf+2uUuqK\nUmqBUqpsino944cjGyqlJiilLimlbiulFiVNOpVSJ4GqgH98/Til1PoksTw0L0wpVU8ptVwpdS3+\nnnuVUoPT+Z62A/IBvwLzgXbxvVQp38s4pdQkpVQbpdR+pdR9pdQBpdRzGXk/0qKU6pDkM7uslJqt\nlPJIo97B+OHyfUqptkqpWfHvX8q4P0hR5qGUmqGUupDk6+iTShtvxr92J/693amU6pyer0MI8XiS\nuAmR850GfJVSVR9XUSn1LsZw6t/AUGAi0BTYoJQqlKSqBooAS4FtwEjgPjBPKdURmAf8CYwGCgC/\nKqUKJLn+GYyh2nnAm8C38e0EKaXypRLaZKA6MBaYBrwUX5ZgCHAWCMPo/eoOfJIi3qRfZ3NgA1AZ\n+BoYhtFj9sIj3p6kugJBWutLwC9AofiYUtMImIrxtY4E8gILlVJFktR50vcj6dfSCyN5jMboAfwe\nI7HcmPQzU0q9EB/rg/h6i4DpQG0eM59NKVUc2A40ASYBg4GjwA9Jk12l1L+Bb4ADGJ/JB8BuoN6j\n7i+EeAJaa3nIQx45+AE0A6IwfrBvBj4HmgMOKeqVia8zOkV5lfjrxyQpCwJigY5JyryBuPh7PJOk\nvHl8eY8kZXlTibNufL1uScp6xpetTFH3q/iYnJOU7QfWp3Jfv/hYG8c/twNOAMeTXv8E72ex+LZ7\nJynbBCxKpW4ccA8ol6Ssenz5gAy8Hym/FgeMOYt7gDxJ6j0ff+2HScr2YSTx+ZOUNYqvdyKVuD9I\n8vwHjMS4cIp6c4FrCfEDi4F9Zn/Py0MeOfkhPW5C5HBa67VAQ+B3oAZGr88q4JxSKmkvUXtAYfSO\nFU14AJcwelcCUtz6ttZ6QZJ2jmDMpQvTWu9MUm97/J/lk9R9kPB3pZRDfO/TCSASowco2ZeA0YuU\n1EbAHkjXUGIKtTAWFHytUxk+TocuGInNoiRl84BWSimXVOqv0VqfSniitd4P3CTj70dSdYDiwDSd\nZF6a1no5cJj4HkSllDtQDfhRa30vSb2NGAnv47TD6F21T/G9sRoonCTG60AppVSddNxTCJEBkrgJ\nkQtorXdprV8BXDF6cj4FCmIkaZXjq1XE+D/hGHA5yeMSxpBi8RS3TW0bjBvAmRRt34z/q2tCmVIq\nn1LqP0qpcIyhuyvx7RQGUkt+zqR4Hpnynk+gAkYyeDAD14IxFLsdcFNKVVBKVcDo8coLdEilfsrY\nwYg/M+9HgrIYX8uRVF47zD+JbcKfx1Opd+wR90cpVSw+jtdJ/n1xGZgR337C98YXwG1gh1LqiFJq\nijJWNQshLERWlQqRi2itY4AQIEQpdRSYiZFsfIyRtMUBLeP/TOl2iuexaTSTVrlK8vcpGMOgEzHm\nyN3ASADmk/ovlOm5Z3pl5BrjQqUqYsxH0xi9kElpjKTuhxTlWfF+pHaPrJLQ/hyM+Y+p2QegtT6s\nlKoEvIjxfdQOGKCU+khr/VGWRypELiCJmxC51674P93j/zyOkQic0lo/shfGAtoDs7TWoxIKlFJ5\nMXp2Miq9m1Iew/g6q/HkW3h0x5jf1p2Hk9tGwJtKqVJa6yfdlDej78cpjK+lEhCc4rVKGHPaSPJn\nxVTukVpZUpeBW4C9TsdedfFDsb9i9OY6YMx7e1cp9ZmWbUaEyDQZKhUih1NK+afxUsIKysPxfy4i\nfkJ7Gvcpklp5BsXy8P8/gzHmrWXUHdKX+IUCJ4G30piT9ihdgY1a64Va60VJH8A4jCSqyxPeEzL+\nfuzCGFJ9QynlmFColGoF+GCs7EVrfR5jpWcPZexBl1DPD2OxRJq0sQnvb0D71FYmp9iWpUiKa2Mw\nVvraAY4IITJNetyEyPkmx/+wXoyRpOUBngU6YkyAnwWgtT6hlHoP+FQp5QkswehpKQ+0BQKBCRaK\n6U/gVaXUTeAQxgkETTHmdqWU1nBgyvIQjATmXYxetUta66CUdbXWWik1AGOxxh6l1EzgPMY8vipa\n61apNqZUPYzeqUmpva61Pq+UCsUYLh2fRsxpydD7obWOUUqNxphr9pdSah5QAiPpO4Gx1UmCdzA+\n0y3xX3MRYCDG4oSCj4lvDOAPbFdK/S8+xiKAL8YWIQnJ22ql1AWM1csXMVYkDwSWaq3vPP5tEEI8\njiRuQuR8wzHmsbUC/o2RuIVjzKv6NMniAbTWXyilEvZwS9iA9QywEvgjxX1TG5pM64zLlOWDgRiM\nHqx8GNtpNMNY7Zry+rSGQFOW/wdjS5ORgDPGPm1BqdXVWq9SSgVg9C4Ow+gROs7Dq1eT6hp/nz8f\nUWcp8KFSqprW+gDZ8H5orX9USt3BSK4+x+h5/A1j+5akn+2fSqkuGHvhfY6xoKEn0AsjwUozPq31\nJaVUXYzviZeB/sBVjAUeo5Jc9x1G4joUIxk8i5E8Jt1TTwiRCXJWqRBC5GJKqd0YvZPPPbayEMJ0\nVjPHTSk1UCl1Mv4olm1KqWceU/+tJMfDhCvjOJy82RWvEELYEqWUvVLKLkWZP/A0//RMCiGsnFUM\nlSqlOmHshP46sAOjm32VUspbp36WYlfgM4wu/q0YO7b/iDGxekQ2hS2EELakFLBGKfUzEIGxeKFf\n/N8DzQxMCJF+VjFUqpTaBmzXWg+Jf64w5tVM0lqPS6X+ZKCy1rp5krIvgbpa68Yp6wshRG4Xf25p\nIMbClGIYc+HWAm9rrU8+6lohhPUwvcctfgm7L8ZO7kDiqq+1GCurUrMF6KaUekZrvVMpVR7jbL60\nNocUQohcLX6hQka2KhFCWBHTEzeMZeT2GEvHk7qIsYHkQ7TW8+L3DtoU3ztnD3yntf4irUbiz9V7\nDmPDyvsWiFsIIYQQIi35MM5FXqW1vmqpm1pD4pYWRRrbAMRPqH0HeANjTlxFYJJS6rzW+r9p3O85\n4OcsiFMIIYQQIi3dgLmWupk1JG5XMHYNfypFeXEe7oVL8B/gJ631zPjnB5VSBTHmb6SVuJ0CmDNn\nDj4+PpkKWGSPoUOHMnHiRLPDEE9APjPbIp+X7ZHPzHaEhYXRvXt3iM8/LMX0xE1rHa2UCsHYJfwP\nSFyc0JQ0digHnHj4nMC4+EuVTn3FxX0AHx8fateubZHYRdZycXGRz8rGyGdmW+Tzsj3ymdkki07P\nMj1xizcB+DE+gUvYDsSJ+KN4lFI/AWe11u/E118KDFVK7QG2A14YvXC/p5G0CSGEEELYPKtI3LTW\nC+IXG/wHY8h0D/Cc1vpyfJVSGMfBJPgYo4ftY6AkcBmjt+69bAtaCCGEECKbWUXiBqC1ngZMS+O1\nJimeJyRtH2dDaEIIIYQQVsFqEjchUurSRbacsjXymdkW+byyVnh4OFeuPHT4T6bUr1+f0NBQi95T\nZI6bmxtlypTJtvas4uSE7KCUqg2EhISEyMROIYQQWSo8PBwfHx/u3r1rdigiizk5OREWFvZQ8hYa\nGoqvry+Ar9baYtm29LgJIYQQFnblyhXu3r0rW1DlcAlbfly5ciXbet0kcRNCCCGyiGxBJSzNzuwA\nhBBCCCFE+kjiJoQQQghhIyRxE0IIIYSwEZK4CSGEEMJqBAQEMGzYMLPDsFqSuAkhhBACgMDAQAoV\nKkRc3D/Hgd+5cwdHR0eaNm2arG5QUBB2dnacOnUqy+KJiYlh9OjR1KhRg4IFC1KyZEl69uzJ+fPn\nAbh06RJ58uRhwYIFqV7ft29f6tSpk2XxmUESNyGEEEIARm/XnTt32LVrV2LZxo0bcXd3Z9u2bURF\nRSWWb9iwgbJly1KuXLknbicmJubxlYC7d++yZ88ePvzwQ3bv3s3ixYv5+++/adOmDQDFixfnhRde\nYMaMGaleu3DhQl577bUnjs+aSeImhBBCCAC8vb1xd3cnODg4sSw4OJi2bdvi6enJtm3bkpUHBAQA\ncObMGdq0aYOzszMuLi506tSJS5cuJdb96KOPqFWrFtOnT6d8+fLky5cPMJKrHj164OzsTMmSJZkw\nYUKyeAoVKsSqVato3749Xl5e1K1blylTphASEsLZs2cBo1dt3bp1ic8TLFiwgJiYmGQnhAQGBuLj\n40P+/PmpWrUq33//fbJrzpw5Q6dOnShatCgFCxakXr16hISEZOIdtTxJ3IQQQgiRyN/fn6CgoMTn\nQUFB+Pv74+fnl1j+4MEDtm/fTpMmxlHibdq04fr162zcuJG1a9dy/PhxOnfunOy+x44dY9GiRSxe\nvJg9e/YAMGLECDZu3MjSpUtZvXo1wcHBj02Url+/jlKKwoULA/D8889TvHhxZs2alazerFmzaNeu\nHS4uLgD8+OOPfPLJJ3zxxRccPnyY//73v7z99tvMmzcPgNu3b9O4cWOuXLnCsmXL2LdvHyNGjEg2\nbGwNZANeIYQQwix378Lhw5a9Z+XK4OSU4cv9/f0ZNmwYcXFx3Llzhz179tC4cWOioqIIDAzkww8/\nZPPmzURFReHv78+aNWs4cOAAp06dwsPDA4DZs2dTtWpVQkJCEo59Ijo6mtmzZ1OkSBHAmDs3Y8YM\n5s6di7+/P2AkV6VKlUoztgcPHjBmzBi6du1KwYIFAbCzs6NHjx7MmjWL9957D4Djx4+zceNG1q9f\nn3jt2LFjmThxIq1btwagbNmy7Nu3j8DAQLp06cJPP/3EjRs3WLJkCc7OzgCUL18+w+9jVpHETQgh\nhDDL4cMQn9hYTEgIZOK0hoR5bjt37uTatWt4e3vj5uaGn58fffr0ISoqiuDgYCpUqECpUqVYvHgx\npUuXTkzawDgxonDhwoSFhSUmbmXLlk1M2sBIrqKjo6lbt25imaurK5UqVUo1rpiYGDp06IBSimnT\npiV7rW/fvnzxxRcEBwfj7+/PzJkz8fT0xM/PD4Bbt25x+vRpevbsSa9evRKvi42Nxc3NDYC9e/fi\n6+ubmLRZK0nchBBCCLNUrmwkWpa+ZyZUqFCBkiVLEhQUxLVr1xKTH3d3d0qXLs3mzZuTzW/TWqOU\neug+KcsLFCjw0OtAqtemlJC0nTlzhvXr1yf2tiWoWLEijRo1YubMmfj5+TF79mz69euX+PqtW7cA\nY/g05RFk9vb2AOTPn/+xcVgDSdyEEEIIszg5Zap3LKsEBAQQFBREZGQko0aNSixv3LgxK1asYMeO\nHQwYMACAKlWqEB4ezrlz5yhZsiQAhw4d4saNG1SpUiXNNipWrIiDgwPbtm2jffv2AERGRnLkyJHE\noVP4J2k7ceIEQUFBuLq6pnq/vn37MmDAAF566SUiIiLo2bNn4mseHh489dRTHD9+nFdeeSXV62vU\nqMHs2bO5efMmhQoVSt8bZQJZnCCEEEKIZAICAti0aRN79+5N7HEDI3ELDAwkOjo6Mblq1qwZ1atX\np1u3buzevZsdO3bQs2dPAgICqFWrVpptFChQgL59+zJy5EiCgoI4cOAAvXv3TuwBA2Mos3379oSG\nhjJnzhyio6O5ePEiFy9eJDo6Otn9OnTogIODA/369aNFixaJSWSCsWPH8sknnzB16lSOHj3K/v37\nmTFjBpMmTQKge/fuFC1alJdffpmtW7dy8uRJfvvtt2Rbo1gDSdyEEEIIkUxAQAD379/Hy8uLYsWK\nJZb7+flx+/ZtKleuTIkSJRLLf//9d1xdXfHz86NFixZUrFiRX3755bHtjB8/nkaNGtG6dWtatGhB\no0aNEufEAZw9e5Y///yTs2fPUrNmTTw8PHB3d8fDw4OtW7cmu1f+/Pnp3Lkz169fp2/fvg+11a9f\nP7799lumT59OjRo1aNKkCXPmzMHT0xOAPHnysHbtWlxdXWnVqhU1atRg/PjxyRJJa6ASxphzOqVU\nbSAkJCTkofFtIYQQwpJCQ0Px9fVFfubkbI/6nBNeA3y11qGWalN63IQQQgghbIQkbkIIIYQQNkIS\nNyGEEEIIGyGJmxBCCCGEjZDETQghhBDCRkjiJoQQQghhIyRxE0IIIYSwEZK4CSGEEELYCEnchBBC\nCCFshCRuQgghhLAaAQEBDBs2zJS2PT09E88utVaSuAkhhBACgMDAQAoVKkRcXFxi2Z07d3B0dKRp\n06bJ6gYFBWFnZ8epU6eyNCZ/f3/s7Oyws7Mjf/78VKpUic8//zxL27RmkrgJIUQmbT+7nfO3zpsd\nhhCZFhAQwJ07d9i1a1di2caNG3F3d2fbtm1ERUUllm/YsIGyZctSrly5J24nJiYm3XWVUrz++utc\nvHiRI0eO8Pbbb/PBBx8QGBj4xO3mBJK4CSFEJmitmbpzKh4TPPgo+CPuRN0xOyQhMszb2xt3d3eC\ng4MTy4KDg2nbti2enp5s27YtWXlAQAAAZ86coU2bNjg7O+Pi4kKnTp24dOlSYt2PPvqIWrVqMX36\ndMqXL0++fPkAuHv3Lj169MDZ2ZmSJUsyYcKEVONycnKiWLFilC5dml69elGjRg3WrFmT+HpcXByv\nvfYa5cuXx8nJicqVKz805Nm7d29efvllvvrqKzw8PHBzc2PQoEHExsam+X788MMPuLq6EhQUlP43\nMYtJ4iaEEJmglGJSq0mMbDiSTzd9itdkL2bsnkFsXNo/DISwZv7+/skSlaCgIPz9/fHz80ssf/Dg\nAdu3b6dJkyYAtGnThuvXr7Nx40bWrl3L8ePH6dy5c7L7Hjt2jEWLFrF48WL27NkDwIgRI9i4cSNL\nly5l9erVBAcHExIS8sj4Nm7cyOHDh8mTJ09iWVxcHKVLl2bhwoWEhYXx4Ycf8u6777Jw4cJk1wYF\nBXHixAmCg4P56aefmDVrFrNmzUq1nXHjxvHOO++wZs2axATVKmitc8UDqA3okJAQLYQQWeFk5End\neWFnzVh0jW9r6NXHVpsdkjBJSEiITu/PnIibETokIiTNx8FLBx97j4OXDuqQiBAdcTMi07H/73//\n087Ozjo2NlbfvHlT58mTR1++fFnPmzdP+/v7a621Xrdunbazs9NnzpzRq1ev1o6OjvrcuXOJ9zh0\n6JBWSuldu3ZprbUeO3aszps3r7569Wpindu3b+u8efPq3377LbHs2rVr2snJSQ8dOjSxzN/fX+fJ\nk0cXLFhQ58mTRyultJOTk962bdsjv45BgwbpDh06JD7v1auX9vT01HFxcYllHTt21F26dEl8Xq5c\nOf3NN9/o0aNH65IlS+pDhw49so1Hfc4JrwG1tQXzGQcTc0YhhMhRyhUux7z283ir3lsMWz2MFnNa\n8JL3SyzpvAQ7JQMcInWBIYF8tOGjNF+vUqwKBwccfOQ9OvzagUOXD/Gh34eM9R+bqXgS5rnt3LmT\na9eu4e3tjZubG35+fvTp04eoqCiCg4OpUKECpUqVYvHixZQuXRoPD4/Ee/j4+FC4cGHCwsLw9fUF\noGzZshQpUiSxzvHjx4mOjqZu3bqJZa6urlSqVOmhmLp37857773HtWvX+PDDD2nYsCH16tVLVmfq\n1KnMnDmT8PBw7t27R1RUFLVq1UpWp2rVqiilEp+7u7tz4MCBZHW+/PJL7t69y65duzI0fy+rSeIm\nhBAWVq9UPTb13sSisEUcvnJYkjbxSP18+9G6Uus0X8/nkO+x9/i1w6/cj7mPe0H3TMdToUIFSpYs\nSVBQENeuXcPPzw8wkpzSpUuzefPmZPPbtNbJkqEEKcsLFCjw0OtAqtem5OLigqenJ56ensyfP5+K\nFStSv379xKHaX375hZEjRzJx4kTq16+Ps7Mz48aNY8eOHcnu4+jomOy5UirZClqAxo0bs2zZMubP\nn8/o0aMfG1t2k8RNCCGygFKK9lXamx2GsAHuzu64O2cu4apSrIqFojEEBAQQFBREZGQko0aNSixv\n3LgxK1asYMeOHQwYMMBou0oVwsPDOXfuHCVLlgTg0KFD3LhxgypV0o6rYsWKODg4sG3bNtq3N/6t\nREZGcuTIEfz9/dO8rkCBAgwZMoThw4eze/duALZs2cKzzz5Lv379EusdP348Q1973bp1efPNN2nR\nogX29vaMGDEiQ/fJKvJroBBCCCGSCQgIYNOmTezduzexxw2MxC0wMJDo6OjE5KpZs2ZUr16dbt26\nsXv3bnbs2EHPnj0JCAh4aKgyqQIFCtC3b19GjhxJUFAQBw4coHfv3tjb2z82vn79+nHkyBEWLVoE\ngJeXF7t27WL16tUcPXqUDz74gJ07d2b4669Xrx4rVqzg448/5uuvv87wfbKC1SRuSqmBSqmTSql7\nSqltSqlnHlE3SCkVl8pjaXbGLITIfbac2cLRq0ctdr8TkScsdi8hLCUgIID79+/j5eVFsWLFEsv9\n/Py4ffs2lStXpkSJEonlv//+O66urvj5+dGiRQsqVqzIL7/88th2xo8fT6NGjWjdujUtWrSgUaNG\niXPiEqQ2lOrq6kqPHj0YO3YsYCRy7dq1o3PnztSvX59r164xcODAJ/66k7bVsGFD/vzzTz744AOm\nTJnyxPfKKiphjNnUIJTqBPwIvA7sAIYCHQBvrfWVVOoXBvIkKXID9gJ9tNaz02ijNhASEhJC7dq1\nLfwVCCFyg3vR96g6rSrVilfjjy5/ZPp+p6+fxmuyFy0rtmRc83FUdqtsgSiFNQgNDcXX1xf5mZOz\nPepzTngN8NVah1qqTWvpcRsKBGqtf9JaHwbeAO4CfVKrrLW+rrW+lPAAWgB3gIWp1RdCCEsYv2U8\nZ2+e5csWX1rkfmVcyjD75dnsv7SfatOqMXDZQC7fuWyRewshcibTEzellCPgC6xLKNNGN+BaoEE6\nb9MHmKe1vmf5CIUQAk5dP8Vnmz5jWINheBf1tsg9lVJ0qtaJsIFhfN7sc37e/zMVJlXg802fcz/m\nvkXaEELkLKYnbhjDnPbAxRTlF4ESD1dPTilVF6gK/GD50IQQwjB89XCK5C/Ce43fs/i98znkY0TD\nERwbfIzeNXvzftD7VJpSiTXH1zz+YiFErmLN24EojB2HH6cvcEBr/egzMuINHToUFxeXZGVdunSh\nS5cuTx6hECJXWH18NYvCFjG33VwK5imYZe24ObnxTatvGFh3IGPWjsEln8vjLxJCmG7lypWJCyUS\n3LhxI0vasobE7QoQCzyVorw4D/fCJaOUyg90AtL9K/DEiRNloqgQIt2iYqMYvGIwjcs2pnO1zo+/\nwAK8i3qzqNOibGlLCJF5LVu25J133klWlmRxgkWZPlSqtY4GQoCmCWXKWI/bFNjymMs7Yawu/TnL\nAhRC5GrrT67nROQJJreanK4d3oUQIitZQ48bwATgR6VUCP9sB+IEzAJQSv0EnNVav5Piur7AEq11\nZDbGKoTIRVpWbMmJIScoVaiU2aEkcz/mPgpFXoe8ZocihMhGpve4AWitFwDDgf8Au4EawHNa64R1\n8aVIsVBBKeUFNEQWJQghspi1JW0A4zePx2eqDwsOLsAa9uMUQmQPq0jcALTW07TW5bTW+bXWDbTW\nu5K81kRr3SdF/aNaa3ut9frsj1YIIcz1SpVXqFq8Kp0WdqLhjIZsOfO4mSVCiJzAahI3IYQQ6edT\nzIelXZayrsc6HsQ84NkZz9Lx144cv5axg7WFELZBEjchhLBhTTybsOv1XcxqM4stZ7bgM9WH4auG\ncy9a9iMXGdO7d2/s7Oywt7fHzs4u8e8nTmTuXN3Y2Fjs7OxYvnx5YlmjRo0S20jt0aJFi8x+OQAs\nW7YMOzs74uLiLHI/M1nL4gQhhBAZZKfs6FmzJx2qdmDC1gmsPLaSPPZ5Hn+hEGlo1aoVs2bNSjZ/\nMulh8xmR2lzMpUuXEhUVBcDJkydp2LAhGzZswNvbOJ0kb17LLL7RWqOUyhHzQaXHTQghkrh+/7rZ\nIWSYk6MT7zV+j429N2JvZ292OMKG5c2bl2LFilG8ePHEh1KK5cuX869//QtXV1fc3Nxo3bo1J0+e\nTLwuKiqK/v374+HhQf78+Slfvjxffmmc7evp6YlSihdffBE7Ozu8vb0pXLhw4v3d3NzQWlOkSJHE\nsoQN869cuULPnj1xc3PD1dWV5557jsOHDwMQFxfHs88+yyuvvJIYx8WLF3nqqaf46quvOHjwIK1b\ntwbA0dERe3t7Bg8enF1vpcVJ4iaEEPF2nttJqQml2BWx6/GVrZjsNyeyyr179xg5ciShoaGsW7cO\nrTXt27dPfH3ChAmsWrWK3377jSNHjjB79mzKlCkDwM6dO9Fa8/PPP3PhwgW2bduW7nbbtGlDVFQU\n69evZ8eOHXh5edG8eXPu3LmDnZ0dc+bMYc2aNcycOROAPn36UL16dYYPH07lypWZPXs2ABEREZw/\nf57PPvvMgu9K9pKhUiGEAOJ0HINWDKJCkQrULFHT7HCyVExcDA528t+/tTh/Hq5cgerVk5fv2QPu\n7vBUknNaBIdkAAAgAElEQVSFrlyB8HBIeQDQoUNQqBCUstDONUuXLsXZ2Tnx+fPPP8/8+fOTJWkA\n//vf//Dw8ODIkSN4e3tz5swZvL29adCgAQClS5dOrJsw1Ori4kLx4sXTHcuqVas4efIkGzduxM7O\n6G+aNGkSixcvZunSpXTu3BlPT0+++eYb3nzzTcLCwti6dSv79+8HwN7ensKFCwNQvHjxxHvYKtuO\nXgghLGTWnlnsOLeDKa2m5OikJjo2Gt/vfRm1ZpRNDwvnJIGB0KrVw+WNG8PPKc4FWrIEUjtFqUMH\nmDDBcjE1adKEffv2sXfvXvbu3cukSZMAOHr0KJ07d6Z8+fIUKlQILy8vlFKEh4cDxsKGHTt2ULly\nZd566y3WrVuX6Vj27t3LpUuXcHFxwdnZGWdnZ1xcXLh06RLHj/+zirpXr140adKEL7/8kqlTp1Ky\nZMlMt22Ncu7/TkIIkU6R9yIZs3YM3ap3o1HZRmaHk6VidSwvV36Z8VvGM2P3DMb6j6Wfbz8c7R3N\nDi3X6tcPUnRkAfDXX0aPW1Jt2z7c2wbw669Gj5ulFChQAE9Pz4fKX3jhBby9vZkxYwbu7u5ERUXx\n9NNPJy4wqFOnDqdPn2bFihWsXbuW9u3b06pVK+bNm5fhWG7fvk3FihVZsWLFQ4sLihQpkvj3mzdv\nsm/fPhwcHDhy5EiG27N20uMmhMj1Pgz+kHsx9xjXfJzZoWS5fA75GOs/liODjtCmUhsGrxhMtW+r\n8fvh33PEijtb5O7+8DApQM2ayYdJAdzcUk/cqlSx3DBpWi5dusSxY8d4//338ff3p1KlSly9evWh\nOZXOzs507NiR77//nrlz5zJ//nxu376Nvb099vb2xMbGptlGavMza9euTXh4OAUKFKB8+fLJHglD\noAADBw6kaNGiLFmyhE8++YQdO3YkvpYnj7HK+lFt2wpJ3IQQudq+i/uYunMqHzT+AA9nD7PDyTYl\nC5Vkepvp7O63mzIuZWg7vy0BPwYQEhFidmjCShUtWhRXV1cCAwM5ceIE69atY+TIkcnqfPXVVyxY\nsIAjR45w5MgRfv31V0qVKkXBggUBKFOmDGvXruXixYtcv/7wUH1qvzy89NJLVKtWjdatW7N+/XpO\nnTrFpk2bGD16NGFhYQAsWLCARYsW8fPPP/P888/Tv39/unXrxt27dwEoV64cAH/88QdXrlxJLLdF\nkrgJIXItrTWDVwzGq4gXQ+oPMTscUzxd4mlWd1/N8q7LuXz3MhtObzA7JGGl7O3tmT9/Ptu3b6da\ntWqMHDkycauPBAULFuTTTz+lTp061KtXj4iICJYtW5b4+sSJE1m5ciVlypShbt26D7WRWo+bvb09\na9asoXbt2rz66qv4+PjQo0cPLl++jJubGxEREQwYMIDx48dTqVIlAMaNG0e+fPkYMsT4d+3l5cWY\nMWMYOHAgJUqUYMyYMZZ8a7KVyi1d40qp2kBISEgItVPrZxZC5EobTm3A3s6ef5X5l9mhmC4mLgat\ntcx3s4DQ0FB8fX2Rnzk526M+54TXAF+tdail2pTFCUKIXM2vnJ/ZIViNnLyaVoicQoZKhRBCCCFs\nhCRuQggh0uWv03/R7Kdm7Lmwx+xQhMi1JHETQgiRbudunaN2YG16/96bczfPmR2OELmOJG5CCCHS\npXHZxux7Yx9Tnp/Cn0f+xGuyFx8EfcDtqNtmhyZEriGJmxBCiHRztHdkwDMDOPbmMYbUG8K4zePw\nmuzFD6E/EBtn+5ubCmHtZAmRECLX+HLLl+RzyMeguoPMDsXmueRz4bNmn/FGnTd4Z/07DFk5hFYV\nW1GyUM48HzKjEjaIFTmTGZ+vJG5CiFzh1PVTvB/0Pm/Ve8vsUHKUsoXL8nO7n7lw+wIlCpYwOxyr\n4ebmhpOTE927dzc7FJHFnJyccHNzy7b2JHETQuQKw1YNo2j+orzb+F2zQ8mRJGlLrkyZMoSFhXHl\nyhWzQxFZzM3NjTJlymRbe5K4CSFyvFXHVrH48GJ+af8LBfMUNDsckUuUKVMmW3+gi9xBFicIIXK0\nqNgoBq8cjH85fzpW7Wh2OLnW22vfZtaeWbKAQYhMksRNCJGjfbPtG45fO87kVpNTPcBaZL3YuFhO\n3zhN7997U+d/dVh3Yp3ZIQlhsyRxE0LkWBG3IvjPX/9hUN1BVCtezexwci17O3vmtp/L1r5bye+Q\nn2azm/Hi3Bc5dPmQ2aEJYXMkcRNC5FgXbl+gZomajPUfa3YoAqhfqj6b+2xmwSsLOHT5EDW+rUH/\nP/tz8fZFs0MTwmZI4iaEyLFqu9dmY++NFM5X2OxQRDylFB2qdiBsYBjjmo/jl4O/MGTlELPDEsJm\nyKpSIYQQ2S6vQ16GNRhGz6d7ci/mntnhCGEzJHETQghhmqJORc0OQQibIkOlQgghhBA2QhI3IVK4\n+eAmU3ZM4X7MfbNDESLXu3bvGsNXDefynctmhyKEVZDETYgULty+wJsr3uTXg7+aHYoQud6eC3v4\nYfcPVJxckS82fSG/UIlcTxI3IVLwLupN8/LNmbZrmtmhiCcQp+OYf2C+7MyfwzTxbMLxwcfpUaMH\n7wW9R+UplZm3fx5aa7NDE8IUkrgJkYoBzwxg29lthJ4PNTsUkU4zd8+k82+dCTkfYnYowsLcnNyY\n/PxkDvQ/QM0SNem6qCv1p9dnU/gms0MTIttJ4iZEKl70fpHShUozbaf0utmCyHuRvL3ubbrX6E7d\nknXNDkdkkUpulVjSeQlBPYOIjYul0cxGbDu7zeywhMhWsh2IEKlwsHOgn28/Ptn4CeObj8c1v6vZ\nIYkkjl49yqHLhzgReYKT10+y9exW7sXcY1yzcWaHJrKBfzl/dvx7ByuPraReyXpmhyNEtpIeNyHS\n8Frt14iJi2HWnllmh5KrxMTFPLbOmHVjaDu/Le+uf5f1J9dTomAJ5rabi7uzezZEKKyBnbLjea/n\nUUqZHYoQ2Up63ISI9/GGj8nvmJ8RDUcA8FTBp3ilyitM2zWNIfWHYKfk9xxL0Fpz9d5Vo7cs8iQn\nIk8k9pydiDxB+I1wro2+RqG8hdK8x8TnJjLt+WkUL1BcfnALIXIVq0nclFIDgRFACWAv8KbWeucj\n6rsAnwIvA67AaeAtrfXKbAhX5ECz9s7iBa8XkpWNenYUYZfDjBVskh9YxPZz22kwvUHic9d8rpR3\nLY+nqycd3Dvg6er52CS5jEuZrA5T5ADLjy7HNZ8rDUo3eHxlIWyEVSRuSqlOwFfA68AOYCiwSinl\nrbW+kkp9R2AtcAFoB0QAZYHr2Ra0yFHCb4RzIvIE/uX8k5XXLFGTmiVqmhOUjdlzYQ/vrHuHZuWb\nMazBsDTrVSlWhYUdFiYma3IAvMgqU3dOZfnR5XSs2pHPmn5GedfyZockRKZZy9jPUCBQa/2T1vow\n8AZwF+iTRv2+QGGgrdZ6m9Y6XGu9UWu9P5viFTnMhlMbAGhctrHJkdieWw9uMWzVMHy/9yX8Rjjl\nCpd7ZP1CeQvRvkp7arnXkqRNZKk/Ov/BzDYz2RS+CZ+pPoxYPYLIe5FmhyVEppieuMX3nvkC6xLK\ntLGz4logrf7tl4CtwDSl1AWl1H6l1NtKySQkkTHBp4KpXrw6bk5uZodiM7TWLA5bTJVpVfhu13d8\n1vQzdvfbTTufdmaHJgQA9nb29KrZiyODjvBeo/f4btd3VJxckUnbJxEVG2V2eEJkiDUkOm6APXAx\nRflFjPluqSkPdMCIvxXwMTAceCeLYhQ5XPDp4IeGSUXaTl8/TetfWtNuQTtqlqjJoYGHGPXsKBzt\nHc0OTYiHFMhTgPf93ufY4GO092nP0FVDaTG7hdlhCZEhVjHHLQ0KSOtMEzuMxO71+N653UqpkhiL\nG/77qJsOHToUFxeXZGVdunShS5cumY9Y2KS05reJ1GmteXn+y1y+e5lFHRfRtnJbWdkpbEKJgiX4\n/qXvGVxvMBG3IswOR+Qg8+bNY968ecnKbty4kSVtKbPPe4sfKr0LtNda/5GkfBbgorV+OZVrgoEo\nrXWLJGUtgWVAXq31QxtBKaVqAyEhISHUrl3b4l+HsF2z986mx5IeXB55WYZK0ynschilCpXCOa+z\n2aEIIYRVCg0NxdfXF8BXa22x8xNNHyrVWkcDIUDThDJl/PreFNiSxmWbgYopyioB51NL2oR4lJol\navJVi6/SlbTFxsVy88HNbIjKuvkU85GkTQghTGB64hZvAvC6UqqHUqoy8B3gBMwCUEr9pJT6NEn9\nb4GiSqlvlFJeSqkXgLeBKdkct8gBqj9V/ZHbVyQV8GMAI1ePzOKIhBBm0lrz68FfiY6NNjsUIR5i\nFYmb1noBxuKC/wC7gRrAc1rry/FVSpFkoYLW+izQAngGY7Per4GJwBfZGLbIhZqVb8ac/XO4fj9n\nbxl49OpRYuNizQ5DCFPsvrCbTgs7Uf3b6vzx9x+YPaVIiKSsInED0FpP01qX01rn11o30FrvSvJa\nE611nxT1t2utG2qtnbTWXlrrL7T86xJZ7N+1/01UbBQ/7f3J7FCyxL3oe7y3/j2qTqvKj3t/NDsc\nIUxR2702of1CKVWoFG1+aUOTn5oQEhFidlhCAFaUuAlhC9yd3Wnn045pO6fluN/CH8Q8wPd7X8Zv\nGc+7jd6la/WuZockhGlqlqjJmlfXsKzrMi7evkid/9Whx+IenLlxxuzQRC4niZsQT2jgMwP5++rf\nrD+53uxQLGrb2W2EXQlj7atr+dD/Q/I55DM7JCFMpZTiea/n2dd/H9++8C0rj63Ee4o3y48uNzs0\nkYtJ4ibEE2pUphFVi1Vl6s6pZodiURtOb8A1nyvPlnnW7FBsyr170KIFTJ5sdiQiqzjYOfBGnTc4\nNvgYo58dTf1S9c0OSeRikrgJ8YSUUgx8ZiC///07Z2+eNTsciwk+FUzjso2xk5Pjnkj+/FC7Nnh5\nmR2JyGqF8hZirP9YiuQvYnYoIheT/6FFpkTFRvHi3BdZdWyV2aE8semh01lyeEmGru1eozuV3Spz\n7NoxC0dljvsx99l6dqucHpFBn38OLVsmL/vtNzh/3px4hBA5lyRuIlMWhy1m2dFl9P2jL7ce3DI7\nnCfy2abPMjxPzTmvMwf6H8gxic6Rq0ewU3b4lfUzOxSboLXxSMu9ezBgAMyalW0hCStx+vppOU5L\nZClJ3ESmfBfyHdWLVyfyfiQfBH1gdjjpdubGGY5HHs9U4pWTzues8VQNIkdH8nSJp80OxSZMmADd\nukFcXOqv588Pf/8NgwcnL0+rvsg53gt6D6/JXowNHsvtqNtmhyNyoCdO3JRSs5RSjbMiGGFbzt86\nz6bwTYz51xjG+o1l0o5J7D6/2+yw0mXD6Q0ANC4r38oJ8tjnkflt6VS2rDGnze4Rb1fhwlCgwD/P\nY2LA1xfmzMn6+IR5prSawqBnBvH5ps/xnuzN9NDpspm1sKiM/C/tCqxRSh1VSr2jlCpp6aCEbXB3\ndif8rXDa+7TnrfpvUaVYFQJDAs0OK12CTwVTrXg1OVReZMgrr8BHHz3ZNVFR0KoVVKuWNTEJ6+CS\nz4Uvmn/B4UGH8S/nz2tLX6NWYC1WH19tdmgih3jixE1r3QbjCKpvgU7AKaXUCqXUK0opR0sHKKyb\nu7M7eR3y4mjvyOruq5n2wjSzQ0qX4FPB+Jf1NzsMkYs4OcGnn0LNmsnL58+HyEhzYhJZp1zhcsxt\nP5ftr23HJZ8Lz815jhfmvkBMXIzZoQkbl6FxEa31Za31BK3100A94BgwG4hQSk1USsnC+FzI3dnd\nJobaLDG/TeQuZ85A165w3cJH1F65An37wsKFlr2vsB51S9blr15/8VvH3/B198XBzsHskISNy9R3\nkFLKHWiOceB7LLAcqA4cUkqN0lpPzHyIQliWzG8TT+r8eWOxwb17xtw1S3Fzg+PHwdU1eXlc3KPn\nzwnbopSinU872vm0MzsUkQNkZHGCo1KqvVLqT+A00AGYCLhrrXtqrZsBHQHbWWIocpViTsXoX6c/\nxQoUs9g9t57Zymt/vJbjzi+1CZcuwQsvQOnS0KgRvPoqvP8+TJ8O69YZmVFUVKaaqFsXdu0Cd3cL\nxZzEU09Bnjz/PL9zB6pWhWXLLN+WEML2ZaTH7TxGwjcPqKu13pNKnSDAwoMKQljGcxWf47mKz1n0\nnjce3GD67ukMfGYgtdxrWfTeWele9D3yOuS1iSHuVG3fDu3bQ3Q09O4NZ8/CyZMQFAQREf9stqYU\nlCwJ5cql/ihdOnn2lIrs2v0lKgqaN4cqVbKnPWE9Tl8/TdnCZc0OQ1i5jCRuQ4Fftdb306qgtb4O\neGY4KiFsTFPPphRzKsbc/XNtKnH7autXzNwzk2NvHrOtfem0hu+/NzZKq13bmCRWMsUC9wcPjMlp\np0798zh92vgzOBjOnUszsdNly/Hl3y/R6eUoytRzT1diZymurjBp0sPlc+dCmzbJtxgROcf5W+ep\nPLUyzco3Y1yzcfgU8zE7JGGlMpK4/QE4AckSN6VUESBGa33TEoEJ67T1zFZc87tS2a1yuurfi75H\n5P1IPJw9sjgycznaO9KxakfmHZjHF82/sJkerOBTwVQpVsW2krb792HgQJgxwzieYOLE1JOqvHmh\nYkXjkZqoqIcTu/hH5Po9TIvoQ9GFH9OHmRbpscuM48ehVy9jBerLL2dZM8JEJQqW4Me2PzJm7Riq\nf1ud131fZ6z/WIoXKG52aMLKqCedk6OUWgEs1VpPS1H+BtBaa/28BeOzGKVUbSAkJCSE2rVrmx2O\nTdJa4/u9Lx7OHvzZ9c90XdNyTksexD5gfY/1tpUcZMDWM1tpOKMhQT2DbGLF6oOYB7h+4crHAR8z\nvOFws8NJn9OnjaHRgwfhu++gZ88sa+r2tSgKRqae2HHqVPIeOzs78PeHPn2gXTvj6AQLO3PGyB2T\nLlrQOvuGcEX2eBDzgCk7pvDxXx8Tp+N4p9E7DKk3hPyOlv+eElkrNDQUX19fAF+tdail7puRboF6\nGHPYUgqOf03kULsidrH7wm761+mf7muGNxhO8KlgZu+bnaE247TtnBFUv1R9Y++m/XPNDiVddkbs\n5F7MPZtIMgFYu9Y4euDqVdiyJUuTNoCCRfJAhQrQtKmxZ8fHH8Ps2bBxo5FF3b8Px44ZcU2ZArGx\n0L27sYJhwABjNYMFF6uULp08abtyBSpVgk2bLNaEsAJ5HfIyvOFwjg8+Tp9afXg/6H0qTanEymMr\nzQ5NWImMJG55SX2I1RGQXwlysO92fUcZlzK0rNgy3dc0r9CcLtW6MHz1cK7du5bu67TWfLHpC9ov\naG8zx8UopeharSsLDy3kQcwDs8N5rA2nNlAobyFqlqj5+Mpm0ho+/xyeew7q1DESolqWn0e4fz/s\nSW2pVVryJEns+vc35s0dPQqDBsHSpfDMM/D00/D113D5ssXjjYkxOvkqp2/WgrAxRZ2K8nXLrzk0\n4BB1POqQ30F+vApDRhK3HcDrqZS/AYRkLhxhra7fv868A/N4vfbr2NvZP9G1E56bQHRsNKPXjE5X\n/Zi4GPov68+YdWOoVqyazcwXA+hWoxuR9yNt4rfj4NPBNC7b+Ik/z2x186ZxvtTbbxuPZcugaNEs\naer99+GttzLZSVaxIvz3v8ZQ6ooVRlY1apQxxvnKK7B8uZFxWUCJEsb6DLckp7ZpbSxieGD9vzeI\ndPIq6sWiTovwK+dndijCSmRkccJ7wFql1NPAuviypsAzGBvxihxo9t7ZRMdF06dWnye+tkTBEnzW\n9DMGLB9Ar5q9eLbMs2nWvfXgFh0XdmTtibVMbz09Q+2lZdWxVXg4e1D9qeoWu2dKVYpVYfbLsx/5\nNVqDqNgoNodv5j8B/zE7lLSFhRnzxSIiYMkSY0llFpozx9hDzSJzxuztoWVL43HlipFNTZ9u7Dfn\n4WEM8/bubZxUb0EhIcZobcKWdkKInCcjZ5VuBhoAZzA22n0J48irGlrrjZYNT1gDrTXfhXxH28pt\ncXfO2A6k/er0o17Jeryx7A2iY6NTrXPu5jkaz2rMljNbWN51eapJW5yOY/6B+dyNvvvEMby54k0C\nQwKf+Lon1b1Gd6s/vH5XxC7rnt/222/Grrd2drBzZ5YnbQAFCxqb4Vqcm5uxbcmePUZm9fLL8O23\n4O0NjRvDrFlGxmgBderAiRMPJ22yL3TOFhUbxf2YNHfoEjlMRs8q3aO17qa1rqq1rqO17qO1Pmrp\n4IR12BS+iUOXD/GG7xsZvoedsuO7F78j7HIYP+798aHX913cR/3p9bl69yqbem+ieYXmqd4n/EY4\n3Rd3Z+qOqU/U/rmb5zh67aj1JirZrEGpBoQNDLO++W0xMTB6tDGs2KqVscGut3eWNBUXB6EWW+eV\nDkoZe85NmWKcoTVvHuTLZ6xELVEC/v1vY9FFJrOscuWSPz95Enx8jDl8ImeavH0yPlN9+OXAL3J6\nSy6QqclDSqn8SqlCSR+WCkxYDzcnN4Y3GE6AZ0Cm7lOzRE2CegbRq2avZOWxcbF0XtiZYk7F2Pba\ntkcOZZYrXI5/1/43n2/+nBv3b6S7bTmfNDmlFJXdKlvXgdeXLxtDi199BV9+aWxaVrBgljU3fTo0\nbGjs6pHt8uWDzp1h9Wojsxo50lid+uyzxpEJ48fDhQsWa65hQyhf3mK3E1bmBe8XqPFUDbr81oUG\n0xuwOXyz2SGJLJSRfdycgHEYw6QPzRLWWlvlTGfZx826/X3lb0oWKknBPI//QR1xK4IKkyowquEo\nPgr4KF33f33p62w+s5mDAw5mNlSRFXbtMuaz3b9vJGwBmfslIT1iYoydPbKhqfSJizOO6poxwxgq\njokx5sT16QPPPw+OjhZrKjoaFi0yOjbtrfJ/bJERQSeDGLFmBKHnQ2nv054vmn1BhSIVzA4r17Km\nfdzGA02A/sAD4DXgQyAC6GGpwETuUsmtUrqSNgAPZw8GPTOICdsmcOXulXRdE3wqGP+y/pmIUGSZ\n6dPhX/8y9j8LDc22TMrBwYqSNjDm8zVtCj//bAylTp5sLMxo2xZKlTJ65cLCLNLUunXQpQv8/bdF\nbiesRIBnADv/vZOf2v7E9nPb8Znqw7BVw7gTZZk5lMI6ZCRxewkYoLX+DYgBNmqt/wu8A3SzZHBC\npGX0v0ajUHy+6fPH1pX5bVbqwQPo1w9ee804z+mvv4wEJQtdvJilt7ccV1djb7idO2HvXujaFWbO\nNIZRGzSA//3P2Colg1q2NI7RSnmQvUyPsn12yo5Xn36Vvwf9zVj/sWwM30ge++w5Z1dkj4wkbkWA\nk/F/vxn/HGATIBOIRLZImHc3ZccUzt48+8i6CfPbzNoHyVY2EM5WZ84YKyp//NHocfvuO+Ns0Sxu\nslIlY02ATalRwziPNSICFi6EIkXgjTeMBQ09e8KGDRnKuDw9kz/fs8do6tQpy4QtzOXk6MQ7jd5h\n+2vbcbS33DC7MF9GErcTQLn4vx/GmOsGRk/cdQvEJES6DG0wlIJ5CvLVlq8eWe9+zH2al2+e7Yc1\na61pPLNxunoFc5WgIOPoqgsXjPOa+lhur75HKVUKxo2DF1/MluYsL08e45zWZcsgPNzYMXjLFuP4\nBC8v+PRTOPvoX2IexdHR2IElizs9RTazpQ3MRfpkZHHCUCBWaz1JKdUMWIqRADoAw7TW31g+zMyT\nxQk507az26harCrOeZ3NDiVV3Rd1J/R8KAcHHETl9tPAtTZWjI4eDU2aGF1fbta9353V09pYYTFj\nBvz6q7G447nnjGT4pZcy3Yt56xasXw+tW8th9jlVbFysdZ+eYsOsZnGC1nqi1npS/N/XApWBLkAt\na03axJOzlcPd65eqb7VJG0DX6l0JuxLG3ot7zQ4FgAlbJ/DSvJeyv+Fbt6BTJ2OC/ahRsHJltiRt\n0dE5fN6WUv9s4nv+PAQGwvXr0KGDcczWW2/Bvn0Zvv2SJdCxozFKK3Ke2LhYGkxvwMjVI7l+XwbM\nbMUTJW5KKUel1DqlVOI5LVrr01rrRVrrjP/vIKxKbFwsNb6twey9s80OxeY1L98cNyc35u6fa3Yo\nAKw6vir759z9/TfUr2+c3fnbb/DZZ9myB4XW0K2bcWhBrlCokLHQY8sWOHTI6HX75RfjoPs6dWDa\nNIiMfKJbvvqqcauSJf8p0zqHJ8O5SExcDC96v8i0XdOoMKkCk7ZPIio2yuywxGM8UeKmtY4GamRR\nLMJKrDy2koOXD+JTzMfsUGyeo70jHat0ZN6Beab3YkbHRrMpfFP2rq5dsgSeecbYo2znTmOvtmyi\nlDGfrWnTbGvSevj4GBP6zpyB3383Jq4NHmxsudK1q7HZb1z6vh8rpNgGLCjIyMOvpG8nHmHF8jrk\n5QO/Dzj25jFervwyb618i2rTqrE4bLGcwGDFMjJrcQ7Q19KBCOvxXch3+Lr7Usejjtmh5Ahdq3fl\n7M2zbArfZGocuyJ2cTf6bvYkbrGx8O67xrmczZvDjh1QuXLWt5tCjx7GNmi5lqOjMUFtyRJj4cJ/\n/wu7dxufSfny8NFHcPr0E92yQAGoWROKPrT9urBV7s7u/ND6B/a8sQdPV0/aLWiH/4/+7IrYZXZo\nIhUZSdwcgP5KqRClVKBSakLSh6UDFNnr9PXTLDuyjH6+/cwOJcdoWLoh5QqX4+d9P5saR/CpYArm\nKUht9yxenHP1qrHT/+efG4+FC8HZeuch5holSsCIEcbY55YtRvL25ZfGviDNmxuLRe7de+xt6tUz\nptIlXaxw6ZLRiSedNLatxlM1WNV9FSu6reDq3ausPLbS7JBEKjKSuFUDQjH2cPMGaiV5WNmJ1eJJ\n/RD6AwXzFKRL9S5mh5JjKKXoUq0Lq46vMnW4dMPpDTQq0yhrzycNDTXmU4WEGOdwjh6drcsR16+H\nNm3gjmwUnzal/tnE98IFY2PfqChjCNXDAwYOND6/J8jC5swxdirJxJ7Awoq0rNiSPW/sYWTDkWaH\nIgs0W50AACAASURBVFKRkVWlAY94NMmKIEX2iI6N5ofdP/BqjVfTffyUtdl3cR/DVg1Da03Y5TBu\nR902OyQARj07irCBYabtqZQt89sWLTIOSXdzMxI4EyaXaW3sgJFHNopPnwIF/tnE98gRGDDAGFat\nU8cYD/3mm3RNZhs61Dhu1sXlnzLpfbNtDnYO5HXI2k2xRcZYzc58SqmBSqmTSql7SqltSqlnHlG3\np1IqTikVG/9nnFLqbnbGmxMtPbKUC7cv0K+O7Q6TXrx9kYnbJrLs6DLazm/L6DWjzQ4JgML5CpPf\nMb9p7YecD+FO9B38ymbB6RFaw4QJxonlbdoY+4qVKWP5dtKhaVNYsMCi57HnHl5e8Mknxua+y5eD\nt7exfYuHh7G9yIoVxtzFVChlXJ7Ur78an8dd+Z9ZCIt64sRNKRWklFqf1iMjQSilOgFfYRxWXwvY\nC6xSSj1qo6cbQIkkj7IZaVv8Y+PpjTQs3ZAaT9nuwuFm5ZvhV9aPISuHcOTqETmfNF5lt8rMf2W+\n5ee3xcTAoEEwfDiMGQNz50K+fJZtQ2Qve3to1crIvCIiYPx4Y0uX55+HsmWNRSfHjj32NkWLQrVq\n4OSUDTGLbLfj3A6a/dSM3ed3mx1KrpORHrc9GIlVwuMQkAeoDezPYBxDgUCt9U9a68PAG8Bd4FFn\n4Wit9WWt9aX4x+UMti3iTWw5kVXdV5kdRqYopfikySeciDwBmHc+qbUpnK8wHat2tOyZhbdvG0s2\nAwPh+++NI5fssr8Tf9Mmo5NIZAE3NxgyxDjofudOY4Xq1KlG95qfH/z0U5oTCps2NUZakzp1CrZv\nz/qwRdaLjo0m4lYEvt/70mtJr8eeGS0sJyNz3IameAzSWv8L+Br+z959h0dVLw0c/05Cka7SRRHU\nC4gKAgqoiIqiV0SvvNiwoaBgRbn2gqgootiwXb0iCBYEuyKIYMUCXCEUKSJVuiBIr8m8f8zGhJC2\nm92c3ex8nmcfyNmz50wSSGZ/ZYbd4V5PREoDLYAvs91DgQnACfm8tKKILBGR30XkIxFpHO693b4S\ndW1bdifVPYmODTrSpGaTYu9PmjRWrrSK/d99Z70zr702kDBUbbDvDl9DHVsiWUV8V62Ct96y+eiu\nXa02XI8eMGlSgQvbXnnFKsTs8hqvCe+kuicx8/qZvHTOS4z5bQwNnm9An6/6sHnn5qBDK/HC7lWa\n54VEjgCmqOqBYb6uNrACOEFVJ2c7/jjQVlX3Sd5EpDVwBDATqALcAbQFjlLVFXncx3uVJpEtu7aw\ndddWalasGXQoJc+sWTZtBpa0NQl2an3zZhv0qVUr0DCS05Il1m5r6FAb9jzySOvYcMUVUHPf/3vp\n6bBo0d7r4VS9D2qi27RzEwO+H8Azk56hStkqPHzaw3Rr1i22O9gTQNz0Ks3HCcCOKF5PgFyzSlWd\npKpvqupMVZ0I/B+wFugRxfu7BFaxTEVP2mLhiy+ydo5OmhR40gZWIs6TtoDUqwcPPgiLF8P48bYT\n9f77rUfW+efDJ59Yw9iQ1NR9NzG8/LI11Mhj34NLAJXLVqb/6f359aZfaX94e3qN7cWyjcuCDqvE\nCjsdFpEPch4CagPHAf0iiGEdkA7k/C1bA1hTmAuo6h4RScNG4fLVu3dvqmTfsw506dKFLl1KVt2y\nDM1g9h+z8z3n0P0PpXLZysUUkcuUoRmkrUqjxUEtgg4lPIMHw3XXwVlnWQ9ML6rrMqWkwBln2GPD\nBivmO2SI7TKuWdNaWHTrlmv3jFq1oGHDYmlf62KsbpW6vNHpDR4/43EOqnRQ0OEUqxEjRjBixIi9\njm3cuDEm9wp7qlREhuY4lIGNdn2lql9EFITIJGCyqt4S+liA34HnVHVgIV6fAvwCjFHV2/M4p8RM\nle7Ys4Ppq6fT+uDWeZ6zdddWKj6W/3q10V1Gc06Dc6IdnivAu7Pf5aL3LmJhr4UcdsBhQYdTsIwM\nG0V57DFL3J5/HkoFOwUyY4Z10erWzX/hx7UZM2wa9Y03YP16K/zbvTtcdFG+if+8ebZh+eijizFW\n56IsVlOlUVvjVqQgRC4ChgE9gSnYLtMLgEaqulZEhgPLVfXe0Pl9gEnAAmB/4E7gPOyLMy+Pe5SI\nxG3Kiil0/agr67atY+mtSylfOve99ukZ6QX2mWtQtQEHlDsgFmG6fGzdtZUaT9bgvpPv496T7w06\nnPzt2AFXX20jbAMH2k6AOFiQNHCg5QMzZnjNtoSwc6dNmw4ZAuPGQblylrx16wZt2uzzb6p7d/jp\nJ5g9Oy7+uTkXkbhJ3EKFcVOybyQIHW8FpKtqRF1pReQGLAGriZUcuTnzWqH6cEtUtVvo46eBTlj9\ntg3AVOA+VZ2Zz/UTOnHbuWcnD337EI//8DjNazdn2PnDaFzdN9Imqss+uIzpq6fzy/W/IDH8zTRs\n+jDmrpvLgDMGhP/iP/+0dUo//2wjJhdcEP0Ai2DrViv87xLMsmVWRmTIENupcMQRlsBdeaWtjcN2\nnS5bBocfnvUy38RQcjz4zYPUrVKXrk27kppScofM42lzwovAIbkcrxN6LiKq+pKq1lPVcqp6QvYE\nUFXbZSZtoY//rar1Q+cepKrn5pe0JbqpK6dy3KvH8eSPT9LvtH781P0nT9oS3GXHXMactXOYuSa2\n/2xHzh5J2uoICmQuWGDTWvPmWQPQOEvawJO2hHXIIVbE97ff4Jtv4MQToV8/67Zxzjnw/vuUYdde\nSRvYTP2113orrUSnqizasIjun3Sn+X+bM2HRhKBDSjiRJG6NsSbzOaWFnnNRsit9F32/7kurwa0o\nnVKan3v8zL0n35v0W6xLgvaHtadquaq8PevtmN1jT8YeJv4+kVMPPTW8F/74I7RubcMbkyZZAudc\ntKWkWBHfYcOs2f3LL9s6uAsusJG33r2t9ExInTq2idVH3RKbiDC803AmdZ9EpTKVaP9Gezq81aHA\nzXQuSySJ20723QEKtrN0T9HCcdn98PsP9P++P33a9mHyNZMTuhWV21vp1NJcdNRFjPhlBBmaEZN7\nTFs1jS27toTX9mvUKGjXDho3tkVGOYc9ArR+PVx8MSxdGnQkLuoqV7bhtMyFbVddZe3TmjSB44+H\n//yHrv/6i/vu2/tlM2bYbKtLPK0ObsXEqyfy3oXvMf/P+TR5uQk9P+3Jmi2FKiaR1CJJ3L4AHhOR\nv2tqiMj+QH9gfLQCc3Ba/dNY2GshfU/tG91WRS4uXHrMpSzbtIwffv8hJtf/Zsk3lC9dnuMOOq5w\nL1i9Gi691Na1jR8PB4ZVSzvmli6F+fO9FWqJ17ix7T5Zvhw+/NA6M9x8s/152WU2dZ9hb3b69LHm\nDS4xiQidG3dmzo1zeLL9k7w75116ju4ZdFhxL5I5t9uB74ClodppAMdiNdeuiFZgztStUjfoEFyM\nnHjIibSp24Z129bF5PrfLv2WNnXbFD7pnzDBqqAOGgRly8YkpqJo1gymTfOpsqRRurS9iTj/fGuz\n9cYbtqHh7bdtzvTqq3nniatYU9Z/Ria6Mqll6H1Cb7oe25VNOzcFHU7ci6RX6QqgCbYDdA62o/MW\n4BhV9VLJzhVSiqQw8eqJdDqyU9SvvSdjDxOXhrm+bfx4m5rKpVVRvPCkLUnVrg133glz58IPP1gH\n+4EDKd+4HvV7nmnlanZY454774R77gk4XheRA8sdSL396wUdRtyLqOWVqm5V1f+q6o2qeruqDlfV\nsBvMO9i+e3vQIbgSKG1VGpt3beaUeqcU7gWqNuLWvn1sA4uA7yJ0fxOxXaiDB9so3JAhlrB16WLJ\n3U03cVDGMmrX8n80ruQKO3ETkXtEpFsux7uJyF3RCavkS89IZ+APA6k/qD4rNq0IOhxXwlQrX437\nT76/8Ovb5s6FlSvjLnFLT7eNhyNHBh2JizsVK9omhu++g19/heuvhw8+4Nan6tJraDN47jmrRQj8\n73/2z9sltk07N3HHF3fwx9Y/gg4lUJGMuPUEcutOMBu4rmjhJIf5f87n5KEnc9eEu7i8yeUcWC6+\nFoEnvT/+gHWxWXdWXOofUJ9+7fpRJrVM4V4wYQKUKQMnnxzbwMK0Ywc0bWpLmpzLU4MG0L8//P47\njB5tu6Fvuw0OOgguuoheV/7FTTf6KFyim7lmJq9Oe5UjnjuCAd8PSNoZq0gSt1rAqlyOr8VKgrg8\nZGgGz056lqYvN2XttrVMvHoiT575JOVKlws6NJfdhRfaME9ozUxSGD8eTjoJyufeQi0oFSpYa9RW\nrYKOxCWEUqX+LuLLypUwYADMmcPn8w7l2UmtbRvqwoVBR+ki1KZuGxb0WsDVx15Nn6/70OjFRrw1\n862YlVSKV5EkbsuAk3I5fhLgg9F5WLB+Aae+fiq9x/WmZ4uezLhuBifVze3L6AK1fj18/z3MmQMP\nPxx0NMVj926rYH/GGUFH4lz0VK/+dxHfKlMmUPf85jZ9esQRcNpp9DjtNwY+uivoKF2YqpWvxqCz\nBzH7htm0qN2Cyz+8nNaDWzNx6cSgQys2kSRurwLPisjVInJo6NENeCb0nMth6V9LafpyU1ZsXsE3\nXb/h2X8+m2dzeBew8eOtRtR118Hjj9vimJJu8mTYsiWu1rdt3eqbElyUiPxdxJdVq+DNN1FJ4aBv\n3qL6I72gZ0/7P+D/4BJKg6oN+ODiD/j2qm9RlLavt+WbJd8EHVaxiKTJvAADgF5A5gKaHcDjqhq3\nQxRBN5kfNn0YnRt3pmKZisV+bxeGrl0hLQ2mTrW2Tzt2WPGwGNc1W799PRMWTaDzkZ2Lv+ly3742\nH7l2LaTGR8PnSy+1gcB33w06EldiLV4Mr78OQ4daR/vGjfmx3f00uukMDmxYPejoXBgyNIPP5n/G\nOQ3OIUUiKpYRE3HTZF7NXUB1oDXQFDgwnpO2eND12K6etMW7jAwYOxY6dLDin6+/bo2wi2HKdNaa\nWVz83sXMWTsn5vfax4QJ1uYqTpI2gG7d4Aov5+1iqX59eOghS+DGjSPj6CZ0feF47j7yY+jUyTY5\n7PEujokgRVI4t+G5cZW0xVLEn6WqblHV/6nqL6q6M5pBOReIqVNt1KlDB/v4mGPggQdsyvTnn2N6\n6xYHtSBFUpi8YnJM77OPjRttmijO1redcQacd17QUbikkJoKZ55JysgR/DCvKg/1S7H+aueeC4cc\nAnffbeVGnIsTESVuInK8iDwhIu+IyAfZH9EO0LliM3asNbs+4YSsY3fdZfUorroKdsbu/UnFMhU5\nqvpRTF5etMRt0YZFvPzzy2zdtbVwL/j2WyuWFkfr25wLSo2GB1D7vm62PGLaNLjwQi55uiWvNXoC\n2rSxgr+bNwcdpktykRTgvQT4ATgS6ASUBhoD7YCNUY0uQazYtILLPriMNVvWBB2KK4oxY+DMM22a\nNFPp0rYGZv586NcvprdvVacVU1ZOKdI1vlz0JTeNuanwUwbjx1uRtMMOK9J9o2H7dhvocC4uNGvG\nnqefo1aP8zjwtm5W8Peaa6xDQ7dutvvcNzS4AEQy4nYv0FtVzwV2YX1KjwRGAb9HMba4p6oMnzGc\no146iq8Xf82Sv5YEHZKL1Nq1MGVK1jRpdk2aWP2nAQNsOjVGWtZpyS9//MKWXVsivkba6jQaVWtU\n+NqAmW2u4qAJ6Esv2ez0xqR8++fiUalS8OwLpej05Enw+eewZAncfTcTP9/KlpP/CQ0b2s8Fb8vg\nilEkidvhwGehv+8CKqhtTX0G6BGtwOLdqs2r+Nc7/6LrR105r+F5zL5hNq0O9iqhCWvcOHv3/M9/\n5v783XdbAhfDKdNWB7ciQzOYujLy5DBtdRrH1jq2cCcvXw7z5sXNNGmPHtYrvEqVoCNxLg9167Lz\njvv5v93v8Nhls23n+cMP21q4jh3hgw9gl9eGc7EVSeK2HqgU+vsK4OjQ3/cHSnxxMlXl7Vlvc9RL\nRzFlxRQ+uvgjhncazgHlDgg6NFcUY8dCs2Y2DZKbzF2m8+bBI4/EJISjqh9FhdIVIt6gkJ6Rzsw1\nM2lWq1nhXjBhgo20tWsX0f2irVKl3Ac8nYsnZcvC1KnCvwcdCsOHW224l16yUfvOnaFOHfj3v+GX\nX4IO1ZVQkSRuE4HMt+jvAoNE5FVgBPBltAKLRzv27KDzqM5c9sFlnHXEWcy+YTb/avSvoMNyRZWe\nbtMgBWUNmVOmjz1mC5ejLDUllbaHtmXzzsgWP/+2/je27d5Gs9qFTNzGj4fmzaFq1Yju51yyqls3\n23+bKlXQHj3pWH0y7z+9FK68Et580+b9W7WCV17x+X8XVZEkbjcB74T+/ijwNFATeB/oHqW44lLZ\n1LLUqFCDdy98lxGdR1C1vP/CKxGmTLFWV4UZ7rnnHvuBfNVVMZkS+ezSz+jXLrJNEGmr0gAKN1Wq\naiNuAZcBUYWPP/ZyWS6xbdsGNWtC1WZ14amnbBnCBx9AjRpwww1Qq5YVJvz6a6sX6VwRRFKAd72q\nrgz9PUNVB6jqeap6m6puiH6I8UNEeLnjy1zQ+IKgQ3HRNGYMHHhg4TqZZ06Zzp0bkylTKcImgbTV\nadStUpcDyx1Y8MmzZsEffwS+vm36dDj/fGuV6lyiqlABXnsNTj01dKBMGejUiW9u+5Qdvy2DBx+0\nN4jt2lmv1H794Pek2svnoig5ygw7l5+xY60MSGE7BzRtCvffD/37x2TKNFL7ldqPsw4/q3AnT5gA\n++0HJ50U26AK0KwZzJkDp58eaBjORd2GDTaI//InB1k9yHnzrITIaadZUe969eCss2DkSGut51wh\nhd2rNFEF3avUxanVq21DwvDh4fVY2rULWra0ub7//c/eYSeSs8+2tX1ffBF0JM6VWL/+ansVKubs\ndrh5szXiHTIEfvgBDjgALrsMuneHYwu5K9zFvbjpVepcifL557az8qxCjlRlKlPGpkznzIFHH41J\naDGzc6d1TIizNlfOlTQNG+6dtO3ebf/tJkyulFXEd948q4Xz3ns2BN28Obzwgq27dS4Xnri55DZ2\nLBx/vC0iDtexx8J999mUaVpa9GOLlZ9+sjYFAa5ve+01y3mdSyabNtly2urVsx3MLOK7bBl8+qlN\nofbubTMBl1xio+Lp6UGF7OJQxImbiBwhImeJSLnQx8GXXncuHHv2WOHds8+O/Br33guNG8dsl2lM\njB8P1arZWr0A7NoFTz4JH30UyO2dC0zVqjBq1L7/9b7+GvZQKquI74oVVnZo1iybDahfHx54ABYt\nCiZwF1ci6VVaVUQmAPOBMUBmxdLXROSpaAbnXEz99JPVVypK1dcYTZmqauEbxYdrwgTbDZASzIB7\nmTK2m/S22wK5vXNxZelS++84cmS2gzVqZBXxnTzZfkYNGgSHH247U99802qQuKQUyU/uZ4A9QF0g\n+7+ckUAe/YKci0NjxticxXHHFe06zZrB7bfDwIFRK7TZZmgb/j3u31G51l42bICffw68DEjZsvZw\nLtkdeqhtTr/oolyeFLFNUC+/bB0ahg+3DVFXXGFTqdddZ5ujkmSToTORJG5nAnep6vIcx38DDi16\nSM4Vk7FjrTdpNEaebr7ZFv2PGFH0awGNqjZiysopUbnWXjILgPrGBOfixrHHWonITFu3Wk24ydm7\n35Uvn1XEd8EC6NULPvvMErsmTeCZZ6ztlivxIvmNVYG9R9oyHQjEpvu2c9G2YgXMmFG09W3ZHXSQ\nTWcMHhyVy7U6uBWz1sxi2+6Cp0O27NrCzj2F/K83fjz84x/2Nr+Yvf02PPGEDw44V5ANG6x3b82a\neZxw+OFWxHfJEtsZ37gx3H23/Rzq3NkSOm9HUmJF2qv0ymwfq4ikAHcCX0clKudibexYG2k788zo\nXbN7d5g61RLCImpZpyXpms60VQWX/vnv1P9S48kaZGghWunk0+Yq+8a1Z5+1Qu/RtGABzJ5tsz/O\nubwdfHDWBtPsvvkmR8es1NSsIr4rV8LTT8PChbbJoW5da9E3f34xRu6KQySJ251ADxEZC5QBngB+\nAdoCd0UxNudiZ8wYaN06ug3WzznH3iK/9lqRL3V0jaMpX7o8k5dPLvDctNVpHFntSFKkgP/OS5ZY\n9pTH+rb27aFPH6s19e67luNF0wMP2D4O51z4pk+3pgt5/r+sWtWWbEyfbovmOne2BvcNG8LJJ8PQ\nobBlS7HG7GIjkl6lvwANgO+Bj7Gp0w+AZqq6MLrhORcDu3bZT7+i7CbNTenS0LWr7fgqYgubUiml\naFG7BZNXFCJxW5VWuMbyEybYKONpp+X69CWXQJs29ml89ZW9WY82H21zLjLHHmtr3gq1r6hZM3j+\neRuFGzHC1sd1727N7rt3t24NvmYhYUW0KltVN6rqo6p6kap2UNX7VXVVtINzLiZ++MFazkRrfVt2\n3brZApUPPyzypVrVacWUFfnPV27fvZ156+bRrFazgi84frwVG95//1yf7tEjq4FE2bJ7J1l79kRe\nA9R/PzgXHS1b7v3/cu1aex+WZzHr/fazd2TjxsHixXDnnfaurE0baNTIeqau8l/diSaSOm5N8ngc\nIyL/EBHf5O/i25gx9s4zFj0BM6clojBd2rJOS5ZuXMqaLWvyPOeXP34hXdNpVruAxC0jA778MuLd\npDffDBdfHH4SNnmy/Y5YvTqi2zrn8rF+vb3JynMTQ3aHHmrrFRYutJ8Fxx8PDz4IhxwC551nFbF3\n7451yC4KIhlxmw6khR7Ts308HZgHbBSRYSKyX9SidC6axoyx0bZYFaDt3t1+MBaxyvlZR5zFnBvm\nUL1C9TzPSVudRqqkckyNY/K/2PTp8OefEddvO+88+Ne/wp/qFLEF1tXz/hSccxFq2NA2lWZfqpuR\nARMn5vMmKyUlq4jvqlXWF3X1aujUyXZF3H6796OLc5H85uqE1WzrATQFjg39/VfgUqA70A54JEox\nOhc9S5faD6Vor2/L7oILbC//0KFFukzlspU5snr+mw7SVqXRqFojypUul//Fxo+3dS6tW+/z1E8/\n2QzK9u15v/zss62EVLhatoS33rLNb8652PvyS2jbtpDtk/ff34r4TpkCM2fCpZfaDqKjjrKfFf/9\nb9SKirvoiSRxuw+4RVVfU9VZqjpTVV8DegO3qepbwM1YgldoInKjiCwWke0iMklEji/k6y4RkQwR\n+SDsz8Qln7FjLYuIZQHaChXsB+DQoTFvDj19zfSCp0nBNiacckqu7QqWLLEyA/uFMUa+ZQt8/33h\nz3fOFY8zzoAff4TmzcN84THHWBHflSvhvfdsGO/6661Dw5VX5lKLxAUlksTtGGBpLseXhp4Dmzat\nncs5uRKRi4GngL5AM2AGME5EqhXwukOBgcB3hb2XS3JjxsBJJ+W5QD9qune3Ir/jxsX0Nh9c9AH9\nTuuX/0nbt9vcSR7TpF262BvucKZBn3nGpk43b877ls654icCJ5yw97FFi+y//9LcfnPnVKZMVhHf\n33+3GkE//WS7IP7xD3jkEVies3GSK06RJG7zgLtFpEzmAREpDdwdeg6gDpD3iup99QZeUdXhqjoP\nuA7rztAtrxeEiv6+CTwALA7rM3DJaccOm0eI5TRppuOOs3ewUdikkJ/alWpTb/96+Z/0ww/WjiuK\no4x3321vwCtV2ve5NWtsHfTo0VG7nXOuCDZssImGsNea1qmTVcT3u+9sDvaxx6y479lnW8HHnd4w\nqbhFkrjdCHQElovIBBEZDywPHbs+dM5hwEuFuVgo6WsBfJl5TFUVmACckNfrsNG5P1S1aAuJXPKY\nOBG2bSuexE0ErrkGPvkE/vgj9vfLz/jxtu3s6KOjdsnSpS0vzU3FirYL9cQTo3Y751wRtGhhmxjK\nl886tmtXjl6o+RHJKuK7ejW8+ips2gQXXWRttm65JSodY1zhRFKA90egHjbSNRPrmvAAUF9VJ4XO\neUNVBxbyktWAVPYdoVsD1MrtBSJyEnA1cE248bskNmaMvYOMYgKTr8susx1cw4cXz/3yktnmKpe5\n0C++iM7a49Wr4fLLrTxBhQo2u3LggUW/rnMuNt57z6ZUCzV9ml2lSllFfOfOtTeoI0daeaUWLeDF\nF22Iz8WMaMDVMUWkNrACOEFVJ2c7/gTQRlVPzHF+RSxhvF5Vx4WODQWqqOr/5XOf5sDUtm3bUqVK\nlb2e69KlC126dInWp+TiVcOGtkD/v//N97TvvoNSpaI0YnTJJfZOdM6cYNoGrFsHNWrYO+WuXfd6\nav16qFYNhgyBq64q2m2mTrWf5Z9+amWhnHPxLSMDJk2K0s+53bttSG/IEFsjkZpq5UW6dYPTT49d\n6aU4MmLECEaMGLHXsY0bN/Ldd98BtFDVghtPF1LEiZuINAbqYv1K/6aqn4R5ndLYerbO2V8rIq9j\nyVinHOc3BaYB6UDmb8LMfxXpQENV3WfNW2biNnXqVJqHvd3GJbyFC+GII6yjwfnn53vqs89ar+ZF\niyyBK5IJE2xV8A8/RPwTctLySdz31X2M7jK64LIfOY0aZZVzly+30cYcfv/d9mlUrhxRaHvJyEiK\nn8/OlVjTpllN3tdeK0LtxTVr4I03LImbO9fWw111lT3q149esAlg2rRptGjRAqKcuEXSOeEwEZmB\nTZF+BnwUenwYeoRFVXcDU4HTs91DQh//mMtL5mK7V4/F6sg1BT4Bvgr9fVm4MbgkMHasLcw6/fQC\nTz3zTKtJGZUkpF07q0A7eHDElyiTWoavFn9F2urCFGbKYfx4OPLIXJM2sJ+p0UjawJM25xLdpk1W\nweiAA4pwkZo1rYjv7Nm2G/Wss2wb+mGH2c/ft97ybedFFMmP2kHYLs6a2EjZUUBb4Gfg1AjjeBro\nISJXikgj4GWgPPA6gIgMF5H+AKq6S1XnZH8AfwGbVXWuqu6JMAZXko0ZY4trc9sGmUPjxtYpICqJ\nSEoKXH21jXzlVTujAMfUOIb9Su3H5OWFXUkcomqJWyxr1jnnSoxTT7UqINlnGjZvhlmzIriYyw0y\nZwAAIABJREFUSFYR31WrYNgwywovv9xqw91wA/z8szczjkAkv5pOAB5Q1bVABpChqt8D9wDPRRKE\nqo4CbgMextpnNQHOCt0D4GDy2KjgXIG2b4evvy5wN2nMauVefbXtZh05MqKXl04tTfPazZm8Iitx\ne23aa9w27rb8X7hwoa08zqV+265dEYXinEsyQ4ZYB5Qi7TeoUCGriO9vv8FNN9mO++OPh6ZNbX3K\n2rUFXsaZSBK3VGBL6O/rgINCf18KNIw0EFV9SVXrqWo5VT1BVX/O9lw7Vc2zppuqXp3fxgSX5L75\nxmq4FZC4Pf641ZjM/gYwKiP6hxxi0wVFmC5tVacVU1ZM+fvj0b+NZsaaArbfjx9vi4RPPXWfp3r3\nhn/+M+JwnHNJ4oYb4Kuvijh9mt0RR1gR36VLbQlLo0bWc69OHWsXOGYM7PGJs/xEkrj9go2IAUwG\n7gyV53gAKFpXbZd4VOHll2FZHC8tHDPG1pk1apTvaccfv3cj9W+/hVq1Itgun5vu3a1o0uzZEb28\nZZ2WLP5rMWu32rvS6aun06xWAa2uJkywqYpcpoc7dbI3wM45l5/SpfftxPDll9bVb8uW3F9TKKmp\n9u5x1ChrszVwoBX6Peccq+B97702Ouf2EUni9ki21z0A1AcmAh2AXlGKyyWKt96yfnYXXRTzvpwR\nUbXE7eyzCyzH0b493Hpr1sfHHQd33FGoZXEFO+88q70RYSeFVnVaATB5xWQ2bN/Akr+W5N+jND3d\n3ibn0ebqjDPsB69zzoVr61ZrmFChQpQuWK1aVhHfn3+2nf//+Q80aGDdGl5/3W7qgMgK8I5T1Q9C\nf1+gqo2wIro1VPWraAfo8rBrFzz5ZLAjXevXw7//baM6U6bYO6ZYyMiwzzUtgl2V8+dbXY8IuiVU\nqAD33x+lQrJlytgQ1xtvRNQipt7+9ahevjqTl09m+urpAPmPuE2dCn/95RsTnHNRd9558P77e78X\nXrsWFiwo4oVFsor4rlwJb78NZcvaOuFateDaa22napJvaAgrcRORUiKyR0T2Kj2vqus16Eq+yWTX\nLhvhuuMOm/MKqlfcXXdZLB9+aNu/H3ggwu1HBfjPf+xzPf54u+e2bYV/7dix9h//tNOiH1e4une3\ngrifhFXqEAAR4ZF2j9CufjvSVqdRrlQ5GlRtkPcLxo+3ocKWLYsQsHPOFc6gQfYePmq/jsqVgy5d\n7GfZ4sX2O2b8eKuH2bixDRSsXh2lmyWWsBK3UKmN37ENCi4Iu3dbNf6xY201/axZltQUt4kTbbH9\ngAH2Tujhh21Y+4orortlcdky62jevbvdY9Aga5L55ZcFvxZsmvTUU/Md03/lFeutmd9bD1Ub+CuS\nxo1tsUiE06U9WvTgtPqnMX31dJrUbEJqSj7/DSdMsM+7dOm9Dme2plqyJKIQnHMuV/fdZ00TypaN\nwcXr1YO+fW32ZMIEaN7c+uodfLAtTP74Y/vdmCQiWeP2KNBfRLwTYXHbvdvegYwebePUd95phQ2f\nf94azxWXXbugZ097e9Wjhx0rW9Z6cs6eDf36Rec+qralqVIleOopW6w6c6bt0jzjDBs+//PPvF+/\nZYvtMDj77AJvVbp03kvg/vrL2pt+9FGEn0d23btbg9Dff4/4Emmr0/KfJt261To15LK+bcUK675V\nsWLEt3fOuX2UK2e/ErJ77z37VRG1TaIpKVlFfFetgueesx9q559vSdwdd1i3hpJOVcN6YHXWNgM7\ngF+x9lN/P8K9XnE9gOaATp06VRPS7t2qF16oWrq06scfZx3PyLDjlSurLlhQPLE88ohqqVKqM2fu\n+9xDD6mmpqpOnlz0+7zzjiqofvjh3sfT01VffVW1ShXV6tVVR4ywr0NOH39sr58/v8ih3HuvalT+\n6WzapFqhguqDD0Z8iUe/e1THLRiX9wljx9rnPWdOxPdwzrmiGjZM9YoriuFG06er3nKLatWq9rOv\ndWvVTz4phhvnb+rUqQoo0FyjmM+E3atURPoWkAg+FGbuWCwSulfpnj02v/X++/Duu/v22ty0yYaO\nq1SxkZb99otdLAsW2FTlLbfYNGlOu3fbGoQtW6zxXbkwe2tm+vNPa9XUtm3eo4mrVkGvXvZ8hw62\nFq5u3aznr7/ehtXjbUv5NddYXIsWxaZP1AMPWImWNWuCaWzvnHN5WL7cfizl0YWvaHbuhE8/tarB\nnTvbDEeAYtWrNPCRsOJ6kKgjbrt3q15yiY1wffBB3udNm6ZatqzqjTfGLpaMDNX27VXr1VPdujXv\n82bPtlh69478XlddZSNqK1cWfO7HH6vWqWMjWc8+q7pnj8Vat65qr16RxxArP/5o7wq/+CI21z/3\nXNUzz4zNtZ1zrgh69FA97DCbOCnpYjXiFtHbfRHZX0SuEZHHMte6iUhzEYlFDp280tOha1cbZXvn\nHdtBmpdmzaxtyIsvWkHDWBgxwnb1vPQSlC+f93mNG8Ojj1o8334b/n0mTLC6PU8+aT3tCnLeebZw\n66qrrCXAiSdae6nff893fdt771kbvXCFOUi9r9atbTSxCJ0U8pWWZv8ecvjySxvkc865oAwcaL/O\nYjHZkCzC/tKJSBNgPnAXcDuwf+ip/wMei15oSS493RbfjxxpCVPnzgW/pmdPuPhim4orckGdHNav\nt6TooosKtdifW2+FNm0smQqnufq2bfZ5nHpqeMPclSvDCy/A99/bNG2XLjZNe8opeb7kf/+zHDEc\nN95otd2KRMS+Rx99lP/mikisW2dzEbkkbj172j4W55wLSuXKVtkpu8GDrdJTkd8UJ4lIct6ngddV\n9R/YBoVMY4C2UYkq2aWnQ7duVnzw7bfhwgsL9zoRG0KqVctes2NHwa8prLvvtus9+2zhzk9NhaFD\nrSrj7bcX/j4PPmi7hP7738jWZ514oq2t698fHnoo3zV2jz9u7/zCccQRUL9++GHt44or7KfUm29G\n4WLZZBYpziVxmz7dNuY651w82brV3m/7ktxCCnduFdgIHB76+2bgsNDfDwV2RHMeN5oPEmWNW3q6\nre9KSbHdkpFIS7M1ZtdfH52YJk60NVkvvRT+a//zH3vt2LEFnzt1qn3e/fuHf59E1Lmz6tFH574j\nNlKPP25r/ZJhAYlzrsRatEh13bqgoyiaeFrjthOonMvxBsDaCK7nMmVkWEuP4cOtNdIll0R2nWOP\ntfo2//mPTbUWxa5dcN110KqVzbWFq2dPOPNMm/bcsCHv83bvtnOOPjq8EbpEds018MsvNmcbLdOn\nQ9OmvoDEOZfQbrstok6FSSGSn+6fAA+ISGZJdhWRusDjwPtRiyzZZGRYkjN0KAwbVvQO4Ndea+u8\nrrnG+nVG6qmnYN48m7qMJBkQsU4BW7dae4K8PPOMFdcdPHifav/R9u23VjUlcO3bWzHhCDsp5CqX\njQk7dkSxAKZzzhWDV16xqkZuX5EkbrcBFYE/gHLAt8ACbNr0vuiFlkQyMqzm2Guv2W7Kyy8v+jVF\n7F/+QQfZhoLt28O/xsKF1mbq3/+GJk0ij+Xgg21V/FtvWS26nBYssHYmt96676rVGHj+eXjkkaJd\nY+RIuOyyIgaSmmqbN0aMsMS2qLZuhV9/3SdxGzbMaiZFc8mjc87FUvXq+y7VffppW5uc7MJO3FR1\no6q2B84FegEvAB1U9RRVjcJvnySjalsVX33VRtuuvDJ6165UyUqJ/PqrJUXhxnXDDVCzpiVVRXX5\n5VbO5LrrrDBs9vv07JnV77QYjBpV9D0B5crZwGCR27J262arct99t4gXwkYsVff5ade2rSWqsazL\n7JxzsbZpE2zcGHQUcSDcRXHAIdFcZFdcD+Jxc0JGhuoNN6iKqA4ZErv7vPqqbRB4663Cv+btt+01\nn30WvTjWrFGtVk31/POzFuQPGWL3GZdPC6eS7owzVNu0Kfp1XnzRCjXv2FH0aznnXAKYP986Ccaj\neNqcsEREvgkV4N2/4NNdrlStXdNLL9lo29VXx+5e3bvbvF7Pnjb6VpANG2yE7sILo7s6tEYNm779\n6CPbfLF6ta1AvfJK28CQrLp3t/pzhfne5Gf6dCt+XLZsdOJyzrk41727LedOJpEkbscD/wP6AqtF\n5EMR6Swi/tuisFQtMXrhBUtkYt1PTcRWedapY8lYQevd7rknvJpt4fi//7MkslcvW99VqpQtXCgG\nc+dafdq4c/75UKECfPBB0a6TR8cE55wrqd56K/nWvUWyxm2aqt4B1AXOBtYBrwJrRGRIlOMreVRt\nsf9zz1ky1aNH8dy3YkVbR/Xbb5Y05eXHHy2Z7N/fNjbEwvPPW6IybhwMGgRVq8bmPjncdFPRN+vm\nNG+e7f3YsqUIF9lvPxtxHD068mvs3g2zZu2VuGVkwAUXwHffFSE255yLY4ccAkcdtfexJ56wH4kl\nVcTFnkJTuF+r6rXAGcBioGvUIiuJVK1G2bPP2hRpJHXRiuKYY2yUb/Dg3Ffn795tMbVsaZsIYuWA\nA2x36SOPRF6rLgIjR1qeGE3lyln/z+XLi3ihc86Bn36KfEhw3jzYuXOvxG3DBtto6iXdnHPJ5Mgj\nY15VKlClIn2hiBwCdAEuBY4BfgJuilJcJY8q3HmnTQu+8IKV/whCt25WyOy66+C446BRo6znnnrK\n5hN//tlKVcRS69b2KEbVqtkjmg491L5cRdahg/0bGTvW2mGFa/p0+7Np078PVa1ql3POuWRy7rlB\nRxBbkTSZ7yEi35I1wjYKa4HVRlX/E+0ASwRV6/X55JM2RXrjjcHFImKjfYccYuvdtm2z44sWWW/P\n3r2t84IrXrVrWyL92WeRvT4tDQ47DKpUiW5czjnn4kokkyh9gCnAcap6lKr2V9Ul0Q2rBFG1zt5P\nPGFTpPl1DygumevdFi60eDJrttWoYU3eS5h162y9V9zr2BE+/zyyxRm+McE555JCJIlbXVW9Q1Wn\n53xCRI6OQkwlhyrcfz8MGGBTpLfcEnREWY4+Gl58EYYMsRX748bZxxUqBB1Z1F16aey3i2dkWH5e\npMK+HTtadclw+3Gp2lRptsTtp5/ipK2Xc865qAp7jZuqVbPNJCKVsLVu1wAtgBgvjkogffva7swn\nn7QpyHhz9dW23m3YMOjc2RKHEqhvX0hPj+09UlKsIUT16kW4SLNmNmU6ejScemrhX7dkCfz1115T\n3IMGwdq18OWXRYjHOedc3CnK5oS2QDfgAmAl8AEQ4OKtOPPQQ9Cvn02R3nZb0NHk7cUXbYX9DTcE\nHUnMnHRS8dxn8GBbQhixlBTbXTp6tCX7hZW5MSHbiNvbb8OffxYhFuecc3EprKlSEaktIneLyG/A\nu1hj+bLA+ap6t6r+LxZBJpyHH7a1YgMGwB13BB1N/ipUsCSzZs2gI0l4RUraMnXsaB0Ufvut8K9J\nS7P1ibVr/30oJaWIo3/OOefiUqETNxH5BJgHNAFuBQ5S1ThYaR9nHnkka4r0rruCjiapBbkhYdeu\nCIvynn66tawKZ3dp5saEqGSOzjnn4lk4I24dgNeAvqr6marGeNVQAurfH/r0seTtnnuCjibpXXhh\nMN8GVWjXLsIZ8ooV4bTTwuuikGNH6d6rUJ1zzpUk4SRuJwOVgJ9FZLKI3CQiPhmT6fHH4b77bNrx\nvvuCjsYB7dvD8ccX/31FrKtZxDWWO3a0TSObNhV87tq1sGLFXhsTTj7ZygY655wreQqduKnqT6H2\nVrWBV4BLgBWha7QP7S5NTgMH2m/Kvn3hgQeCjsaFXHed9bQPwv/9XxHqGJ9zDuzZA198UfC5uWxM\nuOYaOOOMCO/tnHMurkXSZH6bqg5R1TZYq6ungLuBP0Lr4JLLU09ZK6s+fSxxc66o6tWzOnuFmS5N\nS7Pp1SOO+PvQVVd54uaccyVVkdpPq+qvqnoncDBWyy25PPOMNY3PnCL1xeGB++abKDR8j7Lp02HG\njDBf1LEjjBlTcAG6tDTrT+qd5J1zLilE5ae9qqar6keqel40rpcQBg2yhUz33GP12jxpC1x6urWB\n7dcv6EiyqELPnlYZJiwdO9r6tf8VUGEnLc17yzrnXBKJuABvUnv+ebj1Viv38eijnrTFidRUGD8e\n9t8/6EiyiMD771uZtbC0bg0HHmjTpa1b537O1q0wf/5etQK//BLWr7cdtc4550oen18J14svQq9e\nNkX62GOetMWZgw6C8uWDjmJvBx8MZcqE+aLUVOjQIf91bjNn2pBeto0JH35o/0Sdc86VTHGTuInI\njSKyWES2i8gkEcmzkIOIdBKR/4nIBhHZIiJpInJ5zIMcPBhuusmmSJ94wpO2OLB5M8yZE3QUMdKx\noy2OW7Ys9+fT0qBUKTjqqL8PvfCC9yd1zrmSLC4SNxG5GNud2hdoBswAxolItTxe8ifwCNAa29k6\nFBgqIu1jGmiLFnD//dZH0pO2uNCnD5x9tnUqiHeqtv7u5ZcL+YKzzrKRtzFjcn8+Lc2StrJl9zqc\nmlq0OJ1zzsWvuEjcgN7AK6o6XFXnAdcB27Am9vtQ1e9U9ePQrtbFqvocMBNoE9MomzXzjQhx5uGH\n4b33IpiKDICI7TcodPP3/fe3arp5TZf6xgTnnEs6gSduIlIaaAH8PcGjqgpMAE4o5DVOBxoA38Yi\nRhe/KlcOpjtCpAYNCrOxRseOMGECbNu29/Hdu+GXX7zVlXPOJZnAEzegGpAKrMlxfA1QK68XiUhl\nEdksIruAT4GbVfWr2IXp4sWKFUFHELmwB2s7doQdO+Drr/c+Pm8e7Ny5V+L25ptQq5ad7pxzrmSK\n53IgAuQ3hrAZaApUBE4HnhGRRar6XX4X7d27N1WqVNnrWJcuXejSJfnqByeir7+2NW0//gjNmwcd\nTdHs2WMDaZUr53NSgwbWFWH0aGuFlSktzf5s2vTvQ02b2r6Z/faLTbzOOedyN2LECEaMGLHXsY0b\nN8bkXqIBz6+Epkq3AZ1V9ZNsx18Hqqhqp0Je51XgYFU9O4/nmwNTp06dSvNE/42fxHbvhmHDoFu3\nxG8W8M9/Wqm2t98u4MTevW0h3++/Zw3Z9e4Nn3wCCxfGPE7nnHPhmzZtGi1atABooarTonXdwH/1\nqepuYCo2agaAiEjo4x/DuFQKULbAs1xCK13amqgnetIGVg6wd+9CnNixo/Xxmjkz61ha2l7TpM45\n55JDvPz6exroISJXikgj4GWgPPA6gIgMF5H+mSeLyN0icoaI1BeRRiJyG3A58EYAsQciIwPOPx++\n9e0YCatDh0JurDj5ZKhUKWt3qao1QPXEzTnnkk5cJG6qOgq4DXgYSAOaAGep6trQKQez90aFCsCL\nwC/A90An4DJVHVpsQQcsJcVql02L2uBr/BowIMydmCVNmTJW0y0zcVuyBDZu3Ctx27gRnnkGVq0K\nJkTnnHPFI242J6jqS8BLeTzXLsfHfYA+xRFXPBs9umRMGRakdGl7lFSqMGuWrXc7+OA8TjrnHFvY\n98cfWRsTsiVuS5ZYcnvaaVC7dsxDds45F5C4SdxcwZYssV/y9evbx8mQtAHcdlvQEcRWRga0bWuf\nZ5+83o6cHdpzM3YsLFhgXetrZQ1CN20KW7bEPlbnnHPB8sQtgfToAenp3ouypElNhYkTrepHnmrW\nhJYtbZh1xw4bbctRFC5ZEnnnnEtm/qM+gQwdCq+/vu/xGTNsJm3r1mIPKaaSqRPAMcdAuXIFnNSx\nI4wbBz//7BsTnHMuSXnilkDq1IFDDtn3eJUqNk32xx/FH1OsLFhg03+//hp0JHGkY0fYvBlWr94n\ncUumJNc555KZJ25xbPlyG1wpSL16VhYkc+1bSZCRAU2aQN26QUcSR5o2tewd9mour2qHX3kloLic\nc84VG0/c4tg990D37pbEJJsGDaz3ZoHThyVInz5w+eX5nCBio26VKu21IC4jA+66q5A14ZxzziU0\n35wQx156CdavD3/RuWoEzcxd4Bo3hurVCzjpoYfg0kv3+keRmgq33BLb2JxzzsUHT9ziWKVK9ghH\n376W7D3/fGxiirU9e6BUkv6r7NKlECfVrGkP55xzScmnSuPI6tXw+edFu8ZBByX2urAOHeDhh4OO\nwjnnnItPSTq2EZ+efhrefRfmzYOyZSO7Rs+e0Y2pOGVkwL/+VUA9M7eP996zncXt2wcdiXPOuVjz\nEbc40r8/fPdd5ElboktJgRtvtLacyWrxYnjyyfDKewweDCNHxi4m55xz8cNH3OJIqVK512mLVDKv\nF0tUv/1mU8WXXJJP39IcPv/cOmo455wr+XzELUDr1sHw4bG59sqVcOSR8PXXsbl+NKWnw/btQUcR\nH9q1gw0bCp+0ZUpNjU08zjnn4osnbgF6+2248077RR1ttWvberFsfchjYu5ceOedol3jnXfgH/+I\nzdch0ZQq5UmYc865vHniFqCbb7Y+owccEP1ri9haqSOPjP61sxs+3Nbm7d6ddWzlSti2rfDXaN0a\nbrstNl+Hks5bXTnnXHLxxC1AIolfkqt/f2u3Vbp01rFeveDMMwt/jcMPh969ox9bItuxo3DTxw89\nBC1axD4e55xz8cETt2K0YUP4OwajZcuW2FxXZN+RsoED4Ykn9j7mi+cLb8sW+5qOGlXwue3awXXX\nxT4m55xz8cETt2L01Vfw+OOwbFnx3vf55+GYY2wUp6jS061uWH7JZ/36cOKJex977DEr85H9dX/8\nUfR4SqKKFeG//4VTTin43LZt4dprYx+Tc865+ODFIopR585w+umw//7Fe98zz7TacNFY9D5unJWq\nSEuzZLCwjjvOEpLMHqqbN1tvzgcfhJtuKnpcJc0VVwQdgXPOuXjkiVsxK+6kDaBhQ3tEQ4cOMGcO\nNGgQ3uv++U97ZKpQAV58EU46KTpxOeecc8nAp0pjaNMmuPde2Lkz6EiiK9ykLTcpKXDxxeHXK3NZ\nFi+GF16I3fpF55xz8ccTtxiaOROGDoVFi4KOJMvWrbBxY3ivmTbNujC44jVokPWvzcuMGVZGxTnn\nXPLwxC2G2rSBhQtjX0utsNLTrXTEgw8W/jV//mmL5J97LmZhuTysXm2PvJx/vtXLq1ix+GJyzjkX\nLF/jFmPlywcdQZbUVCvVEc6mgqpVYexY21zgitdjjxV8jndZcM655OIjblG0ZQvceCOsXx90JHk7\n91yoVy+817RpA/vtF5NwnHPOORcGT9yiaNkyG52KpzVtkdiwwdbCufil6u2unHMuGXniFkVHHgm/\n/po404qzZuV+/NJLbcenC97GjdZSLKc//4TKleGLL4o/Juecc8HxxC3KsvfsjGfjx0OTJlZIN6dH\nHoEHHij+mNy+3n3X2lpt2rT38dRU6Ns3evX5nHPOJQZP3Ipg+3a4+urEnBpt1w5Gj4Zjj933uRYt\noGXL4o/J7atzZ5g/HypV2vv4AQfA7bfDoYcGE5dzzrlgeOJWBH/9ZSNWK1YEHUn4UlPhnHOyWlD5\nmrb4dMABcPjhWd8n55xzyc0TtyKoXduK0558ctCRFM2QIdC0qW1KcM4551z88jpuRZRSAlLfdu1g\n3bpg+qi6yLz2mtXj8ylt55xLLiUg7Sg+O3fajsvJk4OOJLrq1YM77/TpuHi1erUlad98k3VswAD4\n8svAQnLOORcQH3ELw65dsHbtvjv8nIulGjWgbdu9R0R/+81amDnnnEsunriFoVIlq5vlI1OuOKWk\nwIsv7nvc210551zy8anSMHnS5pxzzrmgeOLmXILxVlfOOZe8fKrUuQTx4YdQvjy8+aZtlBk1KuiI\nnHPOFbe4GXETkRtFZLGIbBeRSSJyfD7nXiMi34nI+tBjfH7nO1cSvPIKvPceXHihPZxzziWfuBhx\nE5GLgaeAHsAUoDcwTkQaqOq6XF5yCvA28COwA7gb+EJEGqvqqmIK27li9cknUKZM0FE455wLUryM\nuPUGXlHV4ao6D7gO2AZ0y+1kVb1CVV9W1ZmqOh+4BvtcTi+2iJ0rZp60OeecCzxxE5HSQAvg73Ki\nqqrABOCEQl6mAlAaWB/1AJ1zzjnn4kTgiRtQDUgF1uQ4vgaoVchrPA6swJI950qsqVOta4LvLHXO\nueQUF2vc8iBAgb+eRORu4CLgFFXdVdD5vXv3pkqVKnsd69KlC126dIk0TueKzdChVoz37ruDjsQ5\n51ymESNGMGLEiL2Obdy4MSb3Eg34rXtoqnQb0FlVP8l2/HWgiqp2yue1twP3AqeraloB92kOTJ06\ndSrNmzePSuzOFbc9e2D7duvi4ZxzLn5NmzaNFi1aALRQ1WnRum7gU6WquhuYSraNBSIioY9/zOt1\nInIHcB9wVkFJm3MlRalSnrQ551wyi5ep0qeBYSIylaxyIOWB1wFEZDiwXFXvDX18J/Aw0AX4XURq\nhq6zRVW3FnPszjnnnHPFIi4SN1UdJSLVsGSsJjAdG0lbGzrlYGBPtpdcj+0ifS/HpR4KXcM555xz\nrsSJi8QNQFVfAl7K47l2OT6uXyxBOeecc87FkcDXuDnnnHPOucLxxM0555xzLkF44uacc845lyA8\ncXPOOeecSxCeuDnnnHPOJQhP3JxzzjnnEoQnbs4555xzCcITN+ecc865BOGJm3POOedcgvDEzTnn\nnHMuQXji5pxzzjmXIDxxc84555xLEJ64Oeecc84lCE/cnHPOOecShCduzjnnnHMJwhM355xzzrkE\n4Ymbc84551yC8MTNOeeccy5BeOLmnHPOOZcgPHFzzjnnnEsQnrg555xzziUIT9ycc8455xKEJ27O\nOeeccwnCEzfnnHPOuQThiZtzzjnnXILwxM0555xzLkF44uacc845lyA8cXPOOeecSxCeuDnnnHPO\nJQhP3JxzzjnnEoQnbs4555xzCcITN+ecc865BOGJm3POOedcgvDEzTnnnHMuQXji5pxzzjmXIDxx\nc84555xLEJ64Oeecc84lCE/cXNwaMWJE0CG4MPn3LLH49yvx+PfMxU3iJiI3ishiEdlceFLEAAAg\nAElEQVQuIpNE5Ph8zm0sIu+Fzs8QkV7FGasrHv4DKvH49yyx+Pcr8fj3zMVF4iYiFwNPAX2BZsAM\nYJyIVMvjJeWBhcBdwKpiCdI555xzLmBxkbgBvYFXVHW4qs4DrgO2Ad1yO1lVf1bVu1R1FLCrGON0\nzjnnnAtM4ImbiJQGWgBfZh5TVQUmACcEFZdzzjnnXLwpFXQAQDUgFViT4/gaoGEU77MfwNy5c6N4\nSRdLGzduZNq0aUGH4cLg37PE4t+vxOPfs8SRLd/YL5rXjYfELS8CaBSvVw/g8ssvj+IlXay1aNEi\n6BBcmPx7llj8+5V4/HuWcOoBP0brYvGQuK0D0oGaOY7XYN9RuKIYB1wGLAF2RPG6zjnnnHM57Ycl\nbeOiedHAEzdV3S0iU4HTgU8ARERCHz8Xxfv8Cbwdres555xzzhUgaiNtmQJP3EKeBoaFErgp2C7T\n8sDrACIyHFiuqveGPi4NNMamU8sAdUSkKbBFVRcWf/jOOeecc7EntoEzeCJyA3AnNmU6HbhZVX8O\nPfcVsERVu4U+PhRYzL5r4L5V1XbFF7VzzjnnXPGJm8TNOeecc87lL/A6bs4555xzrnBKdOImIn1D\nvUyzP+YEHZfLn4gcJCJviMg6EdkmIjNEpHnQcbl9ZesXnPPxfNCxudyJSIqI9BORRaH/XwtE5P6g\n43J5E5GKIvKsiCwJfc++F5Hjgo7LGRE5WUQ+EZEVoZ9/5+VyzsMisjL0/RsvIkdEer8SnbiF/IKt\nm6sVerQJNhyXHxHZH/gB2AmcBRwJ3AZsCDIul6fjyPq/VQtoj609HRVkUC5fdwM9gRuARtja4jtF\n5KZAo3L5eQ2rtHAZcDQwHpggIrUDjcplqoCtzb+RXOrPishdwE3Y/7uWwFasH3uZSG5Wote4iUhf\n4F+q6qM1CUJEBgAnqOopQcfiwicizwIdVLVB0LG43InIp8BqVb0227H3gG2qemVwkbnciMh+wGbg\nXFX9PNvxn4ExqvpAYMG5fYhIBnC+qn6S7dhKYKCqPhP6uDJWp7ZrqOd6WJJhxO0foeHLhSLypogc\nEnRALl/nAj+LyCgRWSMi00TkmqCDcgULlem5DBsdcPHrR+B0EfkHQKiU0knAmECjcnkphbWF3Jnj\n+HZ8BinuiUh9bDYiez/2TcBkIuzHXtITt0nAVdiU23VAfeA7EakQZFAuX4cB1wO/AmcCLwPPiYj3\nKot/nYAqwLCgA3H5GgCMBOaJyC5gKvCsqr4TbFguN6q6BfgJ6CMitUNrFC/Hfun7VGn8q4VNn+bW\nj71WJBeMlwK8MaGq2dtM/CIiU4ClwEXA0GCicgVIAaaoap/QxzNE5CgsmXszuLBcIXQDxqrq6qAD\ncfm6GLgUuASYAxwLDBKRlar6RqCRubxcDgwBVgB7gGlYJyBfBpS4Iu7HXtJH3PaiqhuB+UDEuzlc\nzK0C5uY4NheoG0AsrpBEpC5wBvBq0LG4Aj0BPKaq76rqbFV9C3gGuCfguFweVHWxqp6GLYI/RFVb\nY12DFgcbmSuE1ViSFrV+7EmVuIlIReBwLDlw8ekHoGGOYw2xkVIXv7phP4R8nVT8K8++7/QzSLLf\nB4lIVber6hoROQBbAvRR0DG5/KnqYix5Oz3zWGhzQisi7GNaoqdKRWQg8Cn2S78O8BA2zDwiyLhc\nvp4BfhCRe7CSEq2Aa4Br832VC4yICLaW9HVVzQg4HFewT4H7RGQZMBubbusNDA40KpcnETkTG7X5\nFfgHNmo6l1A/bxes0Lr5I7DvEcBhoU0/61V1GfAscL+ILACWAP2A5cDHEd2vhJcDGQGcDFQF1gLf\nA/eFMmAXp0SkA7aA+ghsKuApVR0SbFQuLyLSHvgcaKiqC4KOx+Uv9EumH7aZpAawElsv1U9V9wQZ\nm8udiFwIPIYNQKwH3gPuV9XNgQbmABCRU4Cv2Xcke1i2HusPAj2A/YGJwI2R/rws0Ymbc84551xJ\n4msanHPOOecShCduzjnnnHMJwhM355xzzrkE4Ymbc84551yC8MTNOeeccy5BeOLmnHPOOZcgPHFz\nzjnnnEsQnrg555xzziUIT9ycc8455xKEJ27OORcGEekhIr+LyB4R6RV0PM655OItr5xzAIjIUKCK\nqv5f0LHEKxGpBKwDbgXeBzap6o5go3LOJZNSQQfgnHMJ5FDs5+YYVf0jtxNEpJQ3a3fOxYpPlTrn\nCkVEDhGRj0Vks4hsFJGRIlIjxzn3i8ia0POvishjIpKWzzVPEZEMETlTRKaJyDYRmSAi1UXkbBGZ\nE7rWWyKyX7bXiYjcIyKLQq9JE5HO2Z5PEZHB2Z6fl3NaU0SGisiHInKbiKwUkXUi8oKIpOYRa1dg\nZujDxSKSLiJ1RaRv6P7dRWQRsKMwMYbO6SAiv4ae/1JEuoa+HpVDz/fN+fUTkVtEZHGOY9eEvlbb\nQ39en+25Q0PX7CQiX4nIVhGZLiKtc1zjJBH5OvT8ehEZKyJVROSK0NemdI7zPxaR13P/zjrnYsUT\nN+dcYX0M7A+cDJwBHA68k/mkiFwG3AvcAbQAfgeuBwqzHqMvcANwAlAXGAX0Ai4BOgBnAjdnO/9e\n4HKgB9AYeAZ4Q0RODj2fAiwDLgCOBB4CHhWRC3Lc9zTgMOBU4ErgqtAjN++EPm+A44DawPLQx0cA\n/wd0Ao4tTIwicgg23fox0BQYDAxg369Xbl+/v4+Fvu4PAvcAjUL3fVhErsjxmkeAJ0L3mg+8LSIp\noWscC0wAfgFaAycBnwKpwLvY1/O8bPesDvwTGJJLbM65WFJVf/jDH/4AGAp8kMdz7YFdwEHZjh0J\nZAAtQh//BAzK8bqJwLR87nkKkA6cmu3YXaFjh2Y79h9sehKgDLAFaJXjWq8Cb+Zzr+eBUTk+30WE\n1vqGjo0E3s7nGk1DsdXNdqwvNsp2YLZjBcYI9Adm5Xj+sdD1K2e79rQc59wCLMr28W/AxTnOuQ/4\nIfT3Q0Pfp6tyfO/SgQahj98Cvsvn834RGJ3t438DvwX9b9Yf/kjGh69xc84VRiNgmaquzDygqnNF\n5C8sCZgKNMR+wWc3BRvVKsisbH9fA2xT1aU5jh0f+vsRQHlgvIhItnNKA39PK4rIjcDV2AheOSyZ\nyjltO1tVs49orQKOLkS8OS1V1fXZPs4vxmmhvzcCJue4zk/h3FREymMjn6+JyOBsT6UCf+U4PfvX\neBUgQA1s9O1YbJQzL68CU0SktqquArpiia9zrph54uacKwwh9ym7nMdzniMUzu4c19id43kla2lH\nxdCfHYCVOc7bCSAilwADgd7AJGAzcCfQMp/75rxPOLbm+LjAGMn7a5pdBvt+DbOvNcu8zzVYkpxd\neo6Pc36NIetz3Z5fEKo6XURmAleKyHhs6ndYfq9xzsWGJ27OucKYA9QVkTqqugJARBoDVULPAfyK\nJUZvZXvdcTGKZSc2lfp9HueciE0VvpJ5QEQOj0EseSlMjHOAc3McOyHHx2uBWjmONcv8i6r+ISIr\ngMNV9R3yVlCCOBM4HVsLmJfBWCJ8MDAh89+Bc654eeLmnMtufxFpmuPYn6o6QURmAW+JSG9s1OdF\n4GtVzZx+fB54VUSmAj9iGwuawP+zd9/hUVdZA8e/JwktECAQwNB7U1GKgCiQiIBYADu8IF0QsSwo\nYkd01RUpFkBZpOOCKLCKiNTERZCWUJTepEsRpGNCct8/7iRMkkmfyUyS83meeWDu787vnplAcnIr\n+9JpM6O9cgAYYy6KyChgrGMF6M/YBPIO4JwxZiZ23tcTItIOOAA8gR1q3Z+ZtrIabwZj/BwYIiIj\nsUlRE+wQpLNIYJyIvAR8A3TALgo451TnLeBjETkP/AgUctyrpDHmowzG/D6wVUTGO+KKxS7YmOs0\nBPwlMArbu5d84YNSKofoqlKllLPW2DlYzo83Hdc6AWeBn4ClwF5scgaAMeY/2An3H2LnvFUBpuHY\nHiMNmd4F3BjzBvA28DK252oxdlgyYZuMicB87ErQtUApUs6/y6oMxZtejMaYw8DD2M91M3b16SvJ\n7rETu9r2aUedJtjP17nOZGwy1RvbcxaJTQCdtwxJc2WqMWYPduVuA+y8u9XYVaTXnOpcwK6CvYhd\nCauU8gI9OUEp5TEishQ4boxJ3pOkXBCR1sBKINgYc97b8SQnIsuxK2EHezsWpfIrHSpVSrmFiBQB\nngKWYCfVd8XOm7o7rdepFDI1dJwTRKQkdnVwa+zefEopL9HETSnlLgY7FPgadp7VLuAhY0yEV6PK\nfXxxGGQTdvPllxzDqkopL9GhUqWUUkqpXEIXJyillFJK5RKauCmllFJK5RKauCmllFJK5RKauCml\nlFJK5RKauCmllFJK5RKauCmllFJK5RKauCml8iwRaS0i8SLSytuxZFdOvRdHG2+mX1Mp5Q2auCmV\nD4jIzSLyjYj8LiJXROSIiCwVkWc83G4HERnuyTYc7QwUkdSO1XL7ZpWO9xUvIkfcfe905MTGmyaH\n2lFKZYFuwKtUHiciLbDnXx4EpgN/AJWA5kANY0xtD7b9KfC0McbfU2042vkVOGWMucvFtYLGmBg3\ntzcLuB2oCrQ1xqx05/1TaTPhHNNwY8z/PNhOQeCaMSbeU20opbJOj7xSKu97DfgLaGKMueB8QURC\nPNy218/d9EDSFgh0Al4GegPdsAlVnuDuz0sp5V46VKpU3lcd2JY8aQMwxpxO+LuI/CQim13dQER2\nichix9+rOIYJh4jIkyKyV0Suish6EWni9JqpwNOOv8c7HnFO118UkdUiclpELovIRhF5OJX2u4vI\nOhG5JCJnHLHe7bh2ALgRCHNqZ6Xjmst5YSLSTER+cNzroohsEZHnMvh5PgQUBr4GvgIecvRSJY85\nXkQ+EZFOIvKr4zP6TUTaJ6tXWUQmiMhOx+dwWkTmikiVjAQjIo86PrvLInJKRGaKSPlU6m1zDJVv\nFZHOIjLN8fklj/vNZGXlRWSKiPzh9D76uGjjWce1hK/TBhHpkpH3oZTKGO1xUyrvOwg0F5EbjTHb\n0qg3A/i3iNQ3xmxPKBSR24BawIhk9bsBxYDPsXOihgHzRKS6MSbOUV4euNtRN3nv23PAt8AsoCDQ\nBZgrIvcbYxY7tT8cGA6sBt4AYoBmwF3AcuB5YBxwAfino50TTu0kmQ8iIm2BhcAx4CPs0HE94D7g\nkzQ+nwT/B0QYY06KyBzgX8ADwDwXdVtiE70JjvieA74RkSrGmDOOOrdhh61nA0eww69PAxGOr8XV\n1AIRkV7AFGAdtgewHPAPoIWINDTGnHfUuw+YA2xx1AsGJgNHk38+Ltoo67h/HPbzOQ10AL4QkWLG\nmE8c9Z4EPgbmYj/XwkAD7NdqTlptKKUywRijD33oIw8/sIlTDBCLTX7+BbQFApLVCwIuAe8lK/8Y\nOA8EOp5XAeKBk0Bxp3oPYH+43+tU9ikQl0pchZI99we2AsucymoA14Cv03mPvwIrXZS3dsTUyvHc\nD9gP7AOCsvBZlnF8lr2dyn4G5ruoGw9cAao6ld3sKH86tc/BUdbUUa9bGu8lAJt0bgYKOtW71/Ha\n4U5lW7EJfBGnspaOevtdxP2m0/MvsAllyWT1/gOcSYgfWABs9fa/d33oI68/dKhUqTzOGLMcaIHt\n3WoADAWWAEdF5AGneheA74CuCWUi4gc8BiwwxlxOdus5xtGj47AK29tVPYNx/e3UTklsL9AqoJFT\ntQcd93w7I/fMgIbYHq2PjIuh4wzoik1s5juVzQY6iEgJF/WXGWN+T3hijPkVmwRXdypz/hwCRKQU\nNrk8S9LPIrkmQFlggnGal2aM+QHYie1BRERCgZuA6caYK071VmET3vQ8hO2h9BeR0gkPYClQ0inG\nv4CKzsPlSin308RNqXzAGLPRGPMINjlqCryHHeb8WkTqOlWdAVQWkTsdz9tik4OZLm57OFkbfzn+\nGpyRmETkfhH5RUSuYHtuTgIDAecEqDo2UdqRkXtmQA3s0GBaQ8Zp6YYdNgwRkRoiUgPb41UIeNRF\n/cMuys7i9BmJSGEReVtEDgF/Y4ciT2KTIlfJYIIq2Pey28W1nY7rOP25z0W9vWncHxEp44ijP3Aq\n2WOKo/2yjuofABeB9SKyW0TGiV3RrJRyI53jplQ+Yoy5BkQBUSKyB5iKTTjecVRZgk0aumOHALtj\nh+NWuLhdnIsyyMBKUhFpie0BjMQma8exQ7l9cOrxy8i9MinL9xORmtj5aAbYk+yywSZ1XyQrz8hn\nNA7oCYwF1gLnHPf7irR/uc6JFbsJ7c/CbiXjylYAY8xOEakD3A/cg+2pe1pERhhjks+PVEplkSZu\nSuVfGx1/hiYUGGPiReQ/QE8ReRm77cVEY0xWN3xM7XUPYed/tXckkwCISN9k9fZik4f6OBKETLaT\n3F5swnMTmd/Cozt2flt3bC+gs5bAsyJS0RiT2U15HwamGWNeSigQkULYnq60/I59L3WwCbCzOtg5\nbTj9WdPFPVyVOTuFXVThbzKwV51jKPZrbE9uAHbe22si8r7RbUaUcgsdKlUqjxORsFQu3ef4c2ey\n8plAKWAiUBT4MhvNX3LEUDxZeRw22Ur85VFEqmITRWf/ddR7U0TS6mG6RPqJDkA0cAD4Rypz0tLy\nf8AqY8w3xpj5zg9gJDaJ6pr2LVyKI+X34uewizXSshHbO/qUiBRIKBSRDthVst8DGGOOA78BPcTu\nQZdQrzV2sUSqjN2Edx7wsIjcmPy6OO0D6Jib5/zaa9ghbj+gAEopt9AeN6Xyvk8dP7AXYJO0gsAd\n2EUH+4FpzpWNMZvFnkTwKLDdGONyb7cMisImNJ+KyBLsCtOvsEnFEGCJo4evHHYLjD3YBRQJsewT\nkXeB14FVIjIfOw/sNuCoMeY1p3aeEpHXsL1qJ40xEY5r4nQ/IyJPY4dpN4vda+44UBeob4zp4OpN\niEgzbO+Uy+1CjDHHRSQaO1z6YaY+IftZPCEi54Ht2BMZ2mDnuqUIxanNayIyDDvX7H8iMhu4AZv0\n7cduyZHgVWwSvMbxnksBg7CLE4qlE9/LQBiwTkQmOWIsBTTGbsmSkLwtFZE/sCuXT2B7SQcBC40x\nl9L/GJRSGeLtZa360Ic+PPsA2gGTsBPyz2GHKHdh51SVSeU1L2KHA19yca0KtpdosItrccAbTs/9\nuL5X2jWctgYBemETycuO2Hpg92tLsX0Idg7YRkfd09hhzrucrpfFroj9yxHDSkd5ki00nOrfDvzo\nqH8e2AQMTOMz/Nhxn6pp1HnTUecmp8/iYxf19gOTnZ4Xx86NO+H4+izC7puXvF5q7+URp8/mFHYu\nWqiLdh91fM5XsPu53Ycd1tyW1tfQURaCTVp/B65i939bCvRxqtMPiMD2Al7GLpp4Hyjm7f8D+tBH\nXnroWaVKqRRE5HlgNDZRyemD1FUOEZFN2N7J9ulWVkr5BJ+Z4yYig0TkgOM4lrWO3drTqv8PpyNi\nDonIGMeEXqVU9vUBIjVpyxtExN+xJ59zWRhwC7aXTCmVS/jEHDcReRz7231/YD0wGDv3pbZxOkvR\nqf7/YbvgewG/ALWxwwPx2CEepVQmyfXD08Oxqy47ejci5UYVgWUi8iX2qK96wADH3yd6MzClVOb4\nxFCpiKwF1hljnnc8F+zGlZ8YY0a6qP8pUNcY09apbBTQ1BjTKnl9pVT6xB5qfgC7Qex4Y8yb6bxE\n5RKOVb0TsYtSymBX4S4HXjHGHEjrtUop3+L1HjfHMvbG2J3cgcSVX8uxE4hdWQN0E5HbjDEbRKQ6\n9ny+1DaIVEqlwxhzEB+aPqHcx9ijybKyVYlSysd4PXHDrlbyx66ocnYCu4lkCsaY2Y79g3529M75\nA58bYz5IrRHH2Xrtub4qSimllFLKUwpjz0ZeYoz501039YXELTVCKruhOybVvgo8hZ0TVxP4RESO\nG2P+mcr92pO9jUSVUkoppTKrG/Afd93MFxK309h9g8olKy9Lyl64BG8DM4wxUx3Pt4lIMewcjtQS\nt98BZs2aRb169bIVcG4xePBgxo4d6+0wcoy+37wvv71nfb95W357v5C/3vOOHTvo3r07OPIPd/F6\n4maMiRWRKOxO4d9B4uKENqSySzkQSMqzAuMdLxXjesXFVYB69erRqFEjt8Tu60qUKJFv3ivo+80P\n8tt71vebt+W39wv58z3j5ulZXk/cHMYA0x0JXMJ2IIE4juIRkRnAEWPMq476C4HBIrIZWIfdZfxt\n4NtUkjallFJKqVzPJxI3Y8xcx2KDt7FDppuB9saYU44qFbHH5SR4B9vD9g5QAXvMy3fY8wyVUkop\npfIkn0jcAIwxE4AJqVy7K9nzhKTtnRwITSmllFLKJ/hM4qbcr2vX/LVtk77fvC+/vWd9v7nboUOH\nOH06xeE/iZo3b050dHQORuR9efE9h4SEULly5RxrzydOTsgJItIIiIqKisqPEyOVUkrloEOHDlGv\nXj0uX77s7VCUhwUGBrJjx44UyVt0dDSNGzcGaGyMcVu2qj1uSimllJudPn2ay5cv56stqPKjhC0/\nTp8+nWO9bpq4KaWUUh6Sn7agUjlDzyVUSimllMolNHFTSimllMolNHFTSimllMolNHFTSimllMol\nNHFTSimllM8IDw9nyJAh3g7DZ2nippRSSikAJk6cSPHixYmPj08su3TpEgUKFKBNmzZJ6kZERODn\n58fvv//usXiuXbvGsGHDaNCgAcWKFaNChQr07NmT48ePA3Dy5EkKFizI3LlzXb6+b9++NGnSxGPx\neYMmbkoppZQCbG/XpUuX2LhxY2LZqlWrCA0NZe3atcTExCSW//TTT1SpUoWqVatmup1r166lXwm4\nfPkymzdvZvjw4WzatIkFCxawa9cuOnXqBEDZsmW57777mDJlisvXfvPNN/Tr1y/T8fkyTdyUUkop\nBUDt2rUJDQ0lMjIysSwyMpLOnTtTrVo11q5dm6Q8PDwcgMOHD9OpUyeCgoIoUaIEjz/+OCdPnkys\nO2LECBo2bMjkyZOpXr06hQsXBmxy1aNHD4KCgqhQoQJjxoxJEk/x4sVZsmQJDz/8MLVq1aJp06aM\nGzeOqKgojhw5AthetRUrViQ+TzB37lyuXbuW5Ci1iRMnUq9ePYoUKcKNN97Iv//97ySvOXz4MI8/\n/jilS5emWLFiNGvWjKioqGx8ou6nG/DmAefPQ/Hi3o5CKaVUpl2+DDt3uveedetCYGCWXx4WFkZE\nRAQvvfQSYIdEhw0bRlxcHBEREbRq1Yq///6bdevWJfZmJSRtq1atIjY2loEDB9KlSxdWrlyZeN+9\ne/cyf/58FixYgL+/PwAvvvgiq1atYuHChZQpU4ZXXnmFqKgoGjZsmGp8f/31FyJCyZIlAbj33nsp\nW7Ys06ZN4/XXX0+sN23aNB566CFKlCgBwPTp03n33XcZN24ct9xyC9HR0fTr14+goCC6du3KxYsX\nadWqFdWrV2fRokWULVuWqKioJMPGPsEYky8eQCPAREVFmbzk0iVjihc3ZupUb0eilFIqQVRUlMnQ\nz5yoKGPAvY9s/pybNGmSCQoKMnFxceb8+fOmYMGC5tSpU2b27NkmLCzMGGPMihUrjJ+fnzl8+LBZ\nunSpKVCggDl69GjiPbZv325ExGzcuNEYY8xbb71lChUqZP7888/EOhcvXjSFChUy8+bNSyw7c+aM\nCQwMNIMHD3YZ29WrV03jxo3NE088kaT85ZdfNjVq1Eh8vnfvXuPn52ciIyMTy6pWrWq++eabJK97\n6623TOvWrY0xxowfP94EBweb8+fPZ/izSuvrnHANaGTcmM9oj1su5+cHH38MYWFJy3ftgooVoWhR\nr4SllFIqI+rWBXcPxdWtm62XJ8xz27BhA2fOnKF27dqEhITQunVr+vTpQ0xMDJGRkdSoUYOKFSuy\nYMECKlWqRPny5RPvUa9ePUqWLMmOHTsSDlqnSpUqlCpVKrHOvn37iI2NpWnTpollwcHB1KlTx2Vc\n165d49FHH0VEmDBhQpJrffv25YMPPiAyMpKwsDCmTp1KtWrVaN26NQAXLlzg4MGD9OzZk169eiW+\nLi4ujpCQEAC2bNlC48aNCQoKytbn52mauOVyhQuD07/BRN26Qa1aMHt2joeklFIqowIDwcfOMq1R\nowYVKlQgIiKCM2fOJCY/oaGhVKpUidWrVyeZ32aMQURS3Cd5edFkPQnGjoa5fG1yCUnb4cOHWbly\nJcWKFUtyvWbNmrRs2ZKpU6fSunVrZs6cyYABAxKvX7hwAbDDp8nPjk0Yti1SpEi6cfgCXZyQR82d\nC2++mbRs2zb43/9sX7pSSimVmvDwcCIiIhJ7sBK0atWKxYsXs379+sTErX79+hw6dIijR48m1tu+\nfTvnzp2jfv36qbZRs2ZNAgICkix4OHv2LLt3705SLyFp279/PytWrCA4ONjl/fr27cu8efOYN28e\nx44do2fPnonXypcvT7ly5di3bx/Vq1dP8qhSpQoADRo0IDo6mvPnz2f8g/ICTdzyqOrVoV69pGWT\nJ0OfPt6JRymlVO4RHh7Ozz//zJYtWxJ73MAmbhMnTiQ2NjYxobv77ru5+eab6datG5s2bWL9+vX0\n7NmT8PDwNBcZFC1alL59+zJ06FAiIiL47bff6N27d2IPGNihzIcffpjo6GhmzZpFbGwsJ06c4MSJ\nE8TGxia536OPPkpAQAADBgygXbt2VKhQIcn1t956i3fffZfx48ezZ88efv31V6ZMmcInn3wCQPfu\n3SldujQPPvggv/zyCwcOHGDevHlJtkbxBZq45SOjRkFkJDj3Sv/xB7zzDpw547WwlFJK+Zjw8HCu\nXr1KrVq1KFOmTGJ569atuXjxInXr1uWGG25ILP/2228JDg6mdevWtGvXjpo1azJnzpx02/nwww9p\n2bIlHTt2pF27drRs2TJxThzAkSNH+P777zly5Ai33nor5cuXJzQ0lPLly/PLL6lhTAoAACAASURB\nVL8kuVeRIkXo0qULf/31F3379k3R1oABA/jss8+YPHkyDRo04K677mLWrFlUq1YNgIIFC7J8+XKC\ng4Pp0KEDDRo04MMPP0ySSPoCMflk3ExEGgFRUVFRKca387MlS+D//g9274bSpb0djVJK5Q3R0dE0\nbtwY/ZmTt6X1dU64BjQ2xkS7q03tccvn2re3vW7OSVt8PHTpAqtXey8upZRSSqWkiZuiQIGkz//8\nE06f9k4sSimllEqdbgeiUihTBpYvT1netSvcfDO8+mrOx6SUUkop7XFTmdCgAdSokbTsyhXdXkQp\npZTKKdrjpjLslVdSlv3zn7B4sd34OwN7KCqllFIqGzRxU9nSsaPdL845abtyxS54cKywVkoppZSb\n6FCpypZmzaB796Rl339vNwA+fNg7MSmllFJ5lSZuyu3uvdcmb5UqJS3/73/Bx08SUUoppXyaJm7K\n7YoWhfvuS1p2+DA89BAsW+admJRSSqm8QBM3lSMqVYJDh1ImdNOmwZo1XglJKaWUDwoPD2fIkCFe\nabtatWqJZ5f6Kk3cVI6pWBEKF77+3BiYMMGuSlVKKeV9EydOpHjx4sTHxyeWXbp0iQIFCtCmTZsk\ndSMiIvDz8+P333/3aExhYWH4+fnh5+dHkSJFqFOnDv/617882qYv01WlymtEYN06iIlJWv7DDxAb\nC506eScupZTKr8LDw7l06RIbN26kadOmAKxatYrQ0FDWrl1LTEwMBQsWBOCnn36iSpUqVK1aNdPt\nXLt2jYCAjKUgIkL//v155513uHr1KitWrKB///4EBwczYMCATLed22mPm/IqEShUKGnZvHkwZYp3\n4lFKqfysdu3ahIaGEhkZmVgWGRlJ586dqVatGmvXrk1SHh4eDsDhw4fp1KkTQUFBlChRgscff5yT\nJ08m1h0xYgQNGzZk8uTJVK9encKO4ZfLly/To0cPgoKCqFChAmPGjHEZV2BgIGXKlKFSpUr06tWL\nBg0asMxp0nR8fDz9+vWjevXqBAYGUrdu3RRDnr179+bBBx9k9OjRlC9fnpCQEJ555hni4uJS/Ty+\n+OILgoODiYiIyPiH6GHa46Z8zuTJcPly0rLDh+0wa5ky3olJKaU85fiF4xy/eDzV64UDClO/TP00\n77H91HauXrtKaLFQQoNCsxVPWFgYERERvPTSS4AdEh02bBhxcXFERETQqlUr/v77b9atW0e/fv0A\nEpO2VatWERsby8CBA+nSpQsrV65MvO/evXuZP38+CxYswN/fH4AXX3yRVatWsXDhQsqUKcMrr7xC\nVFQUDRs2TDW+VatWsXPnTmrXrp1YFh8fT6VKlfjmm28oXbo0a9asoX///pQvX55HHnkksV5ERATl\ny5cnMjKSvXv38thjj9GwYUP69u2bop2RI0cyatQoli1bRpMmTbL1mbqTJm7KJwUGJn3++uuwYQNs\n26YnNCil8paJURMZ8dOIVK/XL1OfbU9vS/Mej379KNtPbWd46+G8FfZWtuIJCwtjyJAhxMfHc+nS\nJTZv3kyrVq2IiYlh4sSJDB8+nNWrVxMTE0NYWBjLli3jt99+4/fff6d8+fIAzJw5kxtvvJGoqCga\nN24MQGxsLDNnzqRUqVKAnTs3ZcoU/vOf/xAWFgbA9OnTqVixYoqYxo8fz6RJk4iJiSE2NpYiRYrw\n/PPPJ14PCAhg+PDhic+rVKnCmjVrmDt3bpLErVSpUowbNw4RoXbt2tx3332sWLEiReL28ssvM2vW\nLH766Sfq1auXrc/T3TRxU7nCmDGwb1/SpC0uDhy/tCmlVK41oPEAOtbpmOr1wgGFU72W4OtHv07s\nccuuhHluGzZs4MyZM9SuXZuQkBBat25Nnz59iImJITIykho1alCxYkUWLFhApUqVEpM2gHr16lGy\nZEl27NiRmLhVqVIlMWkD2LdvH7GxsYlz6QCCg4OpU6dOipi6d+/O66+/zpkzZxg+fDgtWrSgWbNm\nSeqMHz+eqVOncujQIa5cuUJMTEyKnrsbb7wRcfpBEhoaym+//ZakzqhRo7h8+TIbN27M0vw9T9PE\nTeUKpUvbh7OPPoKFC2HFCk3glFK5V2hQ9oc30xtKzYwaNWpQoUIFIiIiOHPmDK1btwZsklOpUiVW\nr16dZH6bMSZJMpQgeXnRokVTXAdcvja5EiVKUK1aNapVq8ZXX31FzZo1ad68OXfddRcAc+bMYejQ\noYwdO5bmzZsTFBTEyJEjWb9+fZL7FChQIMlzEUmyghagVatWLFq0iK+++ophw4alG1tO08UJKte6\n5Ra7L5wmbUop5V7h4eFEREQQGRmZOIwJNqlZvHgx69evT0zc6tevz6FDhzh69Ghive3bt3Pu3Dnq\n1089oaxZsyYBAQFJFjycPXuW3bt3pxlb0aJFef7553nhhRcSy9asWcMdd9zBgAEDuOWWW6hevTr7\n9u3L7NsGoGnTpvz444+89957jBo1Kkv38CSfSdxEZJCIHBCRKyKyVkRuS6NuhIjEu3gszMmYlXfd\nfTcMHZq0bNUqGD4c/v7bOzEppVReEB4ezs8//8yWLVsSe9zAJm4TJ04kNjY2MaG7++67ufnmm+nW\nrRubNm1i/fr19OzZk/Dw8DQXGRQtWpS+ffsydOhQIiIi+O233+jdu3fiwoW0DBgwgN27dzN//nwA\natWqxcaNG1m6dCl79uzhzTffZMOGDVl+/82aNWPx4sW88847fPTRR1m+jyf4ROImIo8Do4HhQENg\nC7BEREJSecmDwA1Oj5uAOGCu56NVvmzHDli+HBzbDCmllMqC8PBwrl69Sq1atSjjtJy/devWXLx4\nkbp163LDDTckln/77bcEBwfTunVr2rVrR82aNZkzZ0667Xz44Ye0bNmSjh070q5dO1q2bJk4Jy6B\nq6HU4OBgevTowVtvvQXYRO6hhx6iS5cuNG/enDNnzjBo0KBMv2/ntlq0aMH333/Pm2++ybhx4zJ9\nL0+RhDFmrwYhshZYZ4x53vFcgMPAJ8aYkRl4/T+At4BQY8yVVOo0AqKioqJo1KiR22JXvic+Hvyc\nfiU5eRJ274Y77tAVqUqpnBEdHU3jxo3Rnzl5W1pf54RrQGNjTLS72vR6j5uIFAAaAysSyozNJpcD\nt2fwNn2A2aklbSp/8Uv2r3rGDOjQAS5c8E48SimllLt4PXEDQgB/4ESy8hPYYdA0iUhT4EbgC/eH\npvKCIUNg/XooXvx6WVwcXLrkvZiUUkqprPDl7UAEyMg4bl/gN2NMVEZuOnjwYEqUKJGkrGvXrnTt\n2jXzEapcwc8Pku+f+N//woABdkPfcuW8E5dSyj3Gj4f27aFmTW9HovKrH3/8MXG+XYJz5855pC1f\nSNxOYxcWJP/xWZaUvXBJiEgR4HHg9Yw2NnbsWJ1voGjSBN54Q5M2pXKTuDiYMMFuBdSqlS27eBES\ndmzQxE15yz333MOrr76apMxpjptbeX2o1BgTC0QBbRLKHIsT2gBr0nn540BB4EuPBajypCpVwOm0\nFAD27oVOneDYMe/EpJRKm58fzJ4Nv/xyvaxYMdtzPmCA9+JSKid5PXFzGAP0F5EeIlIX+BwIBKYB\niMgMEXnPxev6Av81xpzNsUhVnnXyJJw/D04nsigfZQzExno7CuVpV66A82iTCPz0EyTfzD4wEAKc\nxo8uXYKHH4bt23MmTqVykk8kbsaYucALwNvAJqAB0N4Yc8pRpSLJFiqISC2gBbooQblJixYQEQGF\nnY4FvHoVPvtMFzL4mu7d4bnnrj+PibFfO5V3xMdDw4bw9ttJy5OdWOTS8eNw9CgUKeKZ2JTyJl+Y\n4waAMWYCMCGVa3e5KNuDXY2qlMesXg3PPgv33gvOx+x98IHtmXvyyetlCVsi6l5xnte+fdJVwpMm\nwUsvwf79Om8xr/Dzg5Ej4aabMv/amjXtcGry/4txcXpEnsr9fKLHTSlf1aaN/e29YsWk5YcPp5wL\nt2EDlChhT29wFhWlQzbZ9ddfSZ/36AGdO19//tRTNsnWpC13MgY+/BC++y5peceOUL161u6ZPGmL\njIT69W1PnFK5mSZuSqWjTJmUv6WPG2fPRHUWGmpXqlaokLR82DBItkqco0dtsnHwoNvDzXNGjYJb\nb4XLl1Ov4+9v66jcSQR+/hl++81zbZQrZzfiDg31XBtK5QRN3JRyk0qV7KH3zkN4AF9/DcnPKP7z\nT1i3zs7jcfbEE/bh7MoVOyE7v5780LmzneeUmflKZ8/CV195LiaVPRcu2MVAzhYsgGS7KbhVvXr2\n/6HzySrnz9uHSqp37974+fnh7++Pn59f4t/379+frfvGxcXh5+fHDz/8kFjWsmXLxDZcPdq1a5fd\ntwPAokWL8PPzIz75N91cyGfmuCmVVwUH24ezBg1g06aUdTt1SpnM7doFYWE20Wva9Hr5v/9tF00M\nHny9zBj7SH7sV26yf3/S4bGaNTO/P9eMGfDOO9C2ra4S9jXGwJ13QqNGMHXq9XJv/JsdMQIWLrRT\nGQL0p2ESHTp0YNq0aTifZ+582HxWuDobfeHChcTExABw4MABWrRowU8//UTt2rUBKFSoULbadG5b\nRFzGkNvk4m/vSuU9jzwCjz2WtKx+fTtvrkGDpOUHD9okx9mhQ1CokJ3P42ztWlixAp+3ahXUqmWT\n1Ox47jnYvFmTtpx0+jQcOJC07OBB++92w4brZSLw8ccpV4t6wz/+AaNHa9LmSqFChShTpgxly5ZN\nfIgIP/zwA3feeSfBwcGEhITQsWNHDjh94WNiYhg4cCDly5enSJEiVK9enVGOHZKrVauGiHD//ffj\n5+dH7dq1KVmyZOL9Q0JCMMZQqlSpxLKEk45Onz5Nz549CQkJITg4mPbt27Nz504A4uPjueOOO3jk\nkUcS4zhx4gTlypVj9OjRbNu2jY4dOwJQoEAB/P39ec55WXouo4mbUj6uYEGoWzfpNiUA774Ln36a\ntCwoyP5QrFs3afn48bZ3wdmFC7ZHKnmSdPXq9RWyOe2OO2DWLHuyRXaIpFxQotzjxAn45z9TLs55\n9lno3TtpWalS0LKl3STXWViYnVrgbZUqwQMPJC2LirILkrIrM1Mbjh+HX39NWb55s/28nZ0+DdHR\nKetu3w5HjmQuxqy4cuUKQ4cOJTo6mhUrVmCM4eGHH068PmbMGJYsWcK8efPYvXs3M2fOpHLlygBs\n2LABYwxffvklf/zxB2vXrs1wu506dSImJoaVK1eyfv16atWqRdu2bbl06RJ+fn7MmjWLZcuWMdXR\njdunTx9uvvlmXnjhBerWrcvMmTMBOHbsGMePH+f9999346eSw4wx+eIBNAJMVFSUUSq/iYsz5q+/\nkpadOGHMI48Ys3lz0vJnnzWmSZOkZfHxtr67bd1qzLlz7r9vcvv3G/Pxx55vJz/Yv9+YkBBj1qxJ\nWr5tmzG//eadmNypeXNjOnfO/n3mzIkyGf2ZM3y4MRUqpCwPCjJm9OikZZMm2QkRydWvb8zgwVmL\nNblevXqZgIAAU6xYscTHY4895rLu8ePHjYiYXbt2GWOMefrpp0379u1d1r127ZoREbNo0SKX1/fu\n3WtExGzbti1J+Y8//mhCQ0NNXFxcYllcXJwpX768mT17dmLZ1KlTTbFixczQoUNNcHCwOXLkSOK1\n77//3vj5+SW5hztERaX+dU64BjQybsxntINYqXzAz89uVeKsbFm7cCK5Ll2gdeukZceO2R6shQvh\n/vuvlydscpqVIckLF2xvzNCh8NprmX99Znz/ve2d7NUr5eIRlTnVqsGpUynL69fP+Vg84Ycf3LMQ\nqFatjNcdMMCe9JDc//6XchVs5852fmByX3/t3n/bd911F59//nninLCijo0s9+zZwxtvvMH69es5\nffp04tyxQ4cOUbt2bXr37k27du2oW7cu99xzDw888ABt2rRJq6l0bdmyhZMnTyYOmya4evUq+/bt\nS3zeq1cvFixYwKhRo/jyyy+pkHyJfx6hiZtSKokWLVKWlSgB8+ZBs2ZJy4cNs/OaVq++XhYba4eb\nbrkl7ZWgQUHw44+ufwi527PP2qQtKMjzbeU1P/xgt+l46SVvR5IzXC0m+vRTaNcO6tRJ/XXnztmE\nNisH3YeGut6mxNUWNyEh9pGcuxPnokWLUq1atRTl9913H7Vr12bKlCmEhoYSExPDLbfckrjAoEmT\nJhw8eJDFixezfPlyHn74YTp06MDs2bOzHMvFixepWbMmixcvTrG4oJTTb43nz59n69atBAQEsHv3\n7iy35+s0cVNKpatYMXjooZTlw4en3Bx35064/Xa70ODOO6+Xr15tjytyXhnbvLln4nVFk7as2bTJ\nLi7Ir6cOXLxotxEpUCDtxK1nTzsfbc2avHt6ysmTJ9m7dy8zZ86kmeO3uMjISCTZGw4KCuKxxx7j\nscceo3Pnztx///1MmjSJYsWK4e/vT1xcXKptJL8XQKNGjRg1ahRFixalbNmyqb520KBBlC5dmvHj\nx9O5c2c6dOhAU8c3nIIFCwLXtyTJzTRxU0plmavhoDp17OTp5D/k3n3X9sYtW5YzsaVl/Xr49ls7\nyT6v/pB1l9dey79JG9hfWrZtS/+M1FGj7GeUl/89lS5dmuDgYCZOnEiZMmU4cOAAL7/8cpI6o0eP\nplKlStzq6C78+uuvqVixIsUcK1QqV67M8uXLadq0KYUKFaJkyZJJXp+8Rw3ggQce4KabbqJjx468\n9957VK9enSNHjrBw4UJ69epFvXr1mDt3LvPnzyc6Opo6deowcOBAunXrxpYtWwgMDKRq1aoAfPfd\nd7Ru3ZrAwEACAwM98Cl5Xu5OO5VSPqdgQXs4ePLviXPnwuLF3okpuS1b7KbGV696O5LcIb8mbQkK\nF076GVy8aPdc3LbtelnNmnb+X17m7+/PV199xbp167jpppsYOnRo4lYfCYoVK8Z7771HkyZNaNas\nGceOHWPRokWJ18eOHcuPP/5I5cqVE3vDnLnqcfP392fZsmU0atSIJ554gnr16tGjRw9OnTpFSEgI\nx44d4+mnn+bDDz+kjuM3xpEjR1K4cGGef/55AGrVqsXLL7/MoEGDuOGGG1IknLmJuMpu8yIRaQRE\nRUVF0SgnJtUopXzatWu6f5cr335r5x6OH5+7N3L2pH377NDorFng6MhJITo6msaNG6M/c/K2tL7O\nCdeAxsYYF5u4ZI1+21JK5UuatLl24YI9MiwuThO31NSoYc9WVcob9L+lUirf+/Zb6NfPJiv5Xffu\nMHt2+nO6lFLeoYmbUirfu3zZPvLJzJEUkr/vvDzBXqncThM3pVS+17UrfPll/hw+/eYbu6myLtRQ\nKnfQxE0ppci/vUwhIVC+fP5MWpXKjfS/qlJKJfP++3Zbkxde8HYknhcWZh/KM3bs2OHtEJQHeePr\nq4mbUkolc/GiTdzyKt0KxfNCQkIIDAyke/fu3g5FeVhgYCAhrs4h8xD9r6uUUsm8+663I/CcuXNt\nj2JEBCTbtF65UeXKldmxYwenT5/2dijpOnbMnmjSo0f+nTKQHSEhIVSuXDnH2tPETSml8pGbb4a7\n7tKzW3NC5cqVc/QHeladOQPTp8OQIVClirejUenRxE0ppdIQH297IfJKT0S9ejB6tLejUL4kPBxO\nnszb0wPyEl1VqpRSqbh4EW67zW5Iq1Re5e+vSVtuoombUkqlolgxuPdee4C4Ukr5Ak3clFIqDe+8\nA02bejuK7PvhB+jY0Z4QoZQrV67A9u3ejkKlRxM3pZTKB/z97SrSwEBvR6J81eDB0KlT/j36LbfQ\nxE0ppTLojz+8HUHWtW8PM2Z4Owrly158ERYtyjsLcfIqTdyUUioD1q+HypVh7VpvR6KUZ9SsCbVr\nezsKlR5N3JRSKgMaN4ZPP4Vbb/V2JEqp/EwTN6WUygB/fxgwAAoX9nYkmRMXB++9B4cOeTsSlZvE\nx3s7ApUaTdyUUioP278fRo6EI0e8HYnKLdq1g+HDvR2FSo2enKCUUpkUEwMbN0KLFt6OJH21atld\n8fVQeZVRDz4I1at7OwqVGu1xU0qpTPrkE9sr8ddf3o4kYwoWBD/9bq8yaOBAuwpZ+Sb9r6yUUpn0\n1FPwyy92XzSllMpJmrgppVQmFSsGN9/s7SjSt3On3Q1fKZV3aOKmlFJ51EMPwbPPejsKlRudPg1P\nPqlHYPkina6qlFLZsGmTPVGhQwdvR5LSggW6C77KmuLF7b/tY8egfn1vR6Oc+UyPm4gMEpEDInJF\nRNaKyG3p1C8hIuNF5JjjNTtF5J6cilcppQBGjYLRo70dhWt16uhO+CprCha0K6fvvtvbkajkfKLH\nTUQeB0YD/YH1wGBgiYjUNsacdlG/ALAc+AN4CDgGVAFyyRovpVReMX68nfOmlFI5wScSN2yiNtEY\nMwNARJ4C7gP6ACNd1O8LlASaG2PiHGW6L7hSKsf54spSY3SIVKm8yutDpY7es8bAioQyY4zB9qjd\nnsrLHgB+ASaIyB8i8quIvCIiXn8/SinlbR9/DHfcoccWqew7eRJmzPB2FMqZLyQ6IYA/cCJZ+Qng\nhlReUx14FBt/B+Ad4AXgVQ/FqJRSaYqNtccERUZ6OxJo0AA6dtRNd1X2rV0LffvqWbe+xFeGSl0R\nwKRyzQ+b2PV39M5tEpEKwIvAP9O66eDBgylRokSSsq5du9K1a9fsR6yUyrcCAuB//4Ny5SAszLux\n3HWXffiS+Tvmc+LiCQbeNtDboahMuOceOHECSpXydiS+bfbs2cyePTtJ2blz5zzSlti8x3scQ6WX\ngYeNMd85lU8DShhjHnTxmkggxhjTzqnsHmARUMgYc83FaxoBUVFRUTRq1Mjt70MppeLjtZfLFWMM\nt068laolq/Jtl2+9HY5SOSI6OprGjRsDNDbGRLvrvl7/FmOMiQWigDYJZSIijudrUnnZaqBmsrI6\nwHFXSZtSSuUETdpc+/nQz2w9sZVnbnsmxbXpm6czOXqyF6JSKnfylW8zY4D+ItJDROoCnwOBwDQA\nEZkhIu851f8MKC0iH4tILRG5D3gFGJfDcSullEveGMw4exb694eDB3O+7bSM2zCOOqXr0KZ6mxTX\nNh7bSL+F/fgi+gsvRKYyKj7ebsarvM8nEjdjzFzs4oK3gU1AA6C9MeaUo0pFnBYqGGOOAO2A24At\nwEfAWOCDHAxbKaVc2rMHWrQAD01xSdWBA3ZxRIECOdtuWo6eP8r8HfMZdNsg/Fws/P+kwycMum0Q\nTy58kn9H/dsLEaqMeOYZO99NeZ/PLE4wxkwAJqRyLcU0W2PMOqCFp+NSSqnMCgy0+7udPg3J1kJ5\nVKNGsHt3zrWXEf+O+jeFAwrT89aeLq+LCJ92+BQ/8WPA9wMwxjCgyYAcjlKlp39/6NpV9wj0BT6T\nuCmlVF5RoQIsXuztKLwvJi6GiVET6dGgB8ULFU+1nojw8T0fIwhPLXoKg+GpJk/lYKQqPbfe6u0I\nVAJN3JRSSnnE/B3zOXHpBIOaDkq3rojw0T0fISIMXDSQeBPP07c9nQNRKpW7aOKmlFJ5wLJlcNNN\nEBrq7Uiu61y3M4u7LaZ+mfoZqi8ijG0/Fn/xJzYu1sPRKZU7+cTiBKWUyou2b4dRozzfTlycnX80\naZLn28qMwgGFuadm5ma0iwij24/m+ebPeygqlR2PP54z/6ZV6rTHTSmlPGTrVvjoI3jySc8uUvD3\nt4sSvLyfusoHbrwRKlf2dhT5myZuSinlIY88Ao8+ahMrT9MjiVROePNNb0egNHFTSikPCdDvsEop\nN8v0HDcRmSYirTwRjFJKqcy5eNHuap9fXIvXUw1V/paVxQnBwDIR2SMir4pIBXcHpZRSecnZs7Bx\no2fu/eqrcMcdnrm3r4mJi6HtzLaMWqOz473p7Fl47TV7UofKeZlO3IwxnbBHUH0GPA78LiKLReQR\nEfGhg1aUUso3vPoqPPaYZxYPdOsGQ4e6/75Zte7IOuKNZ7oAC/gV4M5KdzJ02VA+XP2hR9pQ6StY\nEGbMgB07vB1J/pSlGRiOM0THAGNEpBHQG5gJXBSRWcAEY8we94WplFK51yuvwBtveOaooGbN3H/P\nrNp1ehfNJzfnq0e+4rEbH3P7/UWEt8PfRkR4aflLxJt4ht05zO3tqLQVLQoHD4KfbijmFdmaOisi\noUBb7IHvccAPwM3AdhF5yRgzNvshKqVU7pZftk+YsGECZQLL0LFOR4+1ISKMCBuBILy84mUMhpfv\nfNlj7SnXNGnznkwnbo7h0I7YXrZ2wFZgLPClMeaCo86DwBRHuVJKqTzuwt8XmLZlGs/c9gyFAwp7\ntC0RYUT4COJMHK+seIX7at3HzeVu9mibSvmKrOTMx4FJwEGgqTGmiTHm84SkzSEC+MsdASqlVF5h\nDFy65J57/fYb3H8/HD3qnvtl16yts7gYczFHD4cf3no4FYtXZMzaMTnWprru8mVYutTbUeQ/WUnc\nBgPljTGDjDGbXVUwxvxljKmWvdCUUipv6dgRnnbTuekXL8K1axAS4p77ZYcxhnEbxtG5bmcqlaiU\nesWLF+GnnyDWPeeQFvAvwHNNn2P/2f3Exce55Z4q4777Dtq3hyNHvB1J/pKVxO07IDB5oYiUEpHi\n2Q9JKaXypn79oFcv99yreXP48UcoVMg998uOyN8j2X5qO8/c9kzaFd9+G8LC4IYbYMAAiIzM9iZ0\nQ24fQmTPSPz9cuB4CpVEx46wZw9UrOjtSPKXrCRuc4AuLsofc1xTSinlQqdOEB7u7Sjcb9yGcdQv\nU5+wqmGpV7p2ze4h8fjj0L8/LFliP4xKlWDIENiwIUv7pfj7+SOeWK6bi+09s5cLf19Iv2I2BQZC\nzZoeb0Ylk5XErRl2DltykY5rSiml8gljDA1vaMird76adgK1ZAmcOAHDhsH779vdW1evhocegi+/\nhKZNoXZteximbhCWZccuHKPRxEY8ufBJb4eiPCQriVshXK9GLQAUyV44yYaRjgAAIABJREFUSiml\n0vPZZ3aIyheICK+3ep1uDbqlXXH6dGjQAG69NeGF0KIFfPqpXWGxdCm0bAmffAL169t6H3xgNwxT\nGfbC0he4EHOB+Tvmc/ry6Rxr112LblT6spK4rQf6uyh/CojKXjhKKZW3xcVB1662kykrzp+H11+H\ndevcG5dHnTkD334LPXu63oU4IADatoUpU2yv3IIFUKcOjBgBVavaM73GjbPXVKpWHljJnN/mMKrt\nKFpXbc2pS6dypN0hQ6BNmxxpSpG1DXhfB5aLyC3ACkdZG+A27L5uSimlUuHvDyVL2mODsqJ4cfjj\nj1x2sPycOTZj7ZZOrxzY1RadO9vHhQt26eLs2TB4MDz/vM0QunaFBx+0H6QC7Dmug34YxJ2V72TI\n7UN4ocULOdb2gw/azlOVM7JyVulq4HbgMHZBwgPAXqCBMWaVe8NTSqm857PP4NFHs/76AgV8YzVp\nhk2fDvfeC+XKZe51QUE22fv+e5utfvaZ3Uqkb197rwcftNcUY38Zy54/9zD+3vE5vlijZUt45JEc\nbTJfy+pZpZuBDPzqpJRSKl/bvh3Wr4d587J3n9Kl7WrU/v3tnLivvoL//AceeMAOw3a0x2zN2jqL\nrSe2MrLtSDcEn3u0qd6GogWL0qBcA2+HojwsW6eNiUgRESnu/HBXYEoppZI6dMjuVp+rTJ8OpUrB\nffe5754VKlzfQuSBB+wGeY75b2eunGHML2M4dO6Q+9rLBZqUb8IzTdPZR0/lCZlO3EQkUETGichJ\n4CJwNtlDKaVUOs6fh/fes7tiZNTTT9u94LzNZHS/tWvXYOZM+L//88zYrgh88YX9s29fMIY+DfsQ\nVCiIT9Z94v72cosdO+Bszv44NgYGDrRfDuVZWelx+xC4CxgI/A30A4YDx4Ae7gtNKaXyroAAu/PF\nZpcHB7r20Ud2CzRvG7l6JJ3mdEo/gVu+HI4fd99xEa6ULWtXoy5aBBMnUqxgMQY0HsCk6Emc//u8\n59r1VUuXwi23wFM5d2Ys2Nw5IEuTr1RmZSVxewB42hgzD7gGrDLG/BN4FZ33ppRSGRIYaM94fPDB\njL+mZk1o0sRzMWXEtfhrTNg4gdJFSqc/CX7aNLjxRmjUyLNB3XefTVSGDIFdu3im6TNcjr3M5OjJ\nnm3X1/z8s12NW6qU3VLlVM5sB5Lg00/tqLXyrKwkbqWAhM79847nAD8DrdwRlFJK5Qe5sYfi+93f\nc+jcofTnU509C//9r+1ty4lVjqNG2eOzunenYpFydLmpCx+v+5hr8dc837YviI62CWyzZrBxo/3M\nZ8wA4LMNn/HOT+94OUDlLllJ3PYDVR1/34ndEgRsT9xfbohJKaWUkywc4ekx49aP4/aKt9MoNJ1e\ntLlz7Ry3jOzd5g5Fi9pdjTdvhrffZkjzIRw8d5D5O+bnTPvetGMHtG8Pdevafe8qVrRduV98AcZw\n9MJRRv0yiksxerxBXpCVxG0qcIvj7/8CBonI38BY7Pw3pZRSGRQba4/xTGtD3YUL7WjjuXM5F5cr\nO07tYMWBFRlbvThtmk0mQkM9HleiJk3grbfgvfdouP8y4VXD+fLXLB5R4cMW7V7EiMgRxMXH2dUt\nd98NN9wAixfbve8AnnwSdu6E1avp27Av5/8+z9fbv/Z4bBcu2CHT48c93lS+lZUNeMcaYz5x/H05\nUBfoCjQ0xnzs5viUUipPW7sW7rnHjm6lplw5CAuDEiVyLCyXxm8YT7mi5Xikfjq7re7aZd+YJxcl\npGbYMGjeHJ54gpltJ/DNo9/kfAwedCX2Cs8sfoY1R9bgd/wPm7QFBsKyZXZuW4LwcKhWDSZNolpw\nNe6ufjdfRHt+yWdcHLzySi47ki2XyVTiJiIFRGSFiNRKKDPGHDTGzDfGbHV/eEoplbfdcQds2QK3\n3ZZ6nWbNYMyYnIvJlWvx1/jy1y/p07APBf3TOa9r+nQIDrZ7rOW0gAC7BcmpU1R4fSQF/AvkfAwe\n9P7P73PswjHGNX8badfOdtkuX2573Jz5+dmVAl9/DX/9xZONnmT14dVsP7Xdo/GVLAknT9o1Esoz\nMpW4GWNiAd2WWSml3MTPDxo0yJn5+9mx49QOLsVcolOddDaSi4uzk+K7doXChXMmuOSqV7fjdVOn\nZv/EBh+y5889fLD6A15q/By1ugyC06dt0laliusX9OoFMTHwn//QqU4nQgJDcqTXLTDQ403ka1mZ\n4zYL6OvuQJRSSvmum8vdzJ8v/UmT8unsR7JihT2SqmfPnAksNT17wkMP2SOyjh3zbixuYIzh2cXP\nUr5YKK/8azXs22f3bKtdO/UXlS9vV5p+8QWFAgrRo0EPZmyZwd/X/s65wJXbZSVxCwAGikiUiEwU\nkTHOD3cHqJRS+UXyxQfx8fD887Btm3fiSS6oUBD+fv5pV5o2DerVS3vsNyeIwMSJ9sSG3r3TXv2R\nC8zfMZ8l+5bwybpSBEZthR9+sBvtpufJJ2HTJoiKol+jfvx55U8W7l7o8Xjj4+0UAOV+WUncbgKi\nsXu41QYaOj1udV9oSimVf0ydCpUrJz2L9OhR+PFH+Cu3bLR07pzd+DWn9m5LT0iI/WCXLoXx470d\nTZZdirnEP378B/efv4EHFmyHb7+F22/P2Ivvucf2vE2aRL0y9fip1090ruv5CWhffgkNG+rqUk/I\n9PaPxphwTwSilFL52V132WlZfk6/TleqZHd0yDXmzrVzqrp393Yk17VvD889By+9ZD/kG2/0dkSZ\n9sf5Y1Q89TefTP8T5i6ANm0y/uKAAOjTBz7+GEaPplWVnNkn/4EHYNUquyJauVdWetyUUkq5WZUq\n0KNHyvn8Ir7ReZUh06ZBu3a2h8eX/OtfUL06C198gKU7F3k7mswxhhpvf8qaD05R7ZOZ0LFj5u/R\nty9cvGgT6xxSsqRdMe2nWYbbZfojFZEIEVmZ2iOrgYjIIBE5ICJXRGStiKQ6QUJEeopIvIjEOf6M\nF5HLqdVXSinlYXv2wJo13tm7LT1FisCsWXwW8jsvze6D8aWjKNLzxhvw6afI5xPh//4va/eoWtXu\n9/aF51eUKs/LSi68Gdji9NgOFAQaAb9mJQgReRwYDQzHzpXbAiwRkZA0XnYOuMHpkcp6aKWUyn3W\nrbNz3HKN6dPtDsGd0tkuxFsaNmRI/b5s8TtJxLcfeTuajBk5Et59Fz780K6OzY4nn7SJtRdWuuTy\ndSE+JysnJwxO9njGGHMn8BEQm8U4BgMTjTEzjDE7gaeAy0CftEMxp4wxJx2PU1lsWymlfMZnn9mO\nlf794bXXvB0N/Hn5z/R7qOLibOLWpYv39m7LgDZDP6PBxaKM/v5V758flp7PP7enQLzxBrz4Yvbv\n17GjXayRw71ub7wB996bo03mee4cfZ5F2omWSyJSAGgMrEgoM/a7xHIgrWUzxUTkdxE5JCL/FZH6\nmW1bKaV8TUgIVKgAERHwzjvejgbazWrHoB8GpV0pIgKOHPHNYVInEhDAkHtG8EOlq+wY/IS3w0nd\nrFnw9NN2L5gRI9xzz0KF7N52M2bA3zm3j9vtt/tuJ2xu5c7E7XbgahZeFwL4AyeSlZ/ADoG6sgub\nJHYEumHfxxoRqZCF9pVSymc8+qgdGStVyq4q9aYTF08QfTya2yums/XE9OlQp449m8vHdQ17llD/\nkow9vRDmzPF2OCl9+61NgHv1suecuXNlSr9+cOaM3bIFiImLYdfpXe67vwv33gsDB3q0iXwn09uB\niMj85EVAKNAEcOfvhwK47J83xqwF1jrF9AuwA+iPnSeXqsGDB1Mi2UnNXbt2pWvXrtmNVyml8pQl\n+5YA0L5m+9QrnT9vj5V6441csfy1oH9Bnmn1Im/Hvsk/hwyg7B13eD9DTrB8OeaxR5nZuxFdxo+n\noLuXZNatC3feaYdLu3RhyJIhLNqziH3P7cNPdPlndsyePZvZs2cnKTvnoeF4yezqGhGZmqwoHjgF\nrDTGLM10AHao9DLwsDHmO6fyaUAJY8yDGbzPXCDWGNMtleuNgKioqCgaNWqU2TCVUirf6TqvK3vP\n7GXDkxtSrzR5sp34fugQVKyYc8Flw5krZ6g0phIvrQtg+KUmsGyZ9/etWLMG2rZl+sM16FXjV/7X\n63+0rNLS/e3MmGGHTPfuZU3BE9wx5Q6Wdl9K2xpt3d9WPhcdHU3jxo0BGhtjot1136wsTuid7NHX\nGPNyVpI2x/1igSggcUdBERHH8zUZuYeI+GFPdNA9mpVSyg3i4uNYum8pHWp2SLvi9OnQtm2uSdoA\nShUpxbzH5/HMoGmwciV85OVVpps3w733crb5LQy9+Thdb+rqmaQN4JFH7OrfKVO4veLt1C9Tny82\neXbBgjG2Q/abbzzaTL6RlX3cbhORFBMZRKSZiKRz+nCqxgD9RaSHiNQFPgcCgWmOe88Qkfec2npD\nRNqKSDURaQh8id0ORDepUUopN1h/dD1nrpzhnpr3pF5p7167Pb63D5TPgntq3kPp9g/CCy/AK6/A\n1q3eCWTnTrtpca1avP7sjVy99jej2o3yXHuBgdCtG0ydisTF0a9hPxbsWMCpS57bmEEEdu2y61dU\n9mWlb3g84GpCQAXHtUwzxswFXgDeBjYBDYD2Tlt8VCTpQoVg4N/YPeQWAcWA2x1biSillMqmxXsX\nE1w4mGYV0lhwMGMGFC8OnT1/9qXHvPuuXVjRrRtczcr6umz4/XfbW1m2LFEz/sVnWyYzImwE5YM8\nfPJEv372ENFFi3jilicQEWZunenRJufOhX/8w6NN5BtZSdzqYw+ZT26T41qWGGMmGGOqGmOKGGNu\n/3/27ju8impr4PBvJRBqAGlSFKQpSJOABQsqICBKvyJIx4SroiLKBcWC+lmwgICKJaFDkCoo3QjS\npEiCIChVlGroobdkf3/soAiknczklKz3efJITmb2XmM4ZGVm77WMMWsu+Vp9Y0z3Sz5/3hhTLvnY\nUsaYZsYYL/26pJRSgWfF7hU0qtCI4KDgqx+QlGQTt0cftXdx/FWuXLYj+pYtWVs4b98+280gVy6S\nFsyn5/KXqVa8Gs/c/oz7c9eqBbVrQ1QURfMWpVXlVkTGRfpXR4lszJPE7SxwtbaxJYELmQtHKaWU\nL5jXYR6fPfRZygcsXgx//umXj0mvUL267Wc6eDB8/33ax2fWoUP2TtuZMxATw4h9c1i1ZxXDHxpO\njqAMF3vwTEQEzJkDu3cTERbBpoOb+HFXupaVKy/zJHFbALwrIn/X1BCRQsA7wHdOBaaUUsp7goOC\nuSbPNSkfMHo0VKwId96ZZTG5qlcvaNDAJqKHD7s3z7Fj8OCDsH+/Lf9Rtixj1o2hS80u3F3mbvfm\nvVz79rbLxejR3F/ufppUbMKxs8dcnfL0afvI1M3/vdmBJ4lbH+watz+TG84vAnZg16C94GRwSiml\nfNDx43aLYNeuflG7LV2CgmwyeuqUrRjrxmPD06ehWTP7WHb+fKhcGRFhYZeFDG0y1Pn5UlOggH3M\nPWIEQQbmdpjLg5XS2EGcSceO2Xxx0SJXpwl4npQD2YPdPNAXuzkgFugFVDfG7HI2PKWUUj5n2jSb\nhHTy4bZRGbTur3XEF8ppe4ROnmzXvTnp3DlbimPNGvuIslatv78UEhxCwdwFUznZJeHhdoNETEyW\nTHfttbBrF7RpkyXTBSyPKg4aY04aY740xvQ0xvRJbg7vaYN5pZRS/mT0aKhfH8qU8XYkjjh1/hT1\nRtdj6Kqh0LatTUh79rRJjRMSE6FjR5sgzZjhO4+X69aFm2/O0sbzpVzeMJsdeFLH7SURuaKZvIh0\nF5F+zoSllFLKJ+3YYTcm+HhD+YzImzMv4bXC+XzN55w8dxI+/hiuuQY6d7ZJV2YkJUGPHjB9Okya\nZDcl+AoRu0lhxgw44F4dN+UsT+64/Re4Wr20jcATmQtHKaWUTxs7FkJDoVW6uhH6jV539OLY2WOM\n+nmU7SwwbhwsWwYfZqIYrjHw/PMwcqS9S+mL9e46drQJ3NixWTrt3r1ZOl1A8SRxK8HVW0sdwJYE\nUUop5YfOXDjD2QtnUz4gKcm2uHrkEciXL+sCywJlCpbhkaqPMGTlEBKTEuGee6BfP9urKc7DNpOv\nvw5Dh8Lw4TZB8kVFi0Lr1hAZ6c6GjKsYPx7KltXdpZ7yJHHbBdx1ldfvAjSHVkopPzX116kU/aAo\nCWcSrn7A0qX2UWkAPSa91PN3PM/2I9v5ZvM39oU33oBq1WzSdfp0xgYbNAjefBPee8/uUk2259ge\nmxj6kvBw25Nq2bIsma5RI/jqq4DL/bOMJ4lbJDBERLqJSNnkj+7AR8lfU0op5YfmbptLpcKVUt7h\nOGYMlC8Pd2dhvbEsdGvpW7mnzD0MXjnYvhASYneX7thh776l15dfQp8+0L8/9O3798sXki7w4IQH\n6fFtD4cjz6T777ff1+RNCgu2L+Cp2U+5Nl3x4nZnaa5crk0R0DxJ3D4ARgDDgd+TPz4Ghhlj3nUw\nNqWUUlkkMSmR+dvm82DFFGp5bdsG0dHw+OOBU7vtKl6o+wLLdi5j9Z7V9oUqVeCDD+yGhXnz0h5g\n4kR44gl4+ml4661/fenjVR+zYf8GnrrVvaTII0FB9q7blClw9CgJZxL4bM1n/HrgV29Hpq7Ckzpu\nxhjTDygG3AHUBAobY950OjillFJZY83eNRw6fejqRViNgWefhRIlAr5T+MM3PkzfO/tSJE+Rf17s\n2ROaNIFu3eDgwZRP/vZbuxO1c2e7tu2SBHfv8b0M+GEAT9Z5ktqlart4BR7q2tXWmouOpvlNzSma\ntyhRcVlXJkSln0d13ACMMSeMMT8ZYzYYY1JZzaqUUsrXzd02l0K5C3HHdXdc+cUZM2DuXJuM+HND\n+XQIDgrmvQfeo0LhCv+8KGJ3hp4/D//979UX8S9caDdttGhhHzkG/fvHa58FfcidIzdv1X/rynN9\nQcmS8PDDEBlJruAQutTswth1Y1PfrJJJ770XUDWcs4xHiZuI3Coi74vIVyIy/dIPpwNUSinlvrnb\n5vJA+QeubHJ+8qTt49m0KTRv7p3gfEHJknbn5fTptrTHpVautP9v7rvPronL8e//hwt3LGTihom8\n/8D7qfd/9bbwcPj5Z4iN5fFaj3Po9CFmbJrh2nRlysCNN7o2fMDypABvO2A5UAVoBeQEbgbqAyls\nRVJKKeWrDpw8wE97frr6+ra337YN0YcNC+i1benSqhV0724fG2/fbl9bv942ja9VyyZ1l624P5d4\njqfnPM1d199F55qdvRB0BjRpAqVLQ1QUVYpV4e4ydxO11r3Hpe3b22orKmM8uePWH+htjGkGnMP2\nKa0CTAZ2OhibUkqpLPDjrh8xGJpUbPLvL2zaZAvQvvQSVKhw9ZOzmyFD7LbITp3gt99sJ4Ty5WHW\nrKs+Ro6MjWTLoS0Mf2g4QeLx6qSskSOHTUyjo+HECcJrhRPzewy/H/nd25GpS3jyt6gCMDv5z+eA\nfMYYgy0H4mN7nJVSSqWlReUW7Hl+DyVDL6mhbozdGXn99f8qaZHthYbaCrKrVkFYmC1gO3++7bZw\nFd1rdWfWY7OocW2NLA7UQ927w4kTMGUKj1R9hIK5CjJq7ShvR6Uu4UnidhgITf7zHqBa8p8LAYG9\nalUppQJUqdDLun9PmQLff2/LYOTJ452gfFXduvDOO1CpEixYYJO3FOTJmefKO5m+7IYb7F3EyEjy\n5szL7Mdm0/cu9xJ3Y+xT+AULXJsi4HiSuC0FLnbJnQIMFZFIYCLwvVOBKaWU8pLjx6F3b9tbs2lT\nb0fjdYdOHcJcvpO0Xz+7vq10ae8E5abwcFixAjZu5K4ydxGaKzTtczwkYpcGrl7t2hQBx5PE7Wng\nq+Q/vw0MBq4FpgGPOxSXUkql6dCpQ3y14SuW71xO/In4K3+4Ks+88QYcOWLXc2VzG/dvpPTg0izd\nudTboWSdFi2gWLG/Oym4beFCeOWVLJkqIORI+5B/M8YcvuTPScBARyNSSql0OHL6CPeNuY8N+zf8\n/VrBXAU52PfglSUtVPpt2GATtjfftJ3As7mbi91MhcIVGLxiMPXK1vN2OFkjJAS6dLG16959F3Ln\ndnW6IB/fs+Fr9F83pZTfOXnuJA9FP8Te43uJ7RFLSHAI2w5vI/5EfJpJ2+s/vM7xs8epWLji3x/X\nF7xekz2wC4569rQ7SF94wdvR+AQR4fk7nifi2wi2HtpKpSKVvB1S1nj8cbujeMYMaNfO29GoS+i/\nVEopv3Iu8RxtJrdhffx6FnZZSFjJMACqFa+WxpnW7mO7WfLnEnYc3cGFpAsA5AzKyQ2FbqBi4YpE\nhEXQqkor1+L3aRMmwJIldqW4dgD/W4caHei/sD9DVg7h04c+TfVYYwwSCPXuKleGe+6xRYezIHFL\nTIRly6B2bcif3/Xp/Jombkopv7Lv+D62Hd7GzHYzua30bRk+P6q5XbdzIekCOxN2su3wtn99nE3M\nQIufpCS7kP/oUUhIsB8X/1yqFNSvn+H4stKp86fImzO5GEBCAvTpY9s2PfBA6idmM7lz5KbnrT0Z\nuGwgb97/JkXyFrnqcd9u/pZ3lr3D3A62fZjfCw+3j0y3b3e9jt+ePbbxxOTJ9q+gSplkl8W8IhIG\nxMbGxhIWFubtcJRSmXA+8Tw5g3O6M7gxMHUq7NhxZTJ2eYJ2/PjV+1aCLWYaHw+FC7sTZyYlmSRK\nDSrFy/e8zDO3P2PbWo0YYYvuXnedt8PzOQdOHqDMkDK8Wu9V+t/T/4qvnz5/mqrDq1KpSCXmdZgX\nGHfdTp2yv4A89RS88w7GGLYd3uba4+J166B69cBZ8xYXF0ft2rUBahtj4pwa1+M7biJSEVuMd4kx\n5rSIiMkuWaBSyqtcS9rOnYOICBg71hZULVTI/vfin2+44crXrnbcmTO2mv6MGbagqQ+K2xdH/Ml4\napaoaftTfvKJ7fqtSdtVFctXjM41OvPx6o95oe4L5Mrx70fJ7y57lz3H9zC/4/zASNrAdoLo2BFG\njYI33mDUhnE8MesJ9jy/h2L5ijk+Xc2ajg8ZkDKcuIlIEWAStjepASoBvwMjROSIMUZXtCql/M+x\nY/Cf/8APP9iWP+3bZ268e++1z318NHGbu3UuBXIVoG6p2+Gx+nZNU69e3g7Lp/Wu25vtR7Zz4NQB\nrivwT4K79dBW3lv+Hn3v7Bt4mxfCw+HTT2HOHJo/0JwnZz/J2HVjeeFO/VHvLZ7ckPwIuACUAU5d\n8vokwI/KQyulVLJ9+2yitWqVbV+U2aQN7EKdmBg4dCjzY7lg7ra5NCzfkJzjo+HHH+0P55wu3ckM\nEJWLViamc8y/kjZjDM/MfYZSoaV46Z6XvBidS265BerUgchIiuYtSusqrYmMi3S1ZuKpU2kfk515\nkrg1AvoZY3Zf9vpWQIv+KKX8y2+/2RZGBw7YbW333+/MuK1b2/VvX3/tzHgOOnz6MKv2rOLBkvVs\nH9IOHezKcJVh03+bzvzt8xnWZNg/Gz0CTXg4zJ0Lu3cTERbB5kObWb5ruStTTZoEJUrYdqnq6jxJ\n3PLx7zttFxUGMrAdSymlUvbDHz+w9E+Xq9UvXw533WXrD6xYYVdGX+bAyQO0ndKWzQc3Z2zsEiXs\nXbwpUxwK1jkLti8gySTRZFKsXdf34YfeDskvnTh3gufmP8fDNz5Ms5uaeTsc97Rvb4vwjhrFfTfc\nR/lryhMZF+nKVHXrwkAt658qT3uVdr7kcyMiQUBfYJEjUSmlsrXYvbE0n9icQSsGuTfJ119Dw4ZQ\no4a903b99Vc9LDRXKLH7Yuk1r1fGHw+1bWsbtR886EDAzpm7bS7VQyty3fDxtkNCiRLeDskvCULH\n6h0Z1mSYt0NxV4ECtpbbiBEEGQivFc6UjVM4euao41OVKWM3sWott5R5krj1BXqIyFwgBHgf2ADU\nA/o5GJtSKhvadHATTSY0oWrxqoxvPd6dST75BNq0gebN7Zq2QinX3MqdIzdDGg9h/vb5zNw8M2Pz\n+ODjUmMMi3Ys4sGfT9iktWdPb4fkt/KF5OPdhu9S7ppy3g7FfeHh8OefEBND11u6ci7xHNG/RHs7\nqmwpw4mbMWYDcCOwDJiJfXQ6HahljNnubHhKqexkZ8JOGo1rxLX5rmX2Y7PJH+Lwr91JSdCvHzzz\nDPTuDRMnpqtDwMM3PkzTSk15bt5znD5/Ov3zFS9u18xNnpyJoJ0lImzM04f/TfvLbkjIoXXYVTrc\ncQdUrQqRkZQMLUnXW7r+3XlEZS2PytwZYxKMMW8bY9oaY5oaY14xxuxzOjilVPZx4OQBGo1rRHBQ\nMAs6LaBwHocL1547B507wwcfwEcfwaBB6a70KSIMaTyEfSf28d7y9zI27yOPwMKFdvODLzh4kNCX\n36Bo2652fZ9S6SFi77rNnAn79xPVPIpnb3/WtemGD9d2uSnJcOImIjVS+KguIpVERBvcKaUy5NjZ\nYzw44UGOnjnKd52+o1RoKWcnSEiApk3tRoFJk+C55zI8RKUilehTtw8Dlw3k9yO/p//E1q3tf6dP\nz/CcrnjxRXvn8b0MJqBKdepkE7ixY12fSsT2L1VX8uSO28/A2uSPny/5/GdgE5AgImNEJLdjUSql\nAtrItSPZdngb8zvOp2Lhis4Ovncv1KsHsbG2eXomGiH2v6c/xfIV4/n5z6f/pGLFbM9SX9hdumyZ\nbWv1zjv2Ma5SGVGkiP1FJCoq5VZvDnnySRgyxNUp/JYniVsrbM22HkBN4JbkP28GHgMex3ZVeMuh\nGJVSAa7X7b2I+2+cbb/kpF9/tWtzjhyxScu992ZquHwh+RjcaDChuUI5l3gu/Se2bQuLFsH+/Zma\nP1POnoUePWy9hf/+13txKP8WEQGbN9v3k/IKTxK3l4FexpgRxphfjDHrjTEjgN7AC8aYCcAz2ARP\nKaXSJCKUv6a8s4MuXWrXcBUqZGu0Va3qyLCPVH2Eca3GERIckv7Cmj6JAAAgAElEQVSTWrWyz368\n+bj0vfdg61b48svA6eKtst5990GFChDpTh03lTZP3r3VgT+v8vqfyV8D+9i0ZEYGFZGeIrJDRE6L\nyEoRuTWd57UTkSQR8ZEFJEopr5s6FR54AMLCbAJXurR34ylaFBo08N7u0k2b4O237Y7aatW8E4MK\nDEFB8Pjj9tH/UefruF3KGPjqK/t7l/qHJ4nbJuBFEfn7100RyQm8mPw1gNJAfHoHFJFHgUHAAKAW\nsA6YLyJF0zivLPABsCQjF6CUCmBDh9pHk23a2DY9BQt6OyKrbVtYvBj++itr501K4u13mrC0TnF4\n5ZWsnVsFpq5d4fx5mDDB1WlEbBeFb791dRq/40ni1hN4GNgtIjEi8h2wO/m1J5OPKQ8Mz8CYvYEv\njDFjjTGbgCewbbW6p3RCcreG8cBrwI4MX4VSKrAkJUGfPnbHaJ8+MG4chGTgcabbWrb0yuPSVZ+/\nwisV/mT9U61t2yKlMqtkSXj4Yfu41Bh+PfArnb/uzNkLzne9XL7c7qVR//CkAO+PwA3YhGk9tmvC\na0A5Y8zK5GPGGWM+SM94yXfragPfXzKHAWKAuqmcOgDYb4wZldFrUEp5x+o9q0lMcmGP/9mztlH6\n4MEwbBi8/77vreMqUsS22MrCx6WJe/fQc8P71DpbmCfaD86yeVU2EBEB69ZBbCxBEsS49eP4epPz\nHULy5XN8SL/naQHeE8aYz40xzxtjehtjvjDGHPcwhqJAMFc+Wo0HrtpAT0TuAroB4R7OqZTKYvO3\nzeeukXfxZeyXzg589Cg0aWLbSk2ZYrsi+Kq2bWHJkix7XBr1Zgtir03k08cmEBwUnCVzqmyiSRO7\ndjQykspFK3NPmXuIiovydlTZgse9TkTkZqAMtl/p34wx32Q2qItTAFcUihGR/MA4IMIYcySjg/bu\n3ZuCl615ad++Pe3bt/c0TqVUGnYl7KLdtHY0qtCI8LAM/L514QKcOJH6x9ChsGcPxMTA3Xe7dxGp\n2Ht8L+v+WseDlR5M/cCWLW0pjmnTXO8RenBGNC8ViqVr6D3UrdbE1blUNhQcDN27/92FJDwsnC4z\nurD98HYqFK7g+HSbNsENN/ju0/6JEycyceLEf72WkJDgylxiMlhET0TKA19jd5AabIJF8p8xxmTo\n17rkR6WngDaXJn0iMhooaIxpddnxNYE4IPGSuS/eOUwEbjLGXLHmTUTCgNjY2FjCwsIyEqJSKhMS\nkxJpOK4h2/76lXVBPSl8MintZOzix9l0rJm56SZ7t61KFfcvJgW95/VmxNoRbHlmCyXyX/VBwT+a\nNoWTJ+1GBbecOEGPHiWYXOEsW/rtpnj+a92bS2Vff/wB5ctDVBSnOrWj1KBS9Ly1J283eNvRabZv\nh4oVYcYMaNHC0aFdFRcXR+3atQFqG2PinBrXkztuQ7GbARoCvwO3AUWwu0L7ZHQwY8x5EYkFGgDf\nAIiIJH8+7Cqn/MY/ZUcuehvIDzwL7MpoDEop93zw4wcs/mMx348PovC+9+0uz/z57UdoqP1v0aL2\n1+mLr6f3I29en1jL9uq9rzL+l/H0i+nHmJZjUj+4bVt7p2LvXijlcGuvZKvf6EHUjScZdtsATdqU\ne264wZbdiYoib/fudKjegVE/j+KN+98gR5DHD/SuUKECzJtnG6AozxK3ukB9Y8wBEUkCkowxy0Tk\nJWyiVcuDMQcDY5ITuNXYXaZ5gdEAIjIW2G2M6W+MOQf8eunJInIUu6fhNw/mVkq5ZM2en3j1+5fp\nu8xw/10d7S60nDm9HZbjCucpzLsN3iXi2wh6hPXgrjKpNG9v0QJy5LCPS91Yj7dmDZu/+4q6bcry\nRBMt/6FcFhFh28ht3EhE7QiGrxnO7C2zaVHZ2VtjjRs7Opxf8+RX1WDgRPKfDwIXf2X8E7jJkyCM\nMZOBF4A3sX1PawCNjTEHkg+5jhQ2KiilfNOJM8d47ItG1NybxJu39YNRowIyabuoe63u3FrqVp6e\n+3TqO2evucbepXBjd+mFCxARQSepydIXtzh610Opq2re3PbjjYzklhK3UKdUHaLW6iYFN3mSuG3A\nJlYAq4C+ybs8X8M+OvWIMWa4MeYGY0weY0xdY8yaS75W3xiTYk03Y0w3Y0xrT+dWSjnszBn2hD9K\n7oNHmVD1NULeHmhrmAWwIAnik6afsO6vdWnvnG3b1hao2rPH2SCGDIH16+HLLwnK6UM17FTgCgmB\nLl1s3cQzZ/j8oc8Z3jQjZVwzJinJtaH9hieJ21uXnPcaUA5YCjTFrjFTSmVnyeU5bpr2A+saTuOm\nZ9/wdkRZ5rbSt/F4rcd5eeHLHDx1MOUDL31c6pQdO2DAAHj2Wbg1XR0DlXJGeDgcPgxff03tUrW5\nvuD1rkzz9ddQrlz69iwFMk8K8M43xkxP/vM2Y0xlbC224saYhU4HqJTyI7t3wz332Ls+MTFI6+x3\nI/ydBu9gMEz9dWrKBxUqZBftOPW41Bh46im7yeP//s+ZMZVKr5tusu/7KHcfkd58s+22deaMq9P4\nvAwtgBCRHMAZ4BZjzIaLrxtjDjsdmFLKz2zcaItyBgXZx4BeLM/hTcXyFWPjUxspFZrGjtG2baFz\nZ5vsXndd5ib96iu77W7WLLvbVqmsFhFh/z5v3263gbrgppvgjexzAz9FGbrjZoy5AOzEblBQSilr\n6VJb/LZwYVixItsmbRelmbSBXdQdEgJTU7kzlx6HD0OvXnZn30MPZW4spTz1n//YUj8u33VTnq1x\next4R0QKOx2MUsoPTZ1qd0nWqmXbOblUmyzgFCzoyOPSQ/2eYVXhU7aDhFLekicPdOwIo0fD+fPe\njiageZK4PQ3UA/aKyGYRibv0w+H4lFK+7JNP7CO/Vq1g7lybjKj0a9vW3qHc5WHd8EWLePmvaJo8\nZjhRJNTZ2JTKqIgI24d39mxXp5kwAd5919UpfJonRX5mOB6FUsq/GAP9+8PAgfD88zzX8AI3bxhD\nj9o9vB2Zf2neHHLlsncte/fO2LlnzrDmpS582QSGNHqH/CG6tk15Wc2aUKeOfVzasiUAfxz9g7IF\nyyIOlgP64w/YvNmx4fxOhhM3Y4wuDVQqOzt3zm7/HzcOBg1iRtPyDJ3Uii8e/sLbkfmfAgXsho7J\nkzOcuCW9/RY9a+ymeqGbeOo2dxvWK5VuERHw5JOwezdxwfup/WVtlnZbyt1l7nZsipdfdmwov+RR\nkz8RKSQi4SLy7sW1biISJiKlnQ1PKeVTjh+HZs1g0iSYOJG9Ee0I/yaclpVbEhEW4e3ofFr8iXgi\nYyOv/ELbtrByJfz5Z/oH27CBkfPeZXVpw6eto7RDgvId7dvb9W4jR3JLiVsof015IuOu8vdeeSzD\niZuI1AC2AP2wTeULJX+pNZCNnzorFeD++gvuvdcmGfPmkfRoW7rM6EJIcAiRzSIdfRQSiGZsmkGP\nWT2YveWy9T/Nmv3zuDQ9kpI43LMbLz4gdKr6mKN3MpTKtNBQePRRGDGCoCRDeK1wpmycwtEzR70d\nWcDw5I7bYGC0MaYStqbbRXOwmxaUUoFmyxa4806Ij7elP+6/n49WfETM7zGMbTWWonmLejtCn9ej\ndg8eqvQQ3WZ2468Tf/3zhdBQaNo0/btLv/iCl0PXcD5vbt5vMsidYJXKjIgI2LkTYmLoektXziWe\nY8L6CY5OYQwsWgS//OLosH7Bk8TtVuBqi1n2oI3glQo8q1bBXXdB7tx2B2SNGqzdt5aXvn+JPnX7\n0LB8Q29H6BdEhJEtRhIkQXSb2Y0kc0nTxUcegdWr7arr1OzZw/43+jKmdjBvNnybEvn1n1zlg26/\nHapWhagoSoaW5OEbHyYyLhJjjKPT9OgBI0c6OqRf8CRxOwsUuMrrNwIHMheOUsqnzJoF999vS5Yv\nWwZlypCYlEjHrztSrXg13qr/lrcj9CvF8xVnTMsxzNs2j2Grhv3zhYcftolxWo9Ln32W4uTjl66r\n6akbEpSvErF33WbOhP37iQiLYF38OmL3xTo6xeLFMHiwY0P6DU8St2+A10QkZ/LnRkTKAO8BDnZM\nVkp5VVSUbYb+4IPw3Xe2KwIQHBTMxw9+THSbaHLlyOXlIP1P44qNee725+gX0491f62zL6bncenM\nmTB9OgwbRoVyYbohQfm2Tp1s+7uxY2lSsQnXFbju6ptzMqFUKZvAZTeeJG4vAPmB/UAeYDGwDTgO\nZPNNuirgGGN/WG7f7qXpDT/t+YlJGyZx+vzprJrUNgS8uK1/8mS7S+wS9cvVp3LRylkTTwAa2HAg\nVYpWof209pw6f8q+2LYt/PQT7Nhx5QnHjkHPnja5e+SRrA1WKU8ULgytW0NUFMESxJN1nsTg7KPS\n7CrDiZsxJsEY8wDQDHgW+ARoaoy51xhz0ukAlfKqjz6CNm2gcmX4739tQ/AskHAmgc9++oywL8O4\nLeo22k1rxw1Db+CtJW9x6NQh9ya+cMEuHHn9dVua/OOPIVhbEzstV45cRLeJplbJWpxLPGdffOgh\nmyBPmXLlCa+8AkeOwPDh2fMWg/JPERG2Uu7SpfS/pz9fNvvSlWkOHrT/dGUXnpQDuR7AGLPMGDPc\nGPO+MSbG+dCU8rJp06BPH3jhBdshYNo0qFgRnn8eDri7nPPDHz/k6blPU6ZgGWa1n8WmnptoU6UN\nby99mzJDyjBv2zznJz10yLauGj0axoyBF1/UJMFFNxe7mQmtJ1Aod3JFpfz5bfJ2+ePSVatsa7G3\n3oKyZbM+UKU8de+9UKGCq43nt22DEiXsDtNswxiToQ8gEfgBCAcKZfR8b30AYYCJjY01SqXpxx+N\nyZ3bmHbtjElMtK8lJBjzxhvGhIYakz+/Ma+8YsyRI65Mv//EfrM7YfdVX3990evm4MmDzk127pwx\nQ4cac801xhQoYMy8ec6NrTJm8mRjwJjt2+3n584ZU726MbVrG3P+vHdjU8oT775r/y09fNiV4ZOS\njBk92piDDv6T6JTY2FgDGCDMOJjPeFoO5CdgAPCXiHwtIm1ERFcpq8CwbZvtIVmnDowaZRfYgm1P\n9Nprdg3SU0/BoEFQvjy89x6cdHaVQLF8xShd4MpGJMXyFWPAfQMokreIMxPNnQs1ath2S488Alu3\nQuPGzoytMq5p038/Lh00iBNbN0JkJOTQzQjKD3XpAufPQ3S0K8OL2CmKOPRPoj/wZI1bnDHmf0AZ\n4EHgIBAJxItINqyoogLKwYP2h2fhwjBjhi3RcLkiRWyytn07PPYYvPqqfRzwySdw9myqwx89c5RP\nV3/Kc/Oec+kCrAtJaSz4+PVXu1u0aVMoWRLi4uCLL6B48X8ddvr8aX4/8ruLkap/yZfPlgaZPBm2\nbePwe69TqW8exgdv9HZkSnmmZEnbHSQy0m58UpnmUa9SgOQ7gYuMMRFAQ2AH0MWxyJTKamfOQMuW\ncPSovROV1q9wJUvaZG3LFpsE9eoFN95o79JdslLWGMOKXSvoNrMbpQaVote8Xuw+tpvEpERXLmPd\nX+u4YcgNvL/8fRLOJPz7i4cOwTPP2LtsW7fC11/D999DzZpXHavPgj7UHVH3n52Pyn1t29pE+pFH\neLVxCCdzB9GgXANvR6WU5yIiYN06WLPG25EEBI8TNxG5XkT6isjP2EenJ4GnHYtMqayUlASdO9sf\nmN9+ax+BptcNN9hkbcMGuO026N4dqlXj6MRRfLLqY2p+XpM7R97JD3/8wCv1XmFX711MbTuV4CB3\ndmsWyFWAxhUa8+qiV7n+o+vps6APuw79DsOGQaVKMHas3WyxcaNNVFPYgDBryyyGrxnOgHsHkDdn\nXldiVVcyDz7I+fx5WPvXz3xe5SRv3PcGJUNLejsspTzXuDFcd52rmxRmz7b//GaH3aViMnjrUkR6\nAB2Au4DNwAQg2hjzh+PROUhEwoDY2NhYwsLCvB2O8jV9+8KHH9qabS1bZm6suDhOvvYipap/x6kQ\naF74Tv770Gs0rPAAQeLx70oZtu/4PoatGsZnKz/m5PmTtP8F+pRsQ40Bw694JHq5v078RfXPqnPH\ndXfwTbtvtIF8Fuo+sztBq3/iVznA8dLFiOsRR87gnGmfqJQvGzDAtjnYt49DQWd5/YfXee6O56hQ\nuIIjw69dC59/bn8nveYaR4bMtLi4OGrXrg1Q2xgT59S4nvwUeRVYDdQxxlQ1xrzj60mbUqn67DP4\n4ANbsy2zSRtAWBj5Zi1g5K3/x87ltzPtuR9p1OVNgpYszfzYGVBy1xHe/XAtu/7vJO//XpEf7ihB\nzeLT+Gh76s2ek0wSXWd0JViCGdF8hCZtWazudXUZEbKBFTnj+bTpp5q0qcDQvbvdxDV5Mnlz5mXc\n+nGMWDvCseFr1bLLdH0laXOTJ4lbGWPM/4wxP1/+BRGp5kBMSmWdWbPg6aft+rRevRwduk3rVyj5\n3QqYN89uWrjvPmjUyFbHd9Ol69i2bSN08gx6j93C9hd2Mr7VeJpWaprq6R+v+pj52+czpuUYiudL\n/c6ccl54WDg9wnrw3O3PUa9sPW+Ho5Qzypa1//5FRpInZx461ujIqJ9HcT7xvLcj8zue7Cr917NV\nEQkVkR4ishpY51hkSrktNhYefdT24xw0KN2nHT59mKErh7L54Oa0Dxax6zt++skW8N2zxy7EaNXK\nrolz0vnzMHSoLRJ86Tq2Fi1AhJzBOelQowM3Fb0pxSHWx6+nb0xfnrv9ORpX1LIg3iAifNHsCz5q\n8pG3Q1HKWRERsHIlbNhARFgEf534izlb53g7Kr+Tmc0J9URkNLAP6AMsBO5wKC6l3PXnn7bsQvXq\nMH58mm2djDEs27mMTl93otSgUvT5rg8rdq9I/3witm/f+vU2qVq3zt4R69gx831QjYE5c+y1PP+8\nTUa3brVdH3JlrLzinK1zqFy0Mu82fDdzMSml1OWaNYNixSAqipolalKnVB0i45xtPD9rlq08Esgy\nlLiJSEkReVFEtgJTsI3lcwEtjTEvGmNcfgaklAOOHv2n0Ok330De1HdMRsZGUnV4Ve4ZdQ8rdq3g\nzfvfZHfv3XS9pWvG5w4Ohk6dYNMm23dy0SLbB/WJJzzrg7pxoy1F8tBDUKrUPyt009h8kJIX736R\nH7v/SO4cV6lfp5RSmRESAl27wrhxcOYMEWERzN02l93HnOsBvXixLQwQyNKduInIN8AmoAbwHFDK\nGPOMW4Ep5Ypz5+ydr337bK22NBKc6F+i6TGrBzcXu5mYTjFseWYLfe/qy7X5r81cHCEhNlnbts0+\n0pw6NWN9UA8etGvzata0Y8yYYeux1aiRubiAfCH5Mj2GUkpd1eOPw+HD8PXXtK/Wnjw58jBq7SjH\nhh840P4+HsgycsetKTACGGCMmW2Mcad6qFJuMQbCw2H5cpg5E25Kea0X2K4Bvef3pkP1DkxtO5UG\n5Rs4X84jTx7bxP7336F/f1vnqHx521orIeHK4y+uY6tUyf7Wetk6NqWU8mk33QT16kFkJKG5Qnm0\n6qOMWDuCJJPkyPBprHoJCBn5KXQPEAqsEZFVIvK0iBRzKS6lnPf66zbZGTMG7rknzcPz5MzD952/\nZ/hDw92P7fI+qB9+COXK/dMH1RhbYdKBdWxKKeVVERF2mci2bbx494tMazstS2tc+rt0/58yxqxI\nbm9VEvgCaAfsSR7jAREJdSdEpRwwahS8+Sa8+y60a5fu06oVr0aBXAVcDOwyKfVBvf9+u5midOlM\nr2NTSimvatMGChWCESOoVKQStUvVdnyK336zDzICkSflQE4ZY0YaY+4GqgODgBeB/cnr4JTyLTEx\n0KOH/ejXz9vRpM/lfVBPn7br2GJiHFnHppRSXpMnj91RP2qUXf7hMGNsybhhwxwf2idk6t6kMWaz\nMaYvcB3Q3pmQlHLQL7/Y3+4eeAA+/dT/1oFd7IO6apWuY1NKBY7wcIiPt0tAHCZi654PHOj40D7B\nkYfKxphEY8wMY0xzJ8ZTyhF79tiyHxUqwKRJkCOHtyNSSikFdkf8rbe6VnStalXIHaBVjXQ1oApM\nx4/b2mYitiJjqC7BVEopnxIRYW+N7drl7Uj8iiZuKvCcPw9t29odmnPm2MK0adh8cDOrdq/KguCU\nUkoBdqNYnjx2OYhLzpyBJGcqjfgMn0ncRKSniOwQkdMislJEbk3l2FYi8pOIHBGREyKyVkQ6ZmW8\nykcZAz172kX806dDtWppnnL2wlnaTWtHxLcRjtUSUkoplYbQUJu8jRgBibY07JHTRzh57qQjw2/d\najffr8hAd0J/4BOJm4g8it2dOgCohW1WP19EiqZwyiHgLWxv1OrAKGCUiDyQBeEqXzZwoF0zERUF\nDRqk65T+3/fn1wO/MqblGK0lpJRSWSk8HHbuhJgYTpw7QdkhZRn982hHhq5QAV5+GcqUcWQ4n+Er\nP6V6A18YY8YaYzYBTwCngO5XO9gYs8QYMzN5V+sOY8wwYD1wd9aFrHzOxIm2+8CAAdClS7pOmbdt\nHoNXDmZgg4HUKlnL5QCVUkr9y+232ycjkZHkD8lPg/INiIyLxBiT6aGDgmwFqOuvdyBOH+L1xE1E\ncgK1ge8vvmbsdywGqJvOMRoANwKL3YhR+YElS2zz4s6dbeKWDvEn4ukyowtNKjah1x293I1PKaXU\nlUTsJoWZM2H/fsJrhbMufh2x+2K9HZnP8nriBhQFgoH4y16PB0qkdJKIFBCR4yJyDvgWeMYYs9C9\nMJXP2rQJWraEu++2j0nTUessySTRbWY3AEa3GK2PSJVSyls6drRNRseMoUnFJpQOLU1UXJS3o/JZ\nvvzTSoDU7pUeB2oCdYCXgY9EpF5WBKZ8SHy8rdVWqhRMmwYhIek67eNVHzN321xGtRjFtfmvdTlI\npZRSKSpc2BZKj4oiWILoXqs70b9Ec+LcCUeGX7jQ1i8PlN2lvlCR9CCQCFz+07M4V96F+1vy49SL\nncjWi8jNwEvAktQm6927NwULFvzXa+3bt6d9e2384HdOnYLmzW07qEWLbO+7dDqXeI4X6r5A00pN\nXQxQKaVUuoSHQ3Q0LF1K91rdeWvJW0zZOIVutbpleuhcuex6t4QEuOYaB2K9iokTJzJx4sR/vZaQ\nkODKXOLEAsBMByGyElhljOmV/LkAO4FhxpgP0jnGCKCcMaZ+Cl8PA2JjY2MJCwtzKHLlNYmJ9je0\nmBi7vk2/p0op5b+MgRtvhDvugHHjaDy+McfPHufHx3/0dmQei4uLo3bt2gC1jTFxTo3rK49KBwM9\nRKSziFQGPgfyAqMBRGSsiLxz8WAReVFEGopIORGpLCIvAB2BcV6IXXnD88/Dt9/C5MmatCmllL8T\nsXfdpk6FI0foEdaDnME5HavpFkh8InEzxkwGXgDeBNYCNYDGxpgDyYdcx783KuQDPgU2AMuAVkAH\nY4x75ZeV7xgyBIYNs03jm+qjTqWUCghdusCFCzBhAm1ubsPirovJF5LP21H5HJ94VJoV9FFpgJg+\nHf7zH/jf/+C997wdjVJKKSe1bg3bt8PPP6erQoAvC/RHpUqlbeVK6NDB9iF9911vR6OUUspp4eGw\nfj2sWePtSHyWJm7KP2zfDs2aQZ06MHq03SKUTtp/VCml/ETjxrbVQWSktyPxWZq4Kd936BA8+KCt\n9TNjBuTOne5TV+1eRZ0v67Dn2B4XA1RKKeWI4GDo3t22MDzhTB23QKOJm/JtZ87YrghHj8KcOVCk\nSLpPPXb2GI9Nf4yQ4BCK5yvuYpBKKaUc060bnDwJkyZ5OxKfpImb8l1JSbb/6Jo18M03UKFChk5/\nes7THDh5gOg20eQMzulOjEoppZxVtqx9ZKqPS69KEzflu/r3t3XaoqNtUcYMmLB+AuPWj2P4Q8Mp\nf015lwJUSinlivBwWLUKfvmFxKRE3ln6DjG/x3g7Kp+giZvyTV98Yct9DB4MrVpl6NTfj/zOk7Of\npEP1DnSs0dGlAJVSSrmmWTMoXtz2Lw0KZsamGXy08iNvR+UTNHFTvmfOHHjqKXjmGejVK0Onnk88\nz2PTHqNo3qIMf2i4SwEqpZRyVUiILcg7bhycOUNEWATzts1jV8Iub0fmdZq4Kd8SF2frtDVrBh99\nlOECjF/GfsmavWuIbhNNgVwFXApSKaWU68LD4cgRmD6ddtXakSdHHkb9rA2SNHFTvmPHDnj4Ybj5\nZruuLTg4w0NE1I5gQacF3HFdxtbEKaWU8jE33gj33gtRUYTmCqVdtXaMWDuCxKREb0fmVZq4Kd+w\nbh3cdRfkzWubx+fN69EwIcEh1C9X3+HglFJKeUV4OCxaBNu2ER4Wzs6Endl+k4Imbsr7Fi2CevWg\nVClYvhyuvdbbESmllPIFbdpAoUIQFcXtpW+nWvFqRMZl7zIhmrgp75o0CZo0seU+fvhBkzallFL/\nyJMHOnaE0aORCxeICItg5uaZ7D+539uReY0mbsp7hgyBdu3g0Uft49H8+b0dkVJKKV8TEQHx8TBr\nFh1rdGR62+kUzlPY21F5jSZuKuslJUHfvtC7N/TrB2PG2K3fSiml1OVq1IDbboOoKArnKUyzm5qR\nIyiHt6PyGk3cVNY6dw46d4YPP4ShQ2HgwAyX/Lho7ta5nE8873CASimlfE54OMybB7u0jpsmbirr\nHD9uy31MmQJffQXPPuvxUPO2zaNpdFMmbdQmxEopFfDatbPr3UaO9HYkXqeJm8oa8fFw332299z8\n+bbIrqdDnYiny4wuNKnYhMeqP+ZcjEoppXxTaKhN3kaOhESt46aUu7ZuhTvvhH37YOlSm8B5yBhD\nt5ndABjdYjRBon+FlVIqW4iIgJ074bvvvB2JV+lPPeWu1att0hYSAitW2EWmmTBs1TDmbpvLmJZj\nuDa/lg5RSqls47bboHp1iIrydiRepYmbcs/cuXD//VCpEixbBmXLZmq4dX+to29MX567/TmaVGzi\nUJBKKaX8gojdpDBzpl1+A5xPPM/h04e9HFjW0sRNuWP0aJ1fkgMAACAASURBVNsovmFDiImBIkUy\nNdyp86doN60dVYpWYWDDgc7EqJRSyr907Gj7WI8ZA8CdI+/kpZiXvBxU1tLETTnLGHjnHejWDR5/\nHKZN87jv6KXiT8STPyQ/E9tMJFeOXA4EqpRSyu8ULmzbYEVFgTE0rdiU6A3RnDh3wtuRZRlN3JRz\nEhPhmWfg5ZfhjTfg888hhzNFEstdU47V4aupUqyKI+MppZTyUxERdtPbkiV0r9Wdk+dOMnnjZG9H\nlWU0cVPOOHPGtq767DP48kt47TWPC+umRBweTymllB+6916oWBGioihbqCyNKjTKVo3nNXFTmXfk\nCDRuDHPmwIwZ9rchpZRSyg0XNylMnQpHjhARFsHK3SvZsH+DtyPLEpq4qczZvRvuuQc2bIDvv7cb\nEpRSSik3dekCFy7A+PE0u6kZxfMVJyoue5QJ0cRNeW7jRqhb17ayWr7c/lkppZRyW4kS9kZBZCQh\nQTnpUrML49aP48yFM96OzHWauCnPLFsGd99td/isWAGVKzs2tDHGsbGUUkoFqIgI+OUX+OknwsPC\nKZq3KH8c/cPbUblOEzeVcV9/beuz1aoFS5ZAqVKODv/4N4/z8aqPHR1TKaVUgGnUCK6/HqKiuLHI\njWzquYnKRZ27ieCrNHFTGfPZZ/Cf/0CLFrYzQsGCjg4/fv14Rv08imvyXOPouEoppQJMcDB07w4T\nJ8KJE9mm8oAmbip9jIFXXoGnnoJnn7VvlFzOFsLdemgrT81+io41OtKxRkdHx1ZKKRWAuneHkydh\n0iRvR5JlNHFTabtwwW69fvtt+OADGDwYgpz9q7Pl0BbuH3M/pUJL8WnTTx0dWymlVIAqU8aWo4rU\nOm5KWSdPQsuWMHYsjBsHffo4Xlj31wO/cu/oeymQqwCLuiyiQK4Cjo6vlFIqgEVEwKpVdqNCNqCJ\nm0rZgQNQvz4sXgyzZ9vmvg5bH7+e+0bfR7G8xfih6w+UDC3p+BxKKaUCWLNmULy47V+aDWjipq5u\nxw646y744w/44Qe7e8cF2w5v44ZCN7CoyyKK5yvuyhxKKaUCWM6c0LWrfSp0Ruu4qexo7Vq48067\nIeHHH6F2bdemal2lNSseX0GRvEVcm0MppVSACw+37RenTwdg4i8TGbturJeDcocmburfYmJsA9/r\nr7fdECpUcH3K4KBg1+dQSikVwCpVsj+7kjcpfL/je15d9CqJSYleDsx5PpO4iUhPEdkhIqdFZKWI\n3JrKseEiskREDid/fJfa8SqdoqOhaVP7iHThQrtmQCmllPIHERF2ac/WrUSERbAzYScxv8d4OyrH\n+UTiJiKPAoOAAUAtYB0wX0SKpnDKvUA0cB9wB7ALWCAiurLdU4MGQYcO8Nhj8M03kD+/tyNSSiml\n0q91ayhUCEaM4LbSt1GteDUi4wKvTIhPJG5Ab+ALY8xYY8wm4AngFND9agcbYzoZYz43xqw3xmwB\nwrHX0iDLIg4USUnwwgu2zEf//jBqlF3o6fQ0JsnxMZVSSqm/5ckDnTrB6NHIhQtEhEUwc/NM9p/c\n7+3IHOX1xE1EcgK1ge8vvmZsl/EYoG46h8kH5AQOOx5gIDt71pb4+Ogj+PhjW2DXhZYh327+ltuj\nbufwaf32KKWUclF4OMTHw6xZdKzRkWAJZszPY7wdlaO8nrgBRYFgIP6y1+OBEukc4z1gDzbZU+lx\n7Bg89JDdgTN5Mjz9tCvTTPt1Gq0nt6ZswbLkD9HHr0oppVxUowbcdhtERlI4T2Ha3NyGqLVR2PtB\ngSGHtwNIhQBp/p8WkReBtsC9xphzaR3fu3dvCl7WGL19+/a0b9/e0zj9z759dhPCjh2wYAHUq+fK\nNBN/mUinrzvRtmpbxrYaS44gX/7rppRSKiBERECPHrBzJxFhEUT/Es3SnUupV9adn3UAEydOZOLE\nif96LSEhwZW5xNtZaPKj0lNAG2PMN5e8PhooaIxplcq5fYD+QANjzNo05gkDYmNjYwkLC3Mkdr+0\neTM0aQLnz8PcuVC9uivTjPl5DN2/6U7HGh0Z2XyklvxQSimVNY4fh5Il4X//w7z2GuPXj6dF5RZZ\n3k4xLi6O2rYOam1jTJxT43r9Uakx5jwQyyUbC0REkj//MaXzROR/wMtA47SSNpVs1Spb6iNvXlix\nwrWkLSouim4zu9H9lu6MajFKkzallFJZJzQU2reHESOQpCQ61ewUUD2wvZ64JRsM9BCRziJSGfgc\nyAuMBhCRsSLyzsWDRaQv8H/YXac7ReTa5I98WR+6n5g1C+6/H6pUgaVLbYFdF0zaMImIbyN4ss6T\nfNHsC4LEV/6KKaWUyjYiImDXLvjuO29H4jif+KlqjJkMvAC8CawFamDvpB1IPuQ6/r1R4UnsLtKp\nwN5LPl7Iqpj9ysiR0LIlNG5s17QVLuzaVA3LN+TDBz7kk6afaNKmlFLKO2691T5Vigy8Om4+s1rc\nGDMcGJ7C1+pf9nm5LAnK3xljS3y8+io8+aQt+RHs7mPLInmL8MKdmj8rpZTyIhF71+355215kGuv\n9XZEjtFbIoEqMRGeesombW+9BZ9+6nrSppRSSvmMDh3sz70xWsdN+brTp+E//7G3iKOi4OWXXSms\nq5RSSvmswoXtz8KoKPsEKkBo4hZoDh+GBx6A+fNh5kx4/HFvR6SUUkp5R0QEbN0KS5Z4OxLHaOIW\nSHbuhLvvhk2bYOFC2xnBBcYY1uxd48rYSimllGPq1YNKlQJqk4ImboFiwwa48077mHT5crjjDlem\nSTJJ9JzTk7oj6rLjyA5X5lBKKaUcIWL7l06dap9IBQBN3ALB4sX2TluxYvDjj3DTTa5Mk5iUSI9v\ne/D5ms/54uEvKHeNbu5VSinl47p0sRv2JkzwdiSO0MTN302dCo0aQZ06NoErWdKVaS4kXaDbzG6M\n+nkUY1uNpXut7q7Mo5RSSjnq2muheXP7uDQANilo4ubvFi2CNm1gzhwo4E5Lj/OJ5+k4vSPRv0QT\n3TqajjU6ujKPUkop5YqICPjlF/jpJ29Hkmk+U4BXeWjYMPsMP8idHPxc4jnaTW3HrC2zmPzIZFpX\nae3KPEoppZRrHnjAdlLYuhVuu83b0WSKJm7+zuWiurO3zGb21tlMf3Q6D9/4sKtzKaWUUq4IDoZ1\n6wKipqkmbipVraq0YlPPTboRQSmllH8LgKQNdI2bSgdN2pRSSinfoImbUkoppZSf0MRNKaWUUspP\naOKmlFJKKeUnNHFTHDx1kGfmPMPp86e9HYpSSimlUqGJWzYXfyKe+0bfx+RfJ7P72G5vh6OUUkqp\nVGg5kGxs7/G9NBjbgIQzCSzuuphKRSp5OySllFJKpUITt2xqV8Iu6o+tz5kLZzRpU0oppfyEJm7Z\n0B9H/6D+mPoYDEu6LtE6bUoppZSf0DVu2cz2w9upN6oeQRLE4q6LNWlTSiml/IgmbtnQjUVuZHHX\nxZQpWMbboSillFIqA/RRaTZToXAFYjrHeDsMpZRSSnlA77gppZRSSvkJTdyUUkoppfyEJm5KKaWU\nUn5CE7cAder8KW+HoJRSSimHaeIWgBbtWES5oeWI2xfn7VCUUkop5SBN3ALMgu0LaBrdlJrX1qRy\n0creDkcppZRSDtLELYDM2TqH5hOb06BcA75p/w15c+b1dkhKKaWUcpAmbgFixqYZtPyqJQ9WepDp\nj04nd47c3g5JKaWUUg7TxC0ATNk4hUemPELLyi2Z/J/JhASHeDskpZRSSrlAEzc/99Oen2g3rR2P\nVn2U6DbR5AzO6e2QlFJKKeUSbXnl52qXqs3oFqN5rPpjBAcFezscpZRSSrlIEzc/FyRBdKrZydth\nKKWUUioL6KNSpZRSSik/oYmbUkoppZSf0MQtgE2cONHbIWQpvd7Al92uWa83sGW364Xsec1O85nE\nTUR6isgOETktIitF5NZUjr1ZRKYmH58kIs9mZaz+Iru9QfR6A192u2a93sCW3a4Xsuc1O80nEjcR\neRQYBAwAagHrgPkiUjSFU/IC24F+wL4sCVIppZRSyst8InEDegNfGGPGGmM2AU8Ap4DuVzvYGLPG\nGNPPGDMZOJeFcSqllFJKeY3XEzcRyQnUBr6/+JoxxgAxQF1vxaWUUkop5Wt8oY5bUSAYiL/s9Xjg\nJgfnyQ3w22+/OTikb0tISCAuLs7bYWQZvd7Al92uWa83sGW364Xsdc2X5BuONg8Xe3PLe0SkJLAH\nqGuMWXXJ6+8Ddxtj7kzj/B3AR8aYYWkc9xgwwYGQlVJKKaXSq4MxJtqpwXzhjttBIBG49rLXi3Pl\nXbjMmA90AP4Azjg4rlJKKaXU5XIDN2DzD8d4PXEzxpwXkVigAfANgIhI8uep3kXL4DyHAMcyXqWU\nUkqpNPzo9IBeT9ySDQbGJCdwq7G7TPMCowFEZCyw2xjTP/nznMDNgAAhQGkRqQmcMMZsz/rwlVJK\nKaXc5/U1bheJyFNAX+wj05+BZ4wxa5K/thD4wxjTPfnzssAO4PLgFxtj6mdd1EoppZRSWcdnEjel\nlFJKKZU6r9dxU0oppZRS6aOJm1JKKaWUnwi4xE1EXkpuPD84lWO6JB+TmPzfJBE5lZVxZoaIDLgk\n7osfv6ZxziMi8puInBaRdSLyYFbFm1kZvV5///4CiEgpERknIgdF5FTy9ywsjXPuE5FYETkjIltE\npEtWxeuEjF6ziNx7lb8XiSJSPCvj9oSI7LhK7Eki8nEq5/jzezhD1+vv72ERCRKR/xOR35P/Lm8T\nkVfScZ7fvoc9uWZ/fg8DiEh+ERkiIn8kX/MyEamTxjmZ/h77yq5SR4jIrUAEtkl9WhKAG7E7U+HK\njQ6+bgO2ZMrF+C+kdKCI1MWWQukHzAYeA2aISC1jTKoJnw9J9/Um89vvr4gUApZj28A1xtY6rAQc\nSeWcG4BZwHDs97chECUie40x37kccqZ5cs3JDPb7fPzvF4zZ71KYTqqD7RhzUXVgATD5agcHwHs4\nQ9ebzG/fw8CLwH+BzsCv2OsfLSJHjTGfXO0Ef38P48E1J/PX9zDACGyFiw7APqATECMiVYwx+y4/\n2KnvccAkbiKSHxgPhAOvpuMUY4w54G5UrrqQgfh7AXONMRfvQg4QkUbA08BTrkTnvIxcL/j39/dF\nYKcxJvyS1/5M45wngd+NMX2TP98sIndjS+v4yz/6Gb3miw4YY465EJNrkutK/k1EmgHbjTFLUzjF\nr9/DHlxv8ml++x6uC8w0xsxL/nyn2O49t6Vyjr+/hz255ov87j0sIrmB1kAzY8zy5JffSP67/STw\n2lVOc+R7HEiPSj8FvjXGLEzn8fmTb2/uFJEZInKzm8G5oJKI7BGR7SIyXkSuT+XYukDMZa/NT37d\nX2TkesG/v7/NgDUiMllE4kUkTkTC0zjnDvz7e+zJNYO9G/OziOwVkQUikmqLPF8kti5lB+xv7ykJ\nhPcwkO7rBf9+D/8INBCRSgBi64zeBcxJ5Rx/fw97cs3gv+/hHNi7yGcve/00cHcK5zjyPQ6IxE1E\n2gG3AC+l85TNQHegOfYfkCDgRxEp7U6EjlsJdMU+UnoCKAcsEZF8KRxfgivbh8Unv+4PMnq9/v79\nLY/9zWwz0Aj4HBgmIh1TOSel73EBEcnlSpTO8uSa92EfzbTB/ua7C/hBRG5xOVantQIKAmNSOcbf\n38OXSs/1+vt7eCAwCdgkIueAWGCIMearVM7x9/ewJ9fst+9hY8wJYAXwqoiUTF7j1xGbhJVM4TRH\nvsd+/6hURK4DhgAPGGPOp+ccY8xKbDJwcYwVwG9AD2CAG3E6yRhzad+zDSKyGvtYqS0wKp3DCH6y\nZiSj1+vv31/sD6nVxpiLj/zXiUhVbGIzPgPj+NPaoAxfszFmC7DlkpdWikgF7GMHv1nUjU1Q5hpj\n/srgeX7zHr5MmtcbAO/hR7FrmNph13vdAgxNXss0LgPj+NN7OMPXHADv4Y7ASGAPdt11HHYtaqob\nyS6T4e+x3yduQG2gGBArIhf/BwQD9UTkaSCXSaPKsDHmgoisBSq6G6o7jDEJIrKFlOP/C9uR4lLF\nuTLz9wvpuN7Lj/e37+8+7A+pS/2G/Y00JSl9j48ZY/6fvTuPs7neHzj+es9Yh8HYaqzZxlIRUyqy\nTEpX/aKSkC1UWm6LSlRCexdRXbqJyBYp1FVJllESyQxJuPasWZJ9mRk+vz8+Z6Yzx5nlnDnrzPv5\neJyHOd/t8/5+j5l5z2dN8WFs/uLNPbuzCts8ExZEpBq2g/IdORyaL76HPbjfTMLwe3g48Lox5lPH\n+98cHdOfA7JK3ML9e9ibe3YnbL6HjTE7gAQRKQ6UMsYcEJGZ2JWd3PHJZ5wfmkoXYUcoXQU0crxW\nY/9Kb5RT0gZ2GDNwBfaXR9hxDMyoRdbxr8COyHR2s2N72MnF/boeH26f73Kgrsu2umTfWd/dZ9yW\n8PmMvblnd64ifD5nsLVPB8i5H1B++R7O7f1mEobfw1FcXINygex/54b797A39+xOuH0PY4w540ja\nYrBdej7P4lDffMbGmHz3AhKBUU7vJ2P/Ekh//yL2h14NoDEwAzgF1At27Lm8vxFAS6A60Aw7GuUA\nUM6xf4rL/V4PpABPYX8ZDgPOAg2CfS9+ut9w/3yvxnZ4fQ6boN6LHSrfxemY14HJTu8vA04C/3J8\nxo84PvObgn0/frznJ7B9oGoBl2O7TKQCrYN9P7m8ZwF2Aq+52ef6Myusv4e9uN9w/x6eBOwCbnX8\n3LoTOOhyj/nte9ibew737+G22ETtMsf/1zXYQRqR/vyMg37jfnqYS8icuC0BJjq9H4WtyjwD7APm\nAQ2DHbcH9zcD2OOIfxe2Tb1GVvfr2NYR2OQ4Zx1wS7Dvw1/3G+6fr+MebnV8TqeB34A+LvsnAUtc\ntrXCdgg+A2wBegT7Pvx5z8AAx32eAg5h54BrGez78OB+bwbOA7Xd7MtX38Oe3m+4fw8DJZzu4ZTj\n/+lLQCGnY/LV97A395wPvoc7AVsdn9de4B0g2t+fsS4yr5RSSikVJvJDHzellFJKqQJBEzellFJK\nqTChiZtSSimlVJjQxE0ppZRSKkxo4qaUUkopFSY0cVNKKaWUChOauCmllFJKhQlN3JRSSimlwoQm\nbkoppZRSYUITN6WU8oCIPCgiu0QkTUQeD3Y8SqmCRZe8UkoBICKTgNLGmLuCHUuoEpFo4DDwJDAb\nOG6MORvcqJRSBUmhYAeglFJhpDr25+bXxpiD7g4QkULGmLTAhqWUKii0qVQplSsiUlVEvhCREyJy\nTEQ+EZGKLscMFpEDjv3jReQNEVmTzTVbicgFEWkrIskiclpEFolIBRFpJyIbHNeaLiLFnM4TEXlO\nRLY7zlkjIh2d9keIyASn/ZtcmzVFZJKIzBWRp0Vkn4gcFpExIhKZRay9gHWOtztE5LyIVBORoY7y\n+4rIduBsbmJ0HHOriPzPsX+xiPRyPI9Sjv1DXZ+fiDwhIjtctt3veFZnHP8+7LSvuuOad4rIEhE5\nJSJrReQ6l2s0F5FEx/4jIjJfREqLSA/HsynscvwXIvKR+09WKeUvmrgppXLrC6AM0AK4CagFzEzf\nKSLdgOeBAUA8sAt4GMhNf4yhwCPA9UA1YBbwONAFuBVoCzzmdPzzQHfgQaABMBqYKiItHPsjgN3A\n3UB94CXgNRG526XcBKAm0BroCdzneLkz03HfAFcDscAex/vawF3AncBVuYlRRKpim1u/ABoBE4A3\nufh5uXt+Gdscz30Y8BxQz1HuyyLSw+WcV4HhjrI2Ax+LSITjGlcBi4D1wHVAc2AeEAl8in2e7Z3K\nrAD8A5joJjallD8ZY/SlL33pC2ASMCeLfTcDKUAlp231gQtAvOP9CuAdl/OWAcnZlNkKOA+0dto2\n0LGtutO2/2CbJwGKACeBa12uNR6Ylk1Z/wZmudzvdhx9fR3bPgE+zuYajRyxVXPaNhRby1bWaVuO\nMQKvA7+67H/Dcf1STtdOdjnmCWC70/stQGeXY14Alju+ru74nO5z+ezOA3GO99OB77O577HAl07v\nnwK2BPv/rL70VRBf2sdNKZUb9YDdxph96RuMMRtF5Cg2CUgC6mJ/wTtbha3VysmvTl8fAE4bY353\n2XaN4+vaQBSwUETE6ZjCQEazoog8CvTG1uAVxyZTrs22vxljnGu09gNX5CJeV78bY444vc8uxmTH\n1/WAn1yus8KTQkUkClvz+aGITHDaFQkcdTnc+RnvBwSoiK19uwpby5mV8cAqEYk1xuwHemETX6VU\ngGnippTKDcF9k53rdtdjhNxJdblGqst+w99dO0o6/r0V2Ody3DkAEekCjAD6AyuBE8CzQNNsynUt\nxxOnXN7nGCNZP1NnF7j4GTr3NUsv535skuzsvMt712cMf9/rmeyCMMasFZF1QE8RWYht+p2c3TlK\nKf/QxE0plRsbgGoiUtkYsxdARBoApR37AP6HTYymO513tZ9iOYdtSv0hi2OaYZsKx6VvEJFafogl\nK7mJcQNwu8u2613eHwIuddnWOP0LY8xBEdkL1DLGzCRrOSWI64A22L6AWZmATYSrAIvS/x8opQJL\nEzellLMyItLIZdufxphFIvIrMF1E+mNrfcYCicaY9ObHfwPjRSQJ+BE7sKAhsC2HMnNbKweAMeak\niIwERjtGgP6ATSCbA8eMMVOx/b56iEhbYAfQA9vUut2TsryNN5cxvg88JSLDsUnR1dgmSGdLgTEi\n8izwGdAOOyjgmNMxw4B3ROQ48A1Q1HGtMsaYt3MZ8xvAOhEZ64grFTtgY5ZTE/B0YCS2ds914INS\nKkB0VKlSylkrbB8s59cQx74OwF/Ad8C3wFZscgaAMeZjbIf7Edg+b9WBj3BMj5ENj2cBN8a8CLwM\nDMLWXM3HNkumT5MxDpiDHQm6EijLxf3vvJWreHOK0RizG+iIfa5rsaNPn3O5xibsaNtHHMdcjX2+\nzsd8iE2memNrzpZiE0DnKUOyHZlqjNmCHbnbENvvbjl2FGma0zEnsKNgT2JHwiqlgkBXTlBK+Y2I\nfAvsN8a41iQpN0SkFbAEiDHGHA92PK5EZBF2JGz/YMeiVEGlTaVKKZ8QkeLAQ8ACbKf6rth+Uzdl\nd566iEdNx4EgImWwo4NbYefmU0oFiSZuSilfMdimwBew/az+B9xljEkMalThJxSbQdZgJ19+1tGs\nqpQKEm0qVUoppZQKEzo4QSmllFIqTGjippRSSikVJjRxU0oppZQKE5q4KaWUUkqFCU3clFJKKaXC\nhCZuSimllFJhQhM3pVS+JCIPicgFEakY7FiyIyJvisiZYMehlAoPmrgppfLEkRzl9DovIi09uGa0\niAwVkWZ5CM3g4WS2IvKuI95JeSjXUx7HqZQquHTlBKVUXnV3ed8Lu8xVdzIv37TRg2uWAoYCZ4Af\n8xRdLolIBHAPdnH2O0XkIWPMuUCUrZRSuaWJm1IqT4wxHzu/F5HrgZuMMTPycNlgrNd5C1AB6AQk\nAu2BT4MQh1JKZUmbSpVSASUil4jIRyJyUETOiMgaEenqtL8usAvbfPimU3Prs479jUVkiohsd5y/\nT0TGiUjpPIbWDUg2xiwDvnO8d439Fkcs7UVkmIjsFZHTIrJARKq7HJsgIp+JyC4ROSsiO0XkXyJS\nJKdARKSQiLzsuMdzjn+HiUghl+MiReQ1xzM4KSLfikgdEflDRN5zHFPPEXM/N+Xc6NjXwcNnpZQK\nEq1xU0oFjIiUAH4AKgPvAnuAzsB0ESlpjBkP7AMeA/4NzAS+dJy+xvFvO8f5E4ADwJVAP6Au0NrL\nuIoDHYAhjk0zgDEiEmOM+cvNKUOBc8CbQDngWeAjIMHpmM7Yn7FjgL+A64CngUuxzcnZmYpttp0B\nLAeaO2KrQ+aEchT2Wc0GFgPxwAKgcPoBxphNIpLkOG+cSzndgCPAVznEo5QKFcYYfelLX/ry2Qub\ncJ3PYt9A4Dxwh9O2QsBq4E+gmGNbZeAC8KybaxR1s62X47rxTtv6ObZVzEXM3YA0oLLjfQw2MXvQ\n5bhbHHElA5FO2wc4yqqZQ5xDgVSggtO2N4DTTu+bOsp42+Xcdx1lXOt4X8UR8zSX4153nP+e07bH\nHMdWd44Pm1CODfb/GX3pS1+5f2lTqVIqkNoBvxtjPk/fYIxJwyZ7ZYAcR5EapwEDIlJMRMoBP2H7\nxTXxMq57geXGmL2OMv4CvsVNc6nDBGPMeaf3yxz/1swizihHnD9iu6hclU0st2KbiUe7bH8Le4+3\nOd63dbz/j8tx/3ZzzRnYpO9ep223YweBTMsmFqVUiNHETSkVSNWBzW62b8QmIdXd7MtERMqLyBgR\nOQCcBg4BG7DJjsf93ESkAnAz8L2I1Ep/4WiiFJGqbk7b7fL+L0f8MU7XvUxEponIEeCkI84Fjt3Z\nxVkdSDHG/O680fH+DH8/o2qOf7e6HLcf+1yctx0GviFzItoN2GGMWZFNLEqpEKN93JRSgeSL0aKf\nY/u1DQd+BU4BxYB5ePfHaBfsz8LngRdc9hlsLdW/XLafxz0BO7gAWOKI61VssnoauAwYn0OcQt7n\ndXP3nKcAs0TkKmAntvbzzTyWo5QKME3clFKBtBOIc7O9PjZZSa9lcpu4iMgl2ObUAcaYt5y2X5GH\nmO7F9ll73c2+x7E1U66JW07isUlaJ2PM7PSNIvJ/5Jy87gSKikh151o3EakGFHfsh7+fVW3sII30\n42Idx7maBxzD3s9m7ACG6bm9IaVUaNCmUqVUIH0NVHeefsJRO/VP4Ci2eRJsLRrYfm/O0mu6XH92\n9ceLWipHk+i1wMfGmDmuL2AycLmIXOl0Wm7KuShOERHgiVyc/zU2uXvSZfvTjnO/drxf6Hj/iMtx\nj7u7qDEmBZiFTVR7Aj8bY7bkEItSKsRojZtSKpDGAvcDH4vIGGxfsS7YQQUZKxUYY46JyHagu4j8\njk3qfjF2aotVwGDH1CIHsE1+VfCuGbY7NvmZl8X+bKn3RgAAIABJREFULx37uwGDHNtyU86v2Lno\n/i0iNbGJ6D1AyZxONMasEpGZwOOO/nfp04HcC8wwxvzkOG6PiPwHeEREigGLsDV9rbHPy12COAV4\nEDslidsETykV2rTGTSnlD25rlYwxp4AW2Jqf3sAIIAroZuwcbs7uAw4CbwMfY1cyALgb23/scWz/\nsWOOfd6s+XkvsDmrmidjzCFgFTa5zNicxbUytjsS0NuA9dh+c4OBX7BJa7bnOvQEXsE2C492/PuS\nY7uzJ7D91Jph+/xVxo42LQScdXM/P2IHM6QBn2QRi1IqhIkxuraxUkrlF45+gPuBp40xrlOKICIb\ngG3GmNsDHpxSKs9CpsZNRB4VkR2OJWxWisg1ORz/pIhsciw3s0tERolI0UDFq5RSwZbFz7z0/n5L\n3Rx/A1AP23dPKRWGQqKPm4h0xk4u+SC2WaI/sEBE4hzzD7kefy92tvH7gBXYUWqTsbOFPxOgsJVS\nKth6iUgn7Bxtp7FLbt0NfG6MSV8iDMfginjs0lw7gbmBD1Up5QuhUuPWHxhnjJlijNkEPIT9IdQn\ni+OvB34wxnxijNlljFmEnRm8aWDCVUqpkLAWO1hiILYv3DXYvm73uhx3L3b+uDSgq8uqD0qpMBL0\nPm4iUhibpHU0xvzXaftHQGljzJ1uzumKHZ12izHmZ8eorS+BycYYT+dbUkoppZQKC6HQVFoeiMRp\nAkmHA0BddycYY2aISHngB8fcSJHA+9klbY51Am/BNhNcNNpKKaWUUsqHimEn4l5gjPnTVxcNhcQt\nK1ku+yIirbHL0zyE7RNXG3hXRPYbY17N4nq3oLOEK6WUUiqwumGnNPKJUEjcDmNnGb/EZXtFLq6F\nS/cyMMUYM8nx/jcRKQmMw87r5M5OgGnTplG/fv08BZwf9O/fn9GjL5opoMDS55GZPo/M9Hlkps/j\nb/osMtPn8beNGzfSvXt3+HuZOp8IeuJmjEkVkSSgDfBfyFgapg3wbhanRWFHkDq74DhVjPuOe2cB\n6tevT5MmTXwSezgrXbq0Pgcn+jwy0+eRmT6PzPR5/E2fRWb6PNzyafesoCduDqOAyY4ELn06kCjg\nIwARmQLsMcY87zh+HtBfRNYCPwF1sLVwX2SRtCmllFJKhb2QSNyMMbMcgw1exjaZrsWOGD3kOKQK\ndhh7ulewNWyvYJd4OYStrRscsKCVUkoppQIsJBI3AGPMe8B7Wey70eV9etL2SgBCU0oppZQKCSGT\nuKnA6tq1a7BDCCn6PDLT55GZPo/M9Hn8LbtnsWvXLg4fvmjxn3ztuuuuIzk5OdhhBFT58uWpVq1a\nwMoL+gS8gSIiTYCkpKQk7TiplFLKr3bt2kX9+vU5ffp0sENRfhYVFcXGjRsvSt6Sk5OJj48HiDfG\n+Cyb1Ro3pZRSyscOHz7M6dOndQqqfC59yo/Dhw8HrNZNEzellFLKT3QKKuVrobLIvFJKKaWUyoEm\nbkoppZRSYUITN6WUUkqpMKGJm1JKKaVCRkJCAk899VSwwwhZmrgppZRSCoBx48ZRqlQpLlz4eznw\nU6dOUbhwYdq0aZPp2MTERCIiIti5c6ff4klLS2PgwIE0bNiQkiVLUrlyZXr16sX+/fsBOHjwIEWK\nFGHWrFluz+/bty9XX3213+ILBk3clFJKKQXY2q5Tp06xevXqjG3Lli0jNjaWlStXkpKSkrH9u+++\no3r16lx22WUel5OWlpbzQcDp06dZu3YtQ4cOZc2aNcydO5f//e9/dOjQAYCKFSty2223MXHiRLfn\nfvbZZ9x///0exxfKNHFTSimlFABxcXHExsaydOnSjG1Lly7ljjvuoEaNGqxcuTLT9oSEBAB2795N\nhw4diI6OpnTp0nTu3JmDBw9mHPvSSy/RuHFjPvzwQ2rWrEmxYsUAm1z17NmT6OhoKleuzKhRozLF\nU6pUKRYsWEDHjh2pU6cOTZs2ZcyYMSQlJbFnzx7A1qotXrw44326WbNmkZaWlml1i3HjxlG/fn2K\nFy/O5ZdfzgcffJDpnN27d9O5c2fKlStHyZIlufbaa0lKSsrDE/U9ncdNKaWUCpbTp2HTJt9es149\niIry+vTWrVuTmJjIs88+C9gm0YEDB3L+/HkSExNp2bIl586d46effsqozUpP2pYtW0ZqaioPP/ww\nXbp0YcmSJRnX3bp1K3PmzGHu3LlERkYC8Mwzz7Bs2TLmzZtHhQoVeO6550hKSqJx48ZZxnf06FFE\nhDJlygBw6623UrFiRT766CMGDx6ccdxHH33EXXfdRenSpQGYPHkyr732GmPGjKFRo0YkJydz//33\nEx0dTdeuXTl58iQtW7akZs2afPXVV1SsWJGkpKRMzcYhwRhTIF5AE8AkJSUZpZRSyp+SkpJMrn7n\nJCUZA7595fH33Pjx4010dLQ5f/68OX78uClSpIg5dOiQmTFjhmndurUxxpjFixebiIgIs3v3bvPt\nt9+awoULm71792ZcY8OGDUZEzOrVq40xxgwbNswULVrU/PnnnxnHnDx50hQtWtTMnj07Y9uRI0dM\nVFSU6d+/v9vYzp49a+Lj402PHj0ybR80aJCpVatWxvutW7eaiIgIs3Tp0oxtl112mfnss88ynTds\n2DDTqlUrY4wxY8eONTExMeb48eO5flbZfc7p+4Amxof5jNa4KaWUUsFSrx74uimuXr08nZ7ez+3n\nn3/myJEjxMXFUb58eVq1akWfPn1ISUlh6dKl1KpViypVqjB37lyqVq1KpUqVMq5Rv359ypQpw8aN\nG9PX66R69eqULVs245ht27aRmppK06ZNM7bFxMRQt25dt3GlpaXRqVMnRIT33nsv076+ffvyr3/9\ni6VLl9K6dWsmTZpEjRo1aNWqFQAnTpzg999/p1evXtx3330Z550/f57y5csD8MsvvxAfH090dHSe\nnp+/aeKmlFJKBUtUFITYkli1atWicuXKJCYmcuTIkYzkJzY2lqpVq7J8+fJM/duMMYjIRddx3V6i\nRImL9gNuz3WVnrTt3r2bJUuWULJkyUz7a9euTYsWLZg0aRKtWrVi6tSp9OvXL2P/iRMnANt86roE\nWXqzbfHixXOMIxTo4ASllFJKZZKQkEBiYmJGDVa6li1bMn/+fFatWpWRuDVo0IBdu3axd+/ejOM2\nbNjAsWPHaNCgQZZl1K5dm0KFCmUa8PDXX3+xefPmTMelJ23bt29n8eLFxMTEuL1e3759mT17NrNn\nz2bfvn306tUrY1+lSpW45JJL2LZtGzVr1sz0ql69OgANGzYkOTmZ48eP5/5BBYEmbkoppZTKJCEh\ngR9++IFffvklo8YNbOI2btw4UlNTMxK6m266iSuvvJJu3bqxZs0aVq1aRa9evUhISMh2kEGJEiXo\n27cvAwYMIDExkfXr19O7d++MGjCwTZkdO3YkOTmZadOmkZqayoEDBzhw4ACpqamZrtepUycKFSpE\nv379aNu2LZUrV860f9iwYbz22muMHTuWLVu28OuvvzJx4kTeffddALp37065cuW48847WbFiBTt2\n7GD27NmZpkYJBZq4KaWUUiqThIQEzp49S506dahQoULG9latWnHy5Enq1avHpZdemrH9iy++ICYm\nhlatWtG2bVtq167NzJkzcyxnxIgRtGjRgvbt29O2bVtatGiR0ScOYM+ePXz55Zfs2bOHq666ikqV\nKhEbG0ulSpVYsWJFpmsVL16cLl26cPToUfr27XtRWf369eM///kPH374IQ0bNuTGG29k2rRp1KhR\nA4AiRYqwaNEiYmJiaNeuHQ0bNmTEiBGZEslQIOltzPmdiDQBkpKSki5q31ZKKaV8KTk5mfj4ePR3\nTv6W3eecvg+IN8Yk+6pMrXFTSimllAoTmrgppZRSSoUJTdyUUkoppcKEJm5KKaWUUmFCEzellFJK\nqTChiZtSSimlVJjQxE0ppZRSKkxo4qaUUkopFSY0cVNKKaWUChOauCmllFIqZCQkJPDUU08Fpewa\nNWpkrF0aqjRxU0oppRQA48aNo1SpUly4cCFj26lTpyhcuDBt2rTJdGxiYiIRERHs3LnTrzG1bt2a\niIgIIiIiKF68OHXr1uXNN9/0a5mhTBM3pZRSSgG2tuvUqVOsXr06Y9uyZcuIjY1l5cqVpKSkZGz/\n7rvvqF69OpdddpnH5aSlpeX6WBHhwQcf5MCBA2zevJnnnnuOIUOGMG7cOI/LzQ80cVNKKaUUAHFx\nccTGxrJ06dKMbUuXLuWOO+6gRo0arFy5MtP2hIQEAHbv3k2HDh2Ijo6mdOnSdO7cmYMHD2Yc+9JL\nL9G4cWM+/PBDatasSbFixQA4ffo0PXv2JDo6msqVKzNq1Ci3cUVFRVGhQgWqVq3KfffdR8OGDVm4\ncGHG/gsXLnD//fdTs2ZNoqKiqFev3kVNnr179+bOO+/krbfeolKlSpQvX55//vOfnD9/PsvnMWHC\nBGJiYkhMTMz9Q/SzQsEOQCmllCrI9p/Yz/6T+7PcX6xQMRpUaJDtNTYc2sDZtLPElowlNjo2T/G0\nbt2axMREnn32WcA2iQ4cOJDz58+TmJhIy5YtOXfuHD/99BP3338/QEbStmzZMlJTU3n44Yfp0qUL\nS5Ysybju1q1bmTNnDnPnziUyMhKAZ555hmXLljFv3jwqVKjAc889R1JSEo0bN84yvmXLlrFp0ybi\n4uIytl24cIGqVavy2WefUa5cOX788UcefPBBKlWqxN13351xXGJiIpUqVWLp0qVs3bqVe+65h8aN\nG9O3b9+Lyhk+fDgjR45k4cKFXH311Xl6pr6kiZtSSikVROOSxvHSdy9lub9BhQb89shv2V6j06ed\n2HBoA0NbDWVY62F5iqd169Y89dRTXLhwgVOnTrF27VpatmxJSkoK48aNY+jQoSxfvpyUlBRat27N\nwoULWb9+PTt37qRSpUoATJ06lcsvv5ykpCTi4+MBSE1NZerUqZQtWxawfecmTpzIxx9/TOvWrQGY\nPHkyVapUuSimsWPHMn78eFJSUkhNTaV48eI88cQTGfsLFSrE0KFDM95Xr16dH3/8kVmzZmVK3MqW\nLcuYMWMQEeLi4rjttttYvHjxRYnboEGDmDZtGt999x3169fP0/P0NU3clFJKqSDqF9+P9nXbZ7m/\nWKFiOV7j006fZtS45VV6P7eff/6ZI0eOEBcXR/ny5WnVqhV9+vQhJSWFpUuXUqtWLapUqcLcuXOp\nWrVqRtIGUL9+fcqUKcPGjRszErfq1atnJG0A27ZtIzU1laZNm2Zsi4mJoW7duhfF1L17dwYPHsyR\nI0cYOnQozZo149prr810zNixY5k0aRK7du3izJkzpKSkXFRzd/nllyMiGe9jY2NZv359pmNGjhzJ\n6dOnWb16tVf99/xNEzellFIqiGKj8968mVNTqidq1apF5cqVSUxM5MiRI7Rq1QqwSU7VqlVZvnx5\npv5txphMyVA61+0lSpS4aD/g9lxXpUuXpkaNGtSoUYNPPvmE2rVrc91113HjjTcCMHPmTAYMGMDo\n0aO57rrriI6OZvjw4axatSrTdQoXLpzpvYhkGkEL0LJlS7766is++eQTBg4cmGNsgaaDE5RSSimV\nSUJCAomJiSxdujSjGRNsUjN//nxWrVqVkbg1aNCAXbt2sXfv3ozjNmzYwLFjx2jQIOuEsnbt2hQq\nVCjTgIe//vqLzZs3ZxtbiRIleOKJJ3j66acztv344480b96cfv360ahRI2rWrMm2bds8vW0AmjZt\nyjfffMPrr7/OyJEjvbqGP2nippRSSqlMEhIS+OGHH/jll18yatzAJm7jxo0jNTU1I6G76aabuPLK\nK+nWrRtr1qxh1apV9OrVi4SEhGwHGZQoUYK+ffsyYMAAEhMTWb9+Pb17984YuJCdfv36sXnzZubM\nmQNAnTp1WL16Nd9++y1btmxhyJAh/Pzzz17f/7XXXsv8+fN55ZVXePvtt72+jj9o4qaUUkqpTBIS\nEjh79ix16tShQoUKGdtbtWrFyZMnqVevHpdeemnG9i+++IKYmBhatWpF27ZtqV27NjNnzsyxnBEj\nRtCiRQvat29P27ZtadGiRUafuHTumlJjYmLo2bMnw4YNA2wid9ddd9GlSxeuu+46jhw5wqOPPurx\nfTuX1axZM7788kuGDBnCmDFjPL6Wv0h6G3N+JyJNgKSkpCSaNGkS7HCUUkrlY8nJycTHx6O/c/K3\n7D7n9H1AvDEm2Vdlao2bUkoppVSY0MRNKaWUUipMaOKmlFJKKRUmNHFTSimllAoTmrgppZRSSoUJ\nTdyUUkoppcJEyCRuIvKoiOwQkTMislJErsnm2EQRueDmNS+QMSullFLpCsjsWirIQiJxE5HOwFvA\nUKAx8AuwQETKZ3HKncClTq8rgPPALP9Hq5RSSmU2ZQr06gVpacGOROV3IZG4Af2BccaYKcaYTcBD\nwGmgj7uDjTFHjTEH019AW+AU8FnAIlZKKaUcihWD6GjIxWpNSuVJ0BM3ESkMxAOL07cZu5zDIuD6\nXF6mDzDDGHPG9xEqpZRS2bvnHhg7FkRg717YsCHYEan8KuiJG1AeiAQOuGw/gG0GzZaINAUuByb4\nPjSllFLKMw8/DG+9FewovNe7d28iIiKIjIwkIiIi4+vt27fn6brnz58nIiKCr7/+OmNbixYtMspw\n92rbtm1ebweAr776ioiICC5cuOCT6wVToWAHkA0BctPVsy+w3hiTlJuL9u/fn9KlS2fa1rVrV7p2\n7ep5hEoppQqkzZth8GCYMAFKlcq8b8wY2LkTWrUKSmg+0a5dOz766COc1zN3XmzeG+7WRp83bx4p\nKSkA7Nixg2bNmvHdd98RFxcHQNGiRfNUpnPZIuI2Bl/45ptvMha8T3fs2DG/lIUxJqgvoDCQCrR3\n2f4RMDeHc4sDR4F/5qKcJoBJSkoySimlVF78+KMx119vzKFD7vcnJSWZcP2dc99995k777zT7b6v\nvvrKNG/e3JQpU8aUK1fO3H777Wb79u0Z+8+dO2ceeughExsba4oVK2Zq1KhhRowYYYwxpkqVKiYi\nIsKIiBERU6dOnUzX3rp1qxER89tvv11U7qFDh0zPnj1NuXLlTJkyZUzbtm3Nxo0bjTHGnD9/3jRr\n1sx07Ngx4/g//vjDVKxY0YwcOdKsX7/eiEhG2REREeaxxx7L83MyJvvPOX0f0MT4MG8KelOpMSYV\nSALapG8TEXG8/zGH0zsDRYDpfgtQKaWUcnH99bB8OZTPau4DD+zfD7/+evH2tWvhgEsnosOHITn5\n4mM3bIA9e/IeS07OnDnDgAEDSE5OZvHixRhj6NixY8b+UaNGsWDBAmbPns3mzZuZOnUq1apVA+Dn\nn3/GGMP06dP5448/WLlyZa7L7dChAykpKSxZsoRVq1ZRp04dbr75Zk6dOkVERATTpk1j4cKFTJo0\nCYA+ffpw5ZVX8vTTT1OvXj2mTp0KwL59+9i/fz9vvPGGD59KYIVKU+koYLKIJAGrsKNMo7C1bojI\nFGCPMeZ5l/P6Ap8bY/4KYKxKKaUUIr65zrhxtsnVNfFq2RKGDYOnnvp72+efwwMPXDxnXKdOcMst\nMGqUb2KaN28e0dHRGe9vvfVWPvnkk0xJGsD48eOpVKkSmzdvJi4ujt27dxMXF8f119uxhVWrVs04\nNr2ptXTp0lSsWDHXsSxYsIAdO3awbNkyIiJsfdO7777L3LlzmTdvHl26dKFGjRq88847PPbYY2zc\nuJEVK1bwqyMbjoyMpEyZMgBUrFgx4xrhKiQSN2PMLMecbS8DlwBrgVuMMYcch1QBMs2OIyJ1gGbA\nzYGMVSmlVMFz7hz07w/PPw9Vqvj22v36gUs+BMD330NsbOZtd9wBTZpcfOynn17c1y4vbrzxRt5/\n//2MPmElSpQAYMuWLbz44ousWrWKw4cPZ/Qd27VrF3FxcfTu3Zu2bdtSr149/vGPf3D77bfTpk2b\n7IrK0S+//MLBgwcv6p9+9uxZtm3blvH+vvvuY+7cuYwcOZLp06dTuXLlPJUbqkIicQMwxrwHvJfF\nvhvdbNuCHY2qlFJK+dWBA7BkCXTp4vvELTb24gQN4KqrLt5Wvrz75tkGDXwbU4kSJahRo8ZF22+7\n7Tbi4uKYOHEisbGxpKSk0KhRo4wBBldffTW///478+fPZ9GiRXTs2JF27doxY8YMr2M5efIktWvX\nZv78+RcNLihbtmzG18ePH2fdunUUKlSIzZs3e11eqAvv+kKllFIqAKpVg/XrbfNlQXXw4EG2bt3K\niy++SOvWralbty5//vkn4tJmHB0dzT333MMHH3zAxx9/zCeffMLJkyeJjIwkMjKS8+fPZ1mG67UA\nmjRpwq5duyhRogQ1a9bM9EpvAgV49NFHKVeuHJ9//jmvvfYaq1atythXpEgRgGzLDheauCmllFK5\nUChk2qiCo1y5csTExDBu3Di2b9/O4sWLGTBgQKZj3nrrLWbNmsXmzZvZvHkzn376KVWqVKFkyZIA\nVKtWjUWLFnHgwAGOHj16URmuNWoAt99+O1dccQXt27dnyZIl7Ny5kx9++IGBAweyceNGAGbNmsWc\nOXOYPn06t956Kw8//DDdunXj9OnTAFx22WUA/Pe//+Xw4cMZ28ORJm5KKaXcmjnTrsFZUL3/Pqxb\nF+woQkdkZCSffPIJP/30E1dccQUDBgxg5MiRmY4pWbIkr7/+OldffTXXXnst+/bt46uvvsrYP3r0\naL755huqVatG06ZNLyrDXY1bZGQkCxcupEmTJvTo0YP69evTs2dPDh06RPny5dm3bx+PPPIII0aM\noG7dugAMHz6cYsWK8cQTTwBQp04dBg0axKOPPsqll17KoEGDfPloAkrcZbf5kYg0AZKSkpJo4q5n\np1JKqUweeghSU+HDD4MdSeClpECzZtC+PQwZ4vn5ycnJxMfHo79z8rfsPuf0fUC8McbNJC7eKeAV\nv0oppbKSvvZmuoUL4Yor3Hekz2+KFLGjOosXD3YkSmWmTaVKKaUAuHAh8/xgkZGQPuXVuXPw4IPh\nvQanp6KifDdXm1K+ojVuSimlMAZ69IC4OBg69OL9RYvC0qWQT6fGAiApCf78E3y0rrlSfqGJm1JK\nKUTsvGFupu7KUL164OIJhnffhR074OabtaZNhS5N3JRSSgHgMrNDjpYtgxtuyD9JzoQJcOpU/rkf\nlT9pHzellCqgDhywo0a9sW6dnYz26699G1MwFS4MTvO5KhWStMZNKaUKoJQUW1t2xx0wYoTn5zds\naGvcmjf3fWyBcuIELFoEd97pvzLSJ4hV+VMwPl9N3JRSqgAqUgRGjnS/YHlu3XCD7+IJhsmTYfBg\nex8VKvj22uXLlycqKoru3bv79sIq5ERFRVHe3QKyfqKJm1JKFVAdOvjuWsbA9u1Qq5bvrulvjz4K\nt97q+6QN7NJOGzdu5PDhw1kes2GDrbXs18/35avAKV++PNWqVQtYeZq4KaVUAbFoEVx7LURH+/7a\n775rpxHZtg3KlfP99f1BBGrW9N/1q1Wrlu0v9E2bYOVKOzeeYylPpXKkgxOUUqoAOHYM7rkHxozx\nz/X79LFNj6GetH37beZJhoOpSxdYs0aTNuUZrXFTSqkCoHRp+PFHqFPHP9ePjvZt06s//Pwz3HKL\nrXls0ybY0fy9KoVSntDETSmlCoh69QJXVkqKnWqkRInAlZmTa66B1avBrvutVHjSfF8ppfKhtDR4\n7jnYty845ffoYZsCQ00oJm2pqfDCC7YZV6mcaOKmlFL50OHDMGuWrWEKhocegiefDE7Zzn791ftJ\nhgOlUCH7OW3fHuxIVDjQplKllMqHLr3UTjdRtGhwyk9ICE65zk6cgNat4YknYMiQYEeTNRH45htd\nakvljiZuSimVTxiT+Zd/sJI2d1JT7ZJSgRQdDV98AY0bB7Zcb2jSpnJLm0qVUiof2LULrrsO1q8P\ndiQXO34cmjaFqVMDX/YNN4TWAAml8koTN6WUygdKl4aqVUMzSYmOhnbt4Kqr/F/W4cM2UQxXK1fa\ntVNDvV+eCh5tKlVKqXygdGn47LNgR+GeCLz+emDK6trVrsP61VeBKc/XoqLsZMmHD0NsbLCjUaFI\nEzellFIB59ofz1dGjgydlRG80bAhLFkS7ChUKNOmUqWUCmN794ZforJpk+17tnu376/dqFFgmmSV\nChZN3JRSKkylpcH118PgwcGOxDOlSkHZsr5Z8skY26yoVEGhiZtSSoWpyEj46CPo2TPYkXimUiWY\nNw8qV877td580y5ldepU3q8VSoyBxx6DUaOCHYkKNdrHTSmlwpQI3HhjsKMIrh49bAIYiqNp80IE\nypTJf/el8q7A1bht3hzsCJRSSjlbutSubuBNX70qVcKvxjG3XnkF+vULdhQq1BS4xK1rV/jpp2BH\noZRSeXP2bODKWrJjCU9+47+FR/fsgY0bc39Pp0/7LRSlQl6BS9zefdfO4K2UUuHq1CmoXh1mzAhM\neYdPH+adn95hxe4Vfrl+9+6wYAEUL57zscuXQ40a8NtvfgklZIXbyGHlPwUucWveXNeEU0qFv4ED\n7YjSQLi7wd00qNCAl757yW9l5Pbn8pVXwgMPQJ06fgsl5CQnwxVXwP79wY5EhYICl7g5MwYefhi+\n/TbYkSilVO6VKAFPPQWXXRaY8iIkgiEth7Bg2wJ+2uP/viYzZsDChe73lSoFr75qV0coKGrWhPh4\nXQZLWQU6cTt71i7MfOxYsCNRSqnQsfPoTtpMacP2v7ZnbLu7wd3UL1/fr7VuYP+gnj4dvvji721p\naX4tMuSVKQNTpkC1asGORIWCAp24FS8OX34JnToFOxKllMqdQPR1+jD5Q1bvW80lJS7J2BYZEcmQ\nVkOYv3U+q/au8lvZInbN1X//277/809o0gT++1+/FalUWCnQiRtc3K/iyBE7wkkppULNwYPQoAH8\n/LP/yki7kMbEtRPpdmU3ShTJPIlYpwadqFdx7cpRAAAgAElEQVS+Hi9/97L/AgCKFfv7Z3OpUpCQ\nYO9bWQW9BrKgK/CJm6unnoJ//AMuXAh2JEopldnZs3DddbbPk798veVr9p3Yx4PxD160LzIikhdb\nvsiyXcs4cPKA/4JwUrgwvPMO1K4dkOJC3mOPwX33BTsKFUy6coKL4cNhxw7frKGnlFK+VK0aTJrk\n3zI+SPqAqytdzVWXul+pvfPlnWlXux0xxWP8G4hyq0WLwM7hp0KPJm4uKla0L6WUKmh2H9vN/K3z\nef+297M8JjIiUpO2ILrnnmBHoIJN65VysHu3/UY5fDjYkSillH9NXDOR4oWK0+WKLsEORSmVBU3c\ncrB/P/z+u85arZQKnq1boUMH2LvXf2UYY/h4/cfce+W9RBeN9l9Bymd06a+CSZtKc9C0Kaxcqast\nKKWC59AhOH4cypb1Xxkiwoq+Kzibph2owsGWLXbljLlzbb83VXBo4pYLrknbb79B/fo6gEEpFRjX\nXw+Jif4vp2xxP2aGyqdq1YInnvDvCGMVmjT18NDRo3a907feCnYkSimlCqqICHjxRahcOdiRqEDT\nxM1DZcrAnDl2jVOllCro/jz9J3fPupu1f6wNdihKFQghk7iJyKMiskNEzojIShG5JofjS4vIWBHZ\n5zhnk4j8IxCx3ngjlCwZiJKUUgVZUhIMHRrandBLFyvN2j/W8sr3rwQ7lALLGLvqjyoYPE7cROQj\nEWnpyyBEpDPwFjAUaAz8AiwQkfJZHF8YWARUA+4C6gIPAH4cc5W1CRNgxAgdeaqU8q3ffoPPP4ei\nRYMdSdYKRRTihRYvMGfjHNYdWBfscAqkgQOhVStd8aeg8KbGLQZYKCJbROR5EfFFC3t/YJwxZoox\nZhPwEHAa6JPF8X2BMsAdxpiVxphdxphlxphffRCLx3bvtqst6MhTpZQv9ewJa9ZAZGSwI8le94bd\nqVGmht/XMFXudekCb7yhv4MKCo8TN2NMB6AK8B+gM7BTROaLyN2OmjCPOM6JBxY7lWGwNWrXZ3Ha\n7cAK4D0R+UNEfhWR50QkKE2/L70EY8cGo2SlVH7nz9Hrh08fJnl/cp6vUziyMINbDmb2xtn8eiAo\nfz8XaE2awP/9nyZuBYVXPxKMMYeMMaOMMY2Aa4GtwFRgn4iMFpE6HlyuPBAJuK5YfAC4NItzagKd\nsPG3A14Bngae96Bcn3L+hjHGNnEopVQo+zD5Q5p92IxjZ4/l+Vo9GvagRpka2tdNKT/L0zxuIhIL\n3Ay0Bc4DXwNXAhtE5FljzOi8XB7IqtdYBDaxe9BRO7fG0WT7DPBqdhft378/pUuXzrSta9eudO3a\nNQ+hZjZ5MvTrZ2c7r1rVZ5dVShUQK1bYVVvuvNN/tSgXzAXGJ4+n0+WdKF2sdM4n5KBwZGGeb/E8\nD8x7gPUH13NFxSt8EKXy1B9/QExMaPeLzI9mzJjBjBkzMm07dizvfxC543Hi5mjabA/0xiZs64DR\nwHRjzAnHMXcCEx3bc3IYm/Rd4rK9IhfXwqXbD6Q4krZ0G4FLRaSQMSYtq8JGjx5NkyZNchGW97p1\nswvVa9KmlPLGnDl2wt077/RfGUt3LmXbX9uY1GGSz67Zs1FP3vjhDZbuXKqJWxD89RfExcGbb8Ij\njwQ7moLFXQVQcnIy8fHxPi/Lmxq3/dgarxlAU2OMu8l7EoGjubmYMSZVRJKANsB/AUREHO/fzeK0\n5YBrFVldYH92SVugFC4Mt94a7CiUUuFqxAi7xJU/+yx9kPQB9crX44ZqN/jsmkUii/Drw78SVTjK\nZ9dUuRcTAxMnQps2wY5E+ZM3fdz6A5WMMY9mkbRhjDlqjKnhwTVHAQ+KSE8RqQe8D0QBHwGIyBQR\ned3p+P8A5UTkHRGpIyK3Ac8BY7y4H79LTbWjw9bq/JRKqVwqVcp/1z506hBzNs7hgSYPID7ODjVp\nC66777YJnMq/vKlx+y82qcq0ErGIlAXSjDHHPb2gMWaWY862l7FNpmuBW4wxhxyHVAHSnI7fIyJt\nsU2xv2DnbxsNDPf8dvzv6FG7IPCJE8GORCmlYMovUxARejbqGexQlFIe8iZxmwnMA95z2X4Ptu+b\nV42Expj33Fwzfd+Nbrb9BDTzpqxAq1ABfvxRh2orpbK3apWtLanjybh8DxljGJ88nrvq30X5KLdz\nnKt84MIF2LgRLr882JEoX/OmqfRabB82V0sd+5Qbrknbnj3gpwEnSqkwNXgwPP64f8s4k3aGNjXa\n8MjV2ns9Pxs+HJo105ae/MibGreiWZxXGCiet3AKju7doUQJ+OqrYEeilAoVX3wBhw/7t4yowlGM\nvU1nDM/v+vSxy2BFRwc7EuVr3iRuq4AHgcdctj8EJOU5ogJi/HhISQl2FEqpUFK8uE4jpHyjYkX7\nUvmPN4nbYGCRiDTi72Wq2gDXYOd1U7ngzz4sSikVKoYvH872v7bz/v+9H+xQlMoXvFmrdDl2DdHd\n2AEJt2OXvGpojFnm2/AKjnXroG9fOH062JEopQJtwwY4ezbn48JRicIlGJ88ns1/bg52KAXWli12\nJQ6VP3i7VulaY0w3Y8zlxpirjTF9jDFbfB1cQfL777BZf64pVeAYA+3bwxNPBDsS/+jbpC+XlryU\nV7/PdjVC5Sepqbav28iRwY5E+Upe1yotjh2UkMGbedwU3H47/N//6ZQhShU0IvD11xDh1Z/Roa9Y\noWIMaj6IJxc8yYstX6ROOe0nEkiFC8OXX0L9+sGORPmKxz8qRCRKRMaIyEHgJPCXy0t5yTVp27gx\nOHEopQIrLg5q1w52FP7zQPwDXFLiEl5b9lqwQymQmjSxA19U/uDN33gjgBuBh4FzwP3AUGAfoNNw\n+8iWLdCwIXz6abAjUUqFuwnJE+j1eS+MMUEpv1ihYgy6YRDT1k1j65GtQYlBqfzCm8TtduARY8xs\n7DJUy4wxrwLPA918GVxBVqcOzJ4Nd9wR7EiUUv5y6FDOx+SVMYYxq8Zw/Nxx79Yl/d//7F+SefRA\nkweoUKKC1roF0blzOndofuBN4lYW2OH4+rjjPcAPQEtfBKWs9u1t/wSlVP5z9qztd/TOO/4tZ/W+\n1fxy4BcebPKg5yenpUG7dtC8eZ6HJRYvXJxBzQex9chW0i6k5XyC8rnZs6FDB9i1K9iRqLzwJnHb\nDlzm+HoTdkoQsDVxR30Qk8rC66/DzJnBjkIp5QuFCsG4cfYPNH/6IOkDqpWuRttaXkyzOXs27NgB\n589Dt2723zz4Z9N/8v1931MoIk/j4pSX7rkHfvsNqlULdiQqL7xJ3CYBjRxfvwk8KiLngNHY/m/K\nD4yBTZvsz1ClVPgrVAg6doQaNfxXxolzJ5ixfgZ9G/clMiLSs5ONgREjoE0bm8B99x28lrdmzsiI\nSO+aa5VPFCoEdesGOwqVVx7/2WOMGe309SIRqQfEA1uNMet8GZz6mwhMnhzsKJRS4WTG+hmcSTtD\nn8Z9PD85MRGSkmDBAmjdGoYMgZdespOCtWrl81iVUrnjUY2biBQWkcUikjERjzHmd2PMHE3a/E8k\n85QhKSmwbVvw4lFKeSc1NTDlfJD0AbfWuZUqpap4fvKIEdCoEdx8s30/eDC0bAn33huYURXKr37+\nGVavDnYUyhseJW7GmFSgoZ9iUR564w1o1gxOngx2JEqp3DpyBKpUsRVZ/rTlzy0k7U/yblDCunXw\nzTfwzDN//7UYGQnTp9uss1cvuHDBtwGrgDEGHn8c3n472JEob3jTx20a0NfXgSjP9e8P06ZByZLB\njkQplVsi0K8fNG7s33LqlKvD1se20q5OO89PHjkSqlaFzp0zb69UCaZOhfnz4a23fBOoCjgRmDNH\nu9+EK2+G9hQC+ojIzcBq4JTzTmPMU74ITOWsVKm/WzGUUuEhJgZefjkwZdUqW8vzk3bvhhkzYPhw\n9/MR3XILDBwIzz8PLVrAddflKcYL5gIRkk/X+wphsbHBjkB5y5vvliuAZOwcbnFAY6fXVb4LTXnq\nr79gxYpgR6GUCmtvv22r8e+/P+tjXnkFrrkGunSxP3i8tPaPtcT9O47fj/7u9TWUKmg8TtyMMQnZ\nvG70R5AqdwYNgh498jzVklKqoDp6FD74AB5+GKKjsz6ucGFbK3f8OPTtaztNeaFO2TocO3eMN354\nw8uAVV4dPw6jR9u5llV40PrpfOSVV+D7720fYlXwvPWWna1BhaadOyE+3s7HGLLef98OV3/88ZyP\nrV4dJk2CuXNh7FiviitRpATPXP8ME9dMZNcxnc4/GLZsgRdegDVrgh2Jyi2PEzcRSRSRJVm9/BGk\nyp2KFW3fYZW/nTljOxa7rkCUkmJfzqZPh1OnUCHg7FmoXdv2+Q9J587Z9bd69oRLL83dOR062CTv\n6achOdmrYh9t+iilipbizR/e9Op8lTfx8bB3r235VuHBmxq3tcAvTq8NQBGgCfCr70JTSsHFiVdq\nKnTqBEtc/kx67rnME9vv3QsPPQSffur/GFXO6tWDTz6BEiWCHUkWpk2DAwfsFCCeGD4crrjCjkA9\nccLjYksWKckzzZ5hQvIEdh/b7fH5Ku9iYoIdgfKEN33c+ru8/mmMuQF4GwjQtJIqJ199pXP05Adv\nvw21amXuQlSqFOzbZ5eOzE7lyrBhA9x3n19DVCHklz9+Yc/xPZ6feOGCnQKkfXvP10QqWtRmpAcO\n2HlOvOjv9ug1jxJdNFpr3ZTKBV/2cZsGeLGuivKHn3+2NTI6R2b4GDDANm06u/lm23fNdcDJJZfk\n7poh2yxXgCQled1332OPfv0ovb/o7fmJX35pO98NGOBdwbVr20ENM2bAxIkenx5dNJpnrn+GCWsm\neJd4Kp/49luYOTPYUaic+DJxux4468PrqTx48UX44guI0OEnYePwYTh2LPO2yy+3NWuFvJlx0cWF\nCzBuXOCWW1KweTM0bWrXaPe3DYc2sHz3ch5o8oDnJ48YYZdhad7c+wC6dIEHHoDHHoP16z0+/Z9N\n/0n98vXZ/td272NQefLZZ5q4hQOPfx2IyBzXTUAscDXwii+CUnmnI0vDz6RJ/r3+2rXw5JMQFwcJ\nCf4tS1lxcbYWIxDPe3zSeCpEVeCOend4duKKFfDDD3Z0aF69/ba9XufOsGqVRx36ootGs6bfGsR5\nQWYVUO++a1u+VWjzpj7mmMvrCLAUuNUYo5MRhCidoyf03H+/XTkoUJo0gW3bNGkLtDZt/F/zfTbt\nLFPWTaFXo14UiSzi2ckjRtgMs337vAcSFWX7u+3cmbspRVxo0hZcxYr9vTStCl0e17gZY7zoQKGC\n6dln7S/sQDTXqNw5fdr25T53LrDl6nQx/vXnn7aP/8svu18tyl/mbJzDkTNHeCDew2bSzZvh889t\nG7qvsssGDey8br17w4035jyKRinlEW/mcbtGRK51s/1aEbnaN2EpX2rWDP7xj8B1kFY5i4qCefPg\nDg9btXzpzBl47z39f+FLv/0GU6bAjh2BLXfS2km0qNaCuHJxnp341lt2AsgePXwbUK9e0L27nY9m\n82bfXlv53Z9/2m4VBw8GOxLljjd/Yo0F3I1Vq+zYp0LMHXfYPsNaBa6cLVlia2P196rvtGwJW7fa\nlsdA2XVsF4u3L6b3VR42hhw4AJMn2ybNYsV8G5SI/augUiXb3+2sjlsLJyJ2cNu6dcGORLnjTeLW\nALvIvKs1jn1KqTBw2222Cd3TabtUZq79R4sXD2z5Z1LPcM/l93B3g7s9O/Hf/7bDlR9+2D+BRUfb\n/m4bN3o+qa8KqrJl7R8gN90U7EiUO94kbucAd7NIxQLaBT7EHT9u16ZTwTF+vG1Bcp2XLVhyOx+c\ncm/aNLj+ejh5Mngx1C1fl5l3zyS6aDaLwrs6edLWiD3wgH+nzb/qKruC+dixXnWyNcaQcj4l5wOV\nz+nMBKHLm8TtW+ANESmdvkFEygCvAwt9FZjyjx49dCb9YCpVyi4DGYo/FA8dsomlyr1Gjewo3UDX\nsuXZxIn2r7gnn/R/WQ89BHffDX37etT5zxjDbR/fxqBFg/wYnFLhR4yHPZNFpDLwPVAO2zwKcBVw\nALjZGBOSi82JSBMgKSkpiSZNmgQ7nKDZtMl2jK9WLdiRqFAzbhwMHWo72JcrF+xolN+kpdmVDm64\nwVYZBsLRo9C4sR0IsWwZFMndlCXDlg7jX8v/5bYZuFZMLYa1Hpbt+U/Mf4IjZ49kuf/eK+6lXZ12\nWe7femQrL32X/SxXb9/yNuWi8u83zOefw+rV8OqrwY4k/CQnJxMfHw8Qb4xx18XMK95MB7JXRBoC\n3YBGwBlgEjDDGKNzsoe4evWCHYEKVf36QceOmrRl59gxO9KuTp1gR5IHn34Kv/9ue58HSpkytr9b\n8+bwwgt27rhcePK6J9l4eCO7ju26aF/JwiVzPH/vib0cOn0oy/0nUk5ke/65tHNuy3Z23oRIvwc/\n2bvXrnl8/nxothQURB7XuIUrrXFTwaQ/9PKHrl1trXVycpiO0jbGzsRcsSIsWBD48keNgqeftmuj\n3nZb4MtXHjMmTP+vhwB/1bh5M4/bcyJy0WLyItJHRAb6JiwVCN9+a6vBlX/t2WNbpn76KdiReOZ/\n/wtcS1q4GDECPv44jH+RLV5s1z7zdjH5vOrfH/7v/+w8b3vy2WLyJ07Y/xwffxzsSHwqbP+v52Pe\nDE7oB2xys/034KG8haMC6aOP8t3PmJAUGQnt2kH9+sGOxDNTpsC//gUpOqgvQ5Uq4fc5ZjJ8uO1r\n1qZNcMoXsYvyFisG994b/mvxnTxpm4DvugsqVLCrRHTrBkuWMHP9TJ5d+GywI1T5kDeJ26XAfjfb\nD2GnBFFhYsIE+zNH+VdsrJ15oVSpYEfimVde8agfeb40eTJ8/32wo7jYmFVjGJI4xLOT1q6FhQtt\nbVswq1HKl4cZM2D5crs2WLg5fRo++ww6dbJNzl262NrDV1+F7duhVSvo3Zu//trHiB9HMHtD/lhr\n8Ngxm2uvWBHsSJQ3idtuoLmb7c2BfXkLRwVSVJRWg6usRUTYPuUF1YULMHVqYPvw54YxhtErR7P7\nuIcD+EeOhOrVbcIRbC1a2KTt1Vdt822oO3MG5s61SVqFCvYZbt9uh2Fv2warVtlJhmvUsDWKR47w\n0JQNdKzfkb7//X/27jzO5vp74PjrPWPs+xJllyWSbUqIiOxbdlMxyFaKfFFSok3ipywVsoswdiWy\nRPYwYxdlz76NdTDLff/+eI/MMOude+/n3jvn+XjcR3zu53Pvcbtz59z3cs4bnLh2wup/QYplyWKS\nt9BQqyMRyd5VCkwCRiul/IDfo4/VAUYAoxwVmHA9WYTqWLdvQ6ZMVkfhOBs3mg/uJk2sjiR+ly+b\nXbGOeB/7+Jh+so7uBpVSG09t5FjoMaY2m5r0i06ehLlzzeaANPZ87DvBwIGwfr2ZWtyzx/2qQd+7\nZzZwzJsHy5aZadHy5c2u2DZt4t9aXLQo/N//oXr2ZHKzICpmCCZgYQAbOm3Az9fPtf8GB/LxgeXL\nrY5CgH0jbiOBKcD3wLHo2zhgrNb6SwfGJlzo3Xfho4+sjsJ7aG0SnHfesToSx5k0yb2a0l++bMqD\n3ae1+V36cKWJK1eS3iw7rvZV7vZlZvru6RTLUYwahWsk/aLRo81cfZdH9pVZx9fXDGlqbSqD22xW\nR2QWdC5fDh07mmnQ5s1Nw8733jOtu3bvhkGDEq8H07071KtH9p7vMrfeD+w8u5OPfpcPWOEYyU7c\ntPE+kAeogqnlllNr7YGLFcR9hQqZhdfCcXr3NmuWvcXkyaZrkbskMn37Qu3aDxJJrc2GildeiX3e\n5Mnm9+zDCWdwsGkecN/161ClCgQFOTfulLgVfougA0EElg/ERyXx4zs01GTdvXpB5sRrn7lUvnww\nezasWWN2wlghIgJWroTOnc2oX5MmsGOHeYPt3w/79sHgwckrgqkUTJkCt2/z/LCZDKs9jBFbRrDy\nyErn/TtE6qG1ThU3oBKgg4ODtRDC8506pfX69Ymf9++/Wq9dG/vYvXtap0mj9fjxD47ZbFr366f1\nnj2OjdORZuyeoRmKPh56POkXffGF1unSaX3+vNPiSrEPP9Ta11frjRtd83wREVqvWqV1165a58yp\nNWhdooTWH32k9d695s3gCDNmaA06auEC3XBWQ51nRB59/e51xzy2hRYu1LpBA62joqyOxL0FBwdr\nQAOVtAPzGbsWOyilngPaAIWAWHvOtNZ2jTEopXoB/TG7VvcA72itd8RzbiCmW4MG7n//v6u1zmjP\ncwshku/gQShTxrrnL1jQ3BJToMCjo8m+vmbELV++B8eUMuv33dm03dN4qchLFMleJGkX3L0LY8ea\nBsXutoYspqFD4Y8/TIXj3bud074jMtJsEZ43DxYtMnPtxYqZliFt25r1a44eTu7QARYuxKfnm8zY\n+Qdbwv4mazoP214ehzx5zG75sDD3G8RNDewpwNse2AyUBloAfkAZoDZw3Z4glFLtMBsbhgAVMYnb\nb0qp3Alcdh2T5N2/FbbnucWjbt0yDcdF8oWHp47X7s8/oWxZs7bcE/n6QrlyZhmTpzh57STrT6yn\nc4XOSb/oxx/NAr9+/ZwXmCOkSWNKhNy5Y5JMRy2kjIoyCeFbb0H+/KZ+3apVZq3fzp1w5AgMGwYV\nKjhnDYBSpgmwzUae/w2mealmjn8OC9SoAVOnStJmFXs2JwwC+mqtmwLhQB9MEhcEJNzULX59gYla\n65la60OYQr5hQEIrabXW+pLW+mL0LRX8unQ+raF+fXj7basj8UxTppj1VN6+Zb5yZTNo8eKLrn3e\n+fOt6dTkDgplK8TmLptpWTqJkxo2mxlCbNHCM5qrFihgqoL/8ovZTGEvmw02bTI7gwoUgFq1zGN2\n6GC+cRw7ZtbT+fu7ZsFmvnxmV8/ChWZnrxApZM9U6ZPA/U3B4UAmrbVWSn2DKQ8yJDkPFl1WxB8Y\ndv9Y9OOtAaomcGlmpdQJTPIZAgzSWh9MznOLRyllvoDKRgX7tGljap/lyGF1JM6l1KObAFxh/nxT\nYqV+fdc/t9WUUlQrWC3pFyxbBn//baoIe4omTeB//4P334fq1eG555J2nc1mkrJ588yb5OxZM8LW\nvj20a2e+afjYM07hIG3bmsStVy+TSD7uXbXqpZSUa9nzTr4KZIn+8xmgbPSfswP2rDHLDfgCFx46\nfgEzBRqXw5jRuGbAa5h/xxalVH47nl88pGZNePJJq6PwTLlzm2U6qZEryoTMmwfjxzv/ebzCyJEm\n+alSxepIkufLL83UZbt2ZqtvfLQ2hW/79YMiRaBaNfMGadXKjLidOgXffGP+/VYmbfd9951pQ9Kt\nm/vU1EmhiAjzJeqHH6yOJHWx5928Eagb/ef5wBil1CRgDuDIEtgKs/ngEVrrbVrrWVrrvVrrjUBL\nTMut7g58fiFEEmhtptYfrp/mDEq5X0Fct7R5M2zZYuqPeZq0aU0CdvUqdO0aO8nR2uwqee89U+j2\n+edh1ixo2tSsZTt92mzGeOEF90jWYsqd22Q4y5ebKWEv4OdnBjMLywpzl7JnqvRt4P5H5xdABFAN\nWAh8bsfjXQaigIe3PD3Go6NwcdJaRyqldgHFEzu3b9++ZMuWLdaxgIAAAlLrMEki1q83U1NJnbFI\nrfbuhWeeSZ3TBUqZ30nOmh6+dw/SpXPOY3utkSNN3bHGja2OxD5Fi5oCfG3awIQJULWqSeaCgswa\ntdy5oXVrMwX54otmt4knaNYMAgOhTx+zUaJQIc7ePMuVsCs8k/cZq6Ozy2efWR2Be5gzZw5z5syJ\ndex6QiPGKaC0GwzZKqW2AX9qrftE/11hNjqM1Von+j1eKeUD7Ad+1Vr3j+ecSkBwcHAwlSpVclzw\nXkxrM8tQtqxZdC/idvGiKWD8zTfw5ptWR+NdbDZTZLdWLVMxQiTBoUNQurT5oXWnTgn2eOutB3Pj\nOXOaadC2bc0bwl1adyXXtWvmQ7V0aVi1isZzmnDo8iFCuoeQLX22xK8XHiMkJAR/f38Af611iKMe\n113e+V8DM5RSwcB2zC7TjMB0AKXUTOC01npQ9N8HA9uAI5i1de9hyoFMdnnkXkwpsxnLGSWVvMlj\nj5mdjvJ9wPGUMmsGS5WyOhIPMmqUWfz+2mtWR5JyX39tdkr5+5sM3s9ze33+J3t2U0ujfn2YMIFx\n7cdRcWJFevzSgzmt5qA8eNg+IsI7/he5O7dYBKC1DgL6AZ8Cu4ByQP0YJT4KEHujQg7gB+AgZodr\nZqBqdCkR4UB58rjfUhF3VLMmZMmS+Hmpwa1bjlvCo5Spj1qrlmMez9Ncu3uNW+G3kn7BuXOm71ef\nPt4xv5w+vekNWr++d2UE9eqZN3b//hS7qpnUdBLzDsxjcojnjj38+qvZ1Bazf7BwDrf5lay1/l5r\nXURrnUFrXVVrvTPGfbW11l1i/P1/Wuui0ec+obVuqrXea03kQoiYli0zJbRO2VvVUfxn9LbRlBxX\nkkhbZNIuGDfOLO7v0cO5gYmUGznSDNd37kzbp1rRvVJ3eq/szf6L+62OzC6VKsGrr6bOdb6u5jaJ\nm3BvNhu8+675Mi+Mv/6C48etjsL9BATA4cNm3Z+9Vq2CmzcdF5Mnsmkb03dPp1GJRqTxScKqlps3\nzXqwHj3MdJxwb1mymKHpjRthzBhGNxhN8ZzFabegHWERYVZHl2z58sHw4ZBNluk5nd2Jm1KquFKq\nvlIqQ/TfJc/2Yj4+phvNnTtWR+I+Bg82paZEbErBE0/Yf/2tW+abe0qK53uDP078wcnrJ5Pe4mry\nZPPi9enj3MCE49Ssaf5/DRpEhiMnCGodxIlrJ+i9orfVkQk3luzNCUqpXMA8TG9SDZQAjgFTlFKh\nWms3b4on7DVxotURuJcZM+DMGaujcH+hoeZbeFLXSmbODDt2xG4AnxpN3zOd4jmLJ61bQkSE2dYc\nEAAFCzo/OOE4w4bBihUQGEjpLVv4tjTO2vIAACAASURBVOG3rD62mkhbZNJGWt2Q1uZLfkZ7SvKL\nRNkz4vYNEAkUwvQTvW8e0MARQQnhCTJlgpIlrY7Cvd2+bda+jBqVvOuKFoUMGZwTkye4ee8mCw4u\noFP5TknbZfjjj/DvvzBggPODE46VMaP5FhgcDCNG0KlCJ2a3nO3RSVv9+vJWdCZ73hn1MDs+Tz/0\ngfIPpiSHSAXuT5mm5l+uInGZMpkp5bp1Ez9XPDD/4HzuRNyhY/mOiZ988aL5LRkQYKpAC89TpYrp\nBjF0KKpJEyhXzuqI7KaUKR+YkuUSImH2jLhlIvZI2305gXspC0d4gshI02nmk0+sjsT1wsPNeuKI\nCKsj8RxduiQ+exceDi1awNatronJ3U3fPZ2Xi71MwWxJmPZ85x0zDz1mjPMDE84zdKgpWNixo/mB\n8GDt25uGFsI57O1VGvNroI7uXPAesM4hUQm3liYNfPABdE7immlvsm6d6RF95IjVkXiXa9fMpkjp\nQwp3Iu4QpaPoVKFT4icvWWLaQI0da4ouCs+VLp2ZMj1wAD63p3ukSC2S3fJKKVUW00w+BLNBYRnw\nNGbE7QWt9VFHB+kI0vJKOMqZM5A/v9VReKbffzddJr76yupI3J/WOuH1bdeuQZkypqvAsmVSQMtb\nfPKJaQC6datXNIm+fNm0lk2NnNXyKtkjblrr/UBJYBOwFDN1ugio6K5JmxCO5AlJ29JDSzlw8YDV\nYTzi5EnYtQvu3rU6EveX6KaE/v3N7o/x4yVp8yaDBkH58qYZfYwfFK01UbYoCwNLvs2bzeflnj1W\nR+Jd7KrjprW+rrX+QmvdVmvdSGv9kdb6nKODE55h61azoU24h0nBk3hl3iuUHV+WsX+OtTqcWDp3\nhpUrH0yJnjxpbTwea+1a00R+5EjTy1N4Dz8/M2V69Ch8/DFgkrZ2C9rx8bqPLQ4ueSpXNjvKixe3\nOhLvkuzETSlVLp7bM0qpEkopL2iQJ5IqPBzatjVLbLzZlCme8a3xjxN/8Navb9HTvydzWs2hcYnG\nVof0iPv13HbvNh/oa9ZYG4/HuX3bLLSsVQu6drU6GuEMZcvCp5/C//0fbN6MUopKj1fiy01fsuaY\n5/zA+PnB22+b3eXCcexZ42bDFN4FuD8+H/NBIjA13Xpord1mQkTWuDnPP/9AsWLg62t1JM4RGQkV\nK5qdUh9+aHU08TseepznJj1H+XzlWfnaSvx83bspt80Gs2ebKhZpPLNklTX69jXVsPfulaEMbxYV\nBdWrm0Viu3djy5iBhrMbsuf8Hvb03EPezHmtjlAkwm3WuAEtMDXbugPlgQrRfz4MvAq8gdm0INti\nUokSJbwrabt3Dw4dMp+bYJKKkBDo58Y9QW7eu0mzuc3Inj4789vMT3LStuXfLUREWVPbxMcHOnSQ\npC1Ztm41ZT8++0ySNm/n6/ugPcvAgfgoH2a+MhOlFK8vfh2btlkdYbJEREinGUexJ3H7EOijtZ6i\ntd6ntd6rtZ4C9AX6aa1nA+9gEjwh3NqcObB6dexja9dC6dJw9uyDY35+7l2qovPSzpy8dpJlAcvI\nmSFnkq65HHaZmtNrUnh0YT7941PO3zrv5ChFity7B2+8Ac8+K/1IU4uSJeHLL+Hbb+H338mbOS+z\nWsxi7bG1DN803OrokiUgwNxEytmTuD0DxLWk+GT0fQC7gcftDUp4pnv34P33Yf362MevXTPF3V0l\nPBxu3Ih9bNMmqFbNLA+KaeJE+OWX2MeqVjX/Bk/awv7ms28yr/U8yuQpk+RrcmfMTUj3EJqVasZX\nm7+i0DeFeH3R6/x5+k8nRiricvTqUUZtGcXt8Nvxn/TFF6aA4NSpMkyZmrzzjmlG37kz3LhBnWJ1\nGFRjEB+v+5jNpzZbHV2SDRwI331ndRTewZ7E7RAwUCmV9v4BpZQfMDD6PoD8wIWUhyc8SZo0sGUL\n3LoV+/gXX0CNGo+enzWr+R0U008/mWUdD3vnHViwIPaxgwdNyaP77bfuq1jRtFmKKUsWM7P08Lnr\n1j1acD5HDvM56UntvOoUq0PDEg2Tfd0zeZ9hQpMJnO57muEvD2fr6a1UmVKFypMqM2vvLCdEKuIy\ndddUPtvwGT4qno/kPXvMyMugQWbhukg9fHxg2jS4evW/9RpDaw2lasGq9FvVj+SuU7fKs89KRzZH\nsedrWy9M0d3TSqm9mI0J5QBfoEn0OcWA7x0SofAYvr5mmvHhdlBvvAFNmsQ+prVZpvNwfcl8+cwP\n+MMuXXo0ITx6VDPm+zscKdWPOk89T/0n6/N4lsf5+mvzODGVLw8zZz76uFL+ysiRIQf/q/o/+jzf\nh5VHVjJu+ziCDgTxernXrQ7N60XZopi5dyYBZQPI4BfHt4XISPND9NRTJnETqU/RoqauRo8e0LIl\naRo2ZG6rufj5+iVe7094nWTvKgVQSmUGXscU4lWYkbaftNY3HRue48iuUu9y/tZ53lr+FosPLaZ4\nzuIcvXoUjaZCvgrMajGLpx972uoQPV5EVITb70z1BquPrqberHpse2Mbzxd4/tETRowwPea2bjWF\nsUTqpDU0bAj79sH+/WZqwEPt32/WEXvTpra4OGtXqV0LJbTWt4AJjgpCiORYemgpnZd2xs/Xj/lt\n5tO6TGsu3b7EqqOrWHl0JQWySkFSR5CkzTWm75nOU7mfonL+OJKyv/+GIUPg3XclaUvtlILJk81U\nee/e8OOPVkdklyNHoFw502K3dWuro/FMdq9wVUqVAQoBaWMe11ovS2lQQiQkV8ZcNCrRiNENRpM7\no9lBkCdTHl4r9xqvlXst0ev/ufIPhbMXJq1v2kTPFfG7F3mPdGmk3nZKXL97nUV/LeKTWp88OuVl\ns5kCu088YdYVCFGggKl2HhgILVtCC88r3lC8OKxYAbVrWx2J50p24qaUKgYsxuwg1TxahNfLBz+F\n1aoXqk71QnHsYEgCrTX1ZtXjcthl6hStQ4PiDWhYvCGFsxd2cJTOMSl4EjWL1KRkrpKWxnHk6hFq\nTa/FqHqjaFe2naWxeLJ5B+YRHhUe91rCiRNh40b4/XfImNH1wQn31KEDLFxo1rtVrw558lgdUbLV\nr291BJ7Nnl2lY4DjQF4gDHgaeBHYCdRyWGRCOMmitosYVH0QV+9c5e1f36bImCKU/q40//vtf6w+\nupq7kW7T8COWpYeW0v2X7sw/MN/qUMiXOR8vFn6R9gvb02t5L+5F3rM6JI80ffd06j9ZnyeyPBH7\njlOn4L33oHt3eOkla4IT7kkpk9TbbPDmm2btm0hV7Gl5dRmorbXeq5S6DlTWWh9WStUGRmmtKzoj\n0JSSzQkiLtfuXmPtsbWsOLKClUdWcubmGTZ32Uy1gtWsDi2WfRf2UXVKVRoUb0BQm6D4y0a4kNaa\nCTsn8O5v71Iubznmt5lPkexFrA7LY2itWXxoMXky5qFG4Rox74DGjU0JkIMHIVs264IU7isoCNq1\nMzWUYlS2/WnfT1TIVyFZNR2tcuuW6VITVyUBb+CszQn2JG6h0UEcU0odBbpqrdcppZ4E9mmt3XJM\nXxI3z/HPlX/Yd3EfLUu3dOnzaq3Zf3E/pfOUJo2P+xQ4vXT7EpUnVyZbumxs7rKZTGndq2Nz8Nlg\n2sxvQ+jdUGa+MpOmpZpaHZJnmzXLTIctWwZN5bUUCWjfHlatggMH4PHHCY8Kp8KECvj6+LK96/a4\ny8u4kXfeMW/zY8e8c4epO/Uq3Y+p2wbwJ/CeUuoF4GPgmKMCE6lPlC2KUVtGUW5COYauH0qULcql\nz6+U4pm8zySatLkyrvCocFoFtSIsIoxlAcvcLmkD8H/Cn+DuwdQsXJNmc5vx/ur3XVIUdOu/W2n8\nU2NKjivJ2mNrnf58LnHhgmlnFRAgSZtI3HffQdq00K0baE1a37QEtQniyNUj9P2tr9XRJeqDD8wy\nTm9M2pzJnsTt8xjXfQwUBTYCjYDeDopLpDIHLx3khakvMGD1AHr692TrG1vx9XG/n+YrYVcoMa4E\nwzcN5+Y955Yt1Frz9q9vs+30Nha1XUShbIWc+nwpkSNDDha3W8z/1f0/7kbedWpR0E2nNlHvx3pU\nm1qNE9dOUKNQDbd+bZKld2+zhunhdh5CxCVXLvjhB1i+HKZPB6DsY2UZ02AME4MnusV62IQ88QQU\n8pIfXZfSWqf4BuQketrVXW9AJUAHBwdr4T7CI8P1sA3DdNrP0upS40rpzac2Wx1Sgi7euqjf/OVN\n7fepn871VS49fONwffPeTac817z98zRD0dN2TXPK43ua9cfX65emv6QZii77fVkdtD9IR9mirA7L\ncRYv1hq0nj3b6kiEpwkM1DpLFq1PntRaa22z2XTb+W111i+z6qNXj1obWyoWHBysMRU3KmkH5jPJ\nWuOmlEoD3AUqaK33OzyLdCJZ4+Z+9l3YR6elndh9fjcDqg1gaK2hpE+T3uqwkuTU9VMM3zScySGT\nyZouKwOqDaBX5V5kTpvZYc8RHhXOssPLaF1GqlTO2juLDos7UD5veT6u+TGvPPVKsjZovP3r2xTM\nWpC2T7elaI6iTozUTqGhUKaMWaW9bJn0YhPJc+2aKcxburRZ86YU1+9ep9IPlciVIRebumxy+7qV\nv/9uCvPmzm11JI7jFmvctNaRwCmkVptwgIu3LxIRFcG2N7Yx/OXhHpO0ARTKVojvG3/Pkd5HaFOm\nDYPXDabomKLM3jvbYc+R1jetJG3RWjzVgqXtl7Krxy5alm6ZrKTNpm1cvXOVT/74hGJji/H85Of5\nZus3nL5x2okRJ1P//hAWBuPHS9Imki97dpg6FdasgQmmqVG29NmY22ouu8/vZtBa9+5xe+0aNG9u\n9uWIxNmzq/QNoCXQQWt91SlROYGMuLmnKFuUW65lS65T10/x5cYvaVqqKY1KNLI6HLdl0zbLSpnc\nCr/Fz4d/Zt6Beaw4soLwqHCqF6pO+6fb07F8R7Kky+KSOB55Ddasgbp1TW2u7t1dEoPwUj17mlZY\ne/fCk08CMGHnBPJkzEOrMq0sDi5hhw9DyZLe9b3FncqB7AKKA37ASeB2zPu11m6ZFUniJoS1omxR\nNP6pMfWerEffKn1jbWDQWjt1Q8PDrt+9zpJDS5h3YB7rT6zn377/kitjLqc/71+X/qLuj3VZ+fpK\nyj5WFm7fNlNcRYrA2rXgY319PuHBbt6E8uVNa6x162S7psXcqcn8Ekc9uRAi9dBoyuUtR79V/dh4\naiPTmk8jW7psLDu8jE83fMq4huNcVvg4W/psBFYIJLBCILfCbzl0bWJCZuyZQVhEGCVyljAHPvzQ\nlABZvVqSNpFyWbLAtGlQq5bZmfy//1kdkXCCZCduWutPnBGI8D5hEWHsPr/b7boQWCUiKoLJIZMJ\nrBBIRj+3rFPtVGl80jCi7giqF6pO4JJA/H/wJ2u6rOw+v5taRWqRzteahvVJSdqqTalG4eyFqVO0\nDrWL1qZYjmLJfp5IWyQz98zk1WdeJV2adLB1q2kYPnKk6bwthCPUrGlqAQ4aBA0bmg0LHuTiRTNY\n2E5aIMfLrq94SqnsSqmuSqkvlVI5o49VUkrld2x4wlOtP7GecuPL0WJeC+5E3LE6HLfw55k/6b2y\nN0XHFOXrrV8TFhEGwOZTm3l/9fsuLzhslWalmhHSPYSi2YvyWKbH+KPTH6wLXIf/E/5WhxaniKgI\nahWpxbHQY/T4pQdPjn2SomOK0nVZV37a9xPnb51P0uOsPrqac7fO0blCZ7h3D954w+wi7dPHyf8C\nkeoMGwaFC0NgIERGWh1Nsvz0E7z1Fty4YXUk7sueNW7lgDXAdaAIUEqb9lefA4W01h0dHqUDyBo3\n17h57yYD1wzk+53fU6NQDaY0m0KJXCWsDsttHAs9xrCNw5i+ezq5M+am9/O9GfPnGJ7K/RSrO6x2\n+y37qd21u9fYcHIDa4+tZe3xtRy4dACAnd12Jpp4tlvQjoOXDrK3517Uxx/DV19BSIhZ4yaEo23b\nBi+8AJ99ZkbfPMTdu2bpZy7nLzl1OnfanLAGCNFav6eUugmUj07cqgE/aa2LOCo4R5LEzfm01tSe\nWZsdZ3Yw/OXhvPXcW27RDN0dxUzgCmYryI5uO8id0YsKGKUS52+dZ93xdbQu0xo/X794z7t65yqP\nj3qcYbWH0S/Ty2ak7cMPYehQ1wUrUp8PPoBRo2DnTlMkLYaLty+SO2Nu+Yx2IndK3K5jqgAffShx\nKwwc1lq7ZTEuSdycb/6B+bRd0JaVr62kfvH6VofjEf69/i9pfdOSN3Neq0MRTvTC1BfY8u8Wzvc5\nTd46zcxUaUiI6TMphLPcu2e+JPj6wvbt/73frt29RqlvS9G/an8GvDDA4iC9l1sU4I12D8gax/GS\nwKWUhSM81Z2IOwxYPYAmJZtI0pYMBbMVlKQtpSIiHHOLct4awxI5S/D+C++T94fZsHu3KZYqSZtw\ntnTpYMYMOHAAPv/8v8PZ02enU/lODPp9ENtOb7MwwPjZbDB/vvlxEbHZUw5kGfCxUqpt9N+1UqoQ\n8BWw0GGRCY+y7fQ2rty5wqh6o6wORaQWWptVzNGV4lNMKciTBx5/PPFb+uRNLEx/ZTr8/Tc0LQ/v\nvguVKzsmZiESU6kSfPSRWevWtCk89xwAn9f+nA2nNhCwMIBdPXaRPX12iwONTWsYMgTatIEKFayO\nxr3YM1WaDVgAPAtkAc4C+YCtQCOt9e0ELreMTJU63/W718mWPpvVYYjUYvBgM4rwySdmB11K3bsH\n58/DuXOxb+fPmxG5mLJnT1qClyWLSQhtNlNb68wZ2LcPMqa+cjDCQhERUKUK3Lljpuijv3icuHaC\nihMrUqdoHea3me/SIthJcf06ZPPgXyluU4BXa30dqKuUqg6UAzJjNiuscVRQwjNJ0iZcZsIEk7SN\nGAEDnLxGx2aDq1cfTeju306eNDv4zp0z/UZjypjxQQK3e7fppC1Jm3A1Pz8zZervb77wjBwJQJHs\nRZjSbAqtgloxYecE3nzuTYsDjc2TkzZnSnbippQqqLX+V2u9CdjkhJiEECJ+S5dCr17Qu7dpzu5s\nPj6QO7e5PfNM/OdpbVoOxZfgde0KL73k/HiFiEvZsvDpp2an6SuvmFIhQMvSLXnr2bfo+1tfqhWs\nRvl85S0OVCTGnjVuJ5RSG4FZwAKt9TUHxySEEHHbuhXat4eWLeHrr92rI7VSkDWruZUqZXU0Qjyq\nf39YsgQ6dTIjwJkyATCq/ig2/7uZufvnumXiduKE6eQ1dKh7/chbxZ5dpc8BO4AhwHml1GKlVCul\nlDX9aoQQqcPhw9CkiVlc/eOP0kBbiOTy9TVTpmfOwMCB/x1OnyY96zutZ1idYRYGF79jx+CHH+DU\nKasjcQ/JTty01iFa6wFAIaAhcBmYBFxQSk11cHxCCGGmGhs0MOvFli5N9q5OIUS0kiVh+HD49luz\n5jJa9vTZ3W5zwn21a8Px447Zg+QN7C6ZrI11WutuwMvAcSDQYZEJt3b1zlWrQxCpxY0b0KiR2Rm3\nYgXkyGF1REJ4trffNrucO3f2mKag8l3tAbsTN6VUQaXUe0qp3Zip09vA2yl4vF5KqeNKqTtKqW1K\nqeeSeF17pZRNKbXI3ucWyfPv9X8pMroIi/6Sl1w4WXg4tGplvm6vWAEFC1odkRCez8fHFIG+ehX6\n9bM6GpFMyU7clFLdlVJ/8GCELQh4UmtdXWs93p4glFLtgFGYdXMVgT3Ab0qpBJs3RrfZGglssOd5\nhX0Grh1IBr8MvFzsZatDEd7MZoMuXWDDBrOgOqEdnUKI5Cla1PQxnTzZfCnyEBMmmI4KqZk9I26D\nge3As1rrp7XWw7TWJ1IYR19gotZ6ptb6ENATCAO6xHeBUsoHs7P1Y0wSKVxg679b+WnfT3xR+wuy\npour85kQDjJoEMyebTYi1KpldTRCeJ9u3aB+fVOqJjTU6miSZP162LHD6iisZU/iVkhrPUBr/UgH\nMaVU2eQ+mFLKD/AH1t4/pk07hzVA1QQuHQJc1FpPS+5zCvvYtI0+K/tQIV8FOlfobHU4wpuNGwdf\nfQXffANt2yZ+vhAi+ZQyI263b5u6iA8JvRNK4JJATlw74frY4jF7tqm7nZrZs6s0Vo8spVSW6OnT\n7ZgpzuTKDfgCFx46fgHTSusRSqkXgM5AVzueT9hp1t5Z7Di7gzENxuDrI6UYhJMsXAh9+pi1N+++\na3U0Qni3AgVg7FiYNQsWL451l1KKP078QcDCACKiIuJ5ANeSKkAp25zwolJqOnAO6A/8DlRxUFwA\nCnikkapSKjPwI9BNa+0ZY7te4Fb4LQauGUjrMq15sfCLVocjEnPnjqnk72k2boTXXjNFdlP712oh\nXKVDB2jeHHr0gEuX/jucPX125raey86zOxm8brCFAYqYktU5QSn1OGZDwhtAVszGhHTAK1rrg3bG\ncBmIAvI+dPwxHh2FA3gSKAz8rB4UnfGJji8cKKW1jnfNW9++fcn2UAO0gIAAAgIC7Is+lRi+aThX\n71xlZN2RVociYoqIgL//No3L9+41t337TKXKypXhvfdMextP+Jp68CA0a2Za8UybZna+CSGcTymY\nOBGefhrefNOs/o/+9VqlQBW+qP0F7695n5eKvET94vUtDtY4ehQ++siEndUNllvPmTOHOXPmxDp2\n/fp1pzyX0kn8Vq6UWgbUBJYDs4GVWusopVQEUD4FiRtKqW3An1rrPtF/V8ApYKzWeuRD56YFij/0\nEF9gmt33Bv7RWkfG8RyVgODg4GAqVapkb6ip1oGLBwg5F0KH8h2sDiV10hrOn3+QmN1P0v76y5TM\nAMifH8qVM7svixaFoCBYtw6KFzfTjoGBkCGDtf+O+Jw+DdWqmRptGzZId2khrBAUBO3awU8/QYzB\nDJu20Wh2I0LOhbCn5x4ez/K4hUEap0+bRio//ui+G85DQkLw9/cH8NdahzjqcZOTuEUCY4HxWut/\nYhx3ROLWFpgB9MDsWO0LtAae0lpfUkrNBE5rrQfFc/00IJvWumUCzyGJm/AMYWFw4EDsJG3fPrh8\n2dyfKZNpGF2u3INE7ZlnIGfORx9r504YORIWLIBcucwC5Lfeivtcq1y7BjVqmEKgW7fCE09YHZEQ\nqVf79rBqlfkMevxBgnbx9kUqTKhA6TylWfX6KrdY56y1e/cudVbilpyp0hqY8hw7lVKHMOvM5jki\nCK11UHTNtk8xU6a7gfpa6/uT7QWAR0bRhPB4V66YEaaYSdqRIw8+kUqUMEnZO+/EHk1L6jTis8/C\nvHlmXuHrr+GLL+DLL832/759oUgRp/7zEnXvHrRoYXonbt4sSZsQVvvuOzNl2q0b/Pzzf5nRY5ke\nY1bLWbw882W+2fYN/av1tzhQ907anCnJI27/XaBURqA9JomrjNkR+j9gqtb6psMjdBAZcRNuZ80a\nMx1x+TLkzv0gMbs/klamDGTM6NjnvHTJ9Cj89lu4ft1MiwwYABUqOPZ5ksJmg1dfNcV116yB6tVd\nH4MQ4lHLlpnNClOnmrZYMczeO5u6T9blsUyPWRSc57B8qjTOi5Uqhdmo0AHIDqzWWjdzUGwOJYmb\ncBs2mxn5GjIE6taFSZNMKydXfn28fdtsABg1Ck6cMHG89x7UqeP8OM6cMbtH58835QcWLICW8a5y\nEEJYoVMnWLQI9u+HQoWsjiZBY8aYyYtPP7U6kticlbilaNuW1vqw1vo9zFSmbMsUIjFXrpgVtUOG\nwMcfw6+/mg9FV4/5Z8pkGk3/8w/MmWNG/erWBX9/mDsXIh20MkFr8xxTpphfBE8+aepGBQSYNTTT\npknSJoQ7Gj3abBJ64w23Ly0UHm5WXaQWKRpx8yQy4iYst2MHtG5tRrtmzzatZtyF1rB2ramdtnq1\nWfvWr5+ZJsmUKemPExVlvqFv2GBG1TZuNLthfXygfHl48UWzEaF6dcj7cAUgIYRbWbXKfE59/70p\nEyKSxS1H3IR3OhZ6jPdXv8+t8FtWh+IdtIbx402yki8fhIS4V9IGZsTv5ZfNB3VIiCnN8e67ZjRw\nyJBYRTljCQ83O0G/+sqMJObKZdbL9esHZ8+axO/XX+HqVfO4o0dDq1aStAnhCerVM0V5+/c3G5yE\nW5ARN/GIVkGt+PP0nxx++zCZ0iZjtEU86vZt88E3ezb06mXWlKVLZ3VUSXPihOkVOnmyWZfXpYsp\nJXL+/IMRtW3bTJeGTJlMslejhhlVq1zZfWvGCSGS7uZNM1peoICpC+kJxbzdhIy4CZdYf2I9i/5a\nxFcvfyVJW0odOmQSmCVLTEHLb7/1nKQNzHTpmDGmC8OHH5rNBGXLmpG5b7+FLFngs89g+3YIDTWj\ndYMHQ82akrQJ4S2yZDFrUTduNJ8H8dh0ahNWDwSdOmUarxw4YGkYTieJm/hPlC2Kd1e+S5UCVXj1\nmVetDsezBQXBc8+ZadLt22NVIfc4uXKZ3jInT8LSpabe3KVL5s/9+pl/p5+f1VEKIZylZk2zdGLQ\nINOt5SHbz2ynxrQaTNk1xYLgHsiXz5SC9PaNCpK4if9M2TWFPRf2MKbBGFRqrWyYUuHh0KePqY/W\npIlJ2sqUsToqx8iQwfQSLVtW+ogKkdoMGwaFC5vWeQ/tOq+cvzLdKnWj94reHLho3XBX2rRmYsDb\nV0PJp68A4Prd63z0+0d0KNeByvkrWx2OZzp9GmrVMhsRxo0z06OZM1sdlRBCpFyGDDBjBgQHm93n\nDxndYDTFchSj7YK2hEWEWRBg6iGJmwDgsw2fcTviNl/W+dLqUDzT6tVQsaJJ3jZuNDXSZNRSCOFN\nqlQxhbqHDjXt+WLI6JeRoDZBHA89Tp8VfayJ7yE2m9UROIckboIoWxQ7z+7kg+ofkD9rfqvD8Sw2\nm1mgX7++GZ8PCYHnn7c6KiGEcI6hQ6FUKejY0SwNiaFMnjJ82+hbJu+azJx9c6yJL9ro0dC4sdvX\nDrZLcprMCy/l6+PLusB1RNocN8P+uAAAIABJREFUVC0/tbhyBV5/HX77zXRBGDxYtsoLIbxbunRm\nyvT55+Hzzx/pM9W5QmfWHl9L91+681z+5yies7glYT71FNy6Zb5be9vHsiRuAgClFH6+sjMwybZv\nhzZtTJ22FSvcr6CuEEI4S6VKZqf5Z59B06ZmZ3k0pRQTGk/gnyv/cDz0uGWJW4MG5uaNZKpUiOTQ\n2rR/qV4dHn/cPbsgCCGEsw0aZArzBgbC3bux7sqSLgt/dv2Tuk/WtSg47yaJmxBJdfs2dOhgOiD0\n6GG6BxQqZHVUQgjhen5+MHOmaYU1ePAjd7tTSanISO/aqCCJmxBJEbMLwpw5ptxH2rRWRyWEENZ5\n+mmzxm3UKNi82epo4nTtmglzwQKrI3EcSdyESMj58zBx4oMuCDt2QPv2VkclhBDuoX9/s1GhUycz\nK+FmsmeH114zmxW8hSRuqdD5W+e5E3HH6jDc08WLpl3VW29B6dJmHVvPntC8udmQULq01REKIYT7\n8PU1u0zPnIGBA62OJk4ffwzlylkdhePIrtJUqMvSLtyNvMvvgb879oFv3YK+fU0vyzJlYt8KFXLP\nNkmXLsEff8D69bBuHRw8aI6XKmW6IAwdavr05ctnYZBCCOHGSpaE4cNNu78WLaB27XhPtWkbPsoN\nfxd4EEncUpkV/6xgxZEVLGq7yLEPfPgwtGxpGpE3bw7795uRq/tD5xkzmtGq+4nc00+b/xYp4toi\nO1euxE7U9u83x0uUMInaRx+ZRO2JJ1wXkxBCeLq334bFi6FzZ/PlPWvWR07Z+u9WevzSg9UdVpM3\nc14LgjTjC57eiVASt1QkIiqC/636H7WK1OKVp15x3AMvXmy2hOfPb9aA3Z9OtNlMC6iDB2Pfli6F\nGzfMOenTm8UHD4/QPfkkpHHA2zM0NHaidr9NS7Fi8NJL8P77JmErUCDlzyWEEKmVjw9MnWrmJPv1\ng0mTHjmlaI6iXLh9gY5LOrLitRUuH3mbMAG++AL+/tu0XvVUkrilIt/v+J6/r/zN3FZzHbNVOzIS\nPvzQNBxu3dr80GbJ8uB+Hx8zRVqoUOxKiFrD2bOPJnQrVphEC8yOzZIlHx2hK1484d2c166ZMh33\nE7U9e8zzFSliErV+/UyiJmU8hBDCsYoWNTtMe/QwMzANG8a6O1/mfMxqMYv6s+ozYvMIBlZ37Zq4\nutFl5Ty9k4LS3tjIKw5KqUpAcHBwMJUqVbI6HJe7HHaZEuNK0LZMWyY2nZjyB7x40eyu3LDBJG59\n+6a8qbrW5nHvJ3IHDjz486VL5pw0acy0ZszRuYwZTRzr1sGuXeZxChY0idpLL5lErUiRlP6LhRBC\nJEZrk7Dt22eWouTI8cgpg9YOYsTmEWzovIFqBatZEKRrhISE4O/vD+CvtQ5x1ONK4pZK9Frei1n7\nZvHPO//wWKbHUvZg27aZEbbISJg3z6wJc7ZLl+Cvvx4dpTt3ztyfP3/sRK1o0ZQnkkIIIZLv9Gko\nW9a0w/rxx0fujrRFUnN6TU7fOM2uHrvImSGnBUE6n7MSN5kqTQUOXT7EhOAJfPXyVylL2u63e+rb\n19Q1mz/fdYv48+QxtxdfjH08NNSslytUSBI1IYRwBwUKwNixZu1zy5Zmp2kMaXzSMKfVHCpMqMAb\ny95gUdtFLu+0EBZmlmF74kYF2ZObCpTIWYJpzafR+/ne9j9IWBh07Gh2Dr35ppmWdIedlzlyQOHC\nkrQJIYQ76dDBVBjo0ePBUpcYCmUrxNTmU1lyaAkrj6x0aWiRkabN6pdfuvRpHUYSt1TA18eXjuU7\nktbXzhZNR45AlSqwaBH89BOMGSPtnoQQQsRPKdN1xmYzX/bjWJb1ylOvsKXLFhoUbxDHAzhPmjQm\naXvjDZc+rcNI4iYStmwZPPss3L0Lf/4JAQFWRySEEMIT5M0L48fDwoUwd26cp1QtWNWShvStW5uq\nUJ5IEjcRt6goU4y2eXOz4H/HDrPYVAghhEiqNm2gXTvo1evBZjKRIpK4iUddvmy2c3/5pWljsmgR\nZMtmdVRCCCE80XffmeU13brFOWVqtePHrY4geSRxE7Ft3w6VKsHu3bB6teksIAv/hRBC2CtXLvjh\nB1i+HKZPtzqaWIKCTK33kyetjiTpJHEThtbmB6tGDbNbNDg4wUbBQgghRJI1a2bKg/TpA6dOWR3N\nf5o0McvvCha0OpKkk8TNy2it6f5zd9afWJ/0i+7cgS5dzLbtrl1Nb09PehcLIYRwf6NHm2U3b7xh\ndpvG4+qdq0wKfrTXqTNkzAitWpkOjZ7Cg0IVSbHk0BImhUwiLCIsaRccOwbVqpkOCDNnmrUI6dI5\nN0ghhBCpT/bsMGUKrFljOr7H4+fDP9P9l+7MPzDfhcF5DkncvMi9yHv0X92fBsUb0KhEo8Qv+PVX\n8Pc3nQe2bjUFE4UQQghnqVcPevaEAQPg6NE4T+lYviNtyrSh689dORZ6zGWhXbniGWvdJHHzIqO3\njebktZN8Xe/rhE+MioIhQ6BxY6heHXbuNGWkhRBCCGcbOdLUeOvc2fw+eohSiklNJ5ErQy7aL2hP\neFS4S8Jq0AD69XPJU6WIJG5e4vyt83y+8XN6PdeL0nlKx3/i1atmNeZnn8Hnn8PSpaZtlBBCCOEK\nmTPDtGmwcaPpxBOHbOmzMbf1XHad38WgtYNcEtaECaYdt7uTxM0LRNoi6bi4I+l80zGk1pD4TwwJ\nMVOj27fDypXw4YeetSJTCCGEd6hZE959FwYNgr/+ivOUyvkrM7zOcEZtHcXyv5c7PSR/f3jsMac/\nTYrJb20v0GdFH9adWEdQmyByZsgZ90lTp5pNCLlzmwSuXj3XBimEEELENGwYFC5syoRERsZ5St+q\nfWlUohGBSwI5c+OMiwN0T5K4eYEK+SowvvF4aheNo+7a3bvQvbvZfh0YaIamCxd2fZBCCCFETBky\nwIwZpm7oiBFxnuKjfJjxygwal2yMn6+fS8LSGn7/3S2bPACQxuoARMp18+8W9x0nT5oCNfv3my3Y\nXbq4NjAhhBAiIVWqwHvvwdChZv11uXKPnJI7Y25mvDLDZSFt2warVpm9e2nTuuxpk0xG3LzVb7+Z\n1lVXrsCWLZK0CSGEcE9Dh0KpUtCxI4S7ZgdpQqpWNW263TFpA0ncvI/NZnaLNmwIlSubIehKlayO\nSgghhIhbunSmAPyBA+b3l0iQJG7eJDQUmjeHjz82t+XLIWc8mxWEEEIId1GxInz0kdmwsGOH1dG4\nNUncvMXBg/Dss7B5M/zyixl6llIfQgghPMWgQaYYfGCg2Vgn4iS/2T3IvP3zuBJ25dE7DhyAWrUg\nUyYzNdooCe2uhBBCCHfi52emTI8ehcGDk3RJ6J1QJwflftwmcVNK9VJKHVdK3VFKbVNKPZfAuS2U\nUjuUUqFKqVtKqV1KqdddGa+rLTm0hICFAUzfPT32HQcPQu3a8MQTsG4dFC1qSXxCCCFEij39tOns\nM2qUmUFKwMjNI6n0QyWu3b3mouDcg1skbkqpdsAoYAhQEdgD/KaUyh3PJVeAz4EqwDPANGCaUqqu\nC8J1uV3ndvHaotdoVaYVfav2fXDHX3+ZpC1vXlizBnLlsi5IIYQQwhH69TNlQjp1gtu34z2tzdNt\nCL0TSrefu6HdteiaE7hF4gb0BSZqrWdqrQ8BPYEwIM4aFlrrDVrrpVrrw1rr41rrscBeoLrrQnaN\nczfP0WxuM0rnLs2MV2bgo6L/lx0+bJK2PHlg7VrTEUEIIYTwdL6+MH06nDkDAwfGe1qR7EWY0mwK\nCw4uYGLwRNfFZzHLEzellB/gD6y9f0yb1HkNUDWJj1EHKAn84YwYrXIn4g7N5zbHpm0sbb+UjH4Z\nzR1//w0vvWRG2NauNcmbEEII4S1KljTF1L791rQxiEerMq1489k3eXflu+y9sNeFAVrH8sQNyA34\nAhceOn4ByBffRUqprEqpm0qpcOBn4B2tdfz/dz2MTdvotLQT+y/uZ1n7ZeTPmt/c8c8/JmnLnt0k\nbZ7QEVcIIYRIrrffNhvvOneGGzfiPe3r+l9TKncp2i1ox+3w+KdWvYU7JG7xUUBCk9Y3gfLAs8CH\nwDdKqRddEZgrjP1zLEEHgpjVchb+T/ibg0eOmKQta1bzDSRvXmuDFEIIIZzFxwemToWrV826t3ik\nT5Oeea3ncer6Kd5e8bYLA7SGO/QqvQxEAQ9nIY/x6Cjcf6KnU49F/3WvUqoM8AGwIaEn69u3L9my\nZYt1LCAggICAgGSG7Vwdy3ckb6a8tCzd0hw4etQkbZkzm6QtX7yDkUIIIYR3KFrU7DDt0QNatIi3\n3NVTuZ/i+0bf02dlHz6t9SkFsxV0aZhz5sxhzpw5sY5dv37dKc+l3GEnhlJqG/Cn1rpP9N8VcAoY\nq7UemcTHmAIU1VrXjuf+SkBwcHAwlTytBdSxY2a4OEMGWL8eHn/c6oiEEEII19DatHHctw/274cc\nOeI99dLtS+TJ5B7rvkNCQvD39wfw11qHOOpx3WWq9Gugu1Kqo1LqKWACkBGYDqCUmqmUGnb/ZKXU\nQKXUy0qpokqpp5RS/YDXgR8tiN25jh83I23p05s6bZK0CSGESE2UgsmTTWmQ3r0TPNVdkjZncoep\nUrTWQdE12z7FTJnuBuprrS9Fn1IAiIxxSSbgu+jjd4BDwGta6wWui9oFTpwwSVvatCZpe+IJqyMS\nQgghXK9AARg71rTDatnSTJumUm4xVeoKHjdVevKkmR719TXTowUKWB2REEIIYR2tTcK2ZYtp9ejm\npbC8fapUxHTqlBlp8/ExI22StAkhhEjtlIKJE8FmgzffNIlcKiSJm8Wm7prKxJ0xKj7/+69J2sAk\nbQVduzNGCCGEcFt588L48bBwIcyda3U0lpDEzULrT6ynxy892HV+lzlw+rRJ2mw2k7QVKmRtgEII\nIYS7adMG2rWDXr3g3LlET195ZCXDNw13QWCuIYmbRY5cPUKroFbULFyTcQ3HmZ5sL70EEREmaStc\n2OoQhRBCCPf03Xdm4163bolOme45v4cP1n7AqqOrXBScc0niZoFrd6/RdE5TcmfMzfw28/G7cMkk\nbffumY0IRYpYHaIQQgjhvnLlgkmTYPly05A+AQNeGED9J+vTYXEHzt8675r4nEgSNxeLtEXSdn5b\nLty6wC8Bv5Dj2l2oXRvu3DFJW9GiVocohBBCuL+mTU15kD59zKa+ePgoH2a2mImP8uH1Ra8TZYty\nYZCOJ4mbi/VZ0Yd1J9axqN0iSkRkMUnbrVtmerRYMavDE0IIITzH6NGQLRu88YZZHx6PxzI9xqwW\ns/j9+O8ev95NEjcX2n1+N+N3jmd84/HUylDaJG03bpikrXhxq8MTQgghPEv27DBlCqxZAxMmJHhq\nnWJ1+LDGh3y8/mM2ndrkogAdTxI3F6qQrwL739pP1wLNTNJ27ZpJ2kqUsDo0IYQQwjPVqwc9e8KA\nAXD0aIKnDqk1hBcKvkDAwgBu3LvhogAdSxI3FytDHpO0Xb1qkraSJa0OSQghhPBsI0eaGm+dO0NU\n/GvY0vik4adWP/FJrU/IkjaLCwN0HEncXOnSJahTBy5fNklbqVJWRySEEEJ4vsyZYdo02LQJxoxJ\n8NQCWQvQpWIXlFIuCs6xJHFzlcuX4eWX4cIFk7Q99ZTVEQkhhBDeo2ZNs8N00CD46y+ro3EaSdxc\n4coVk7SdO2eSttKlrY5ICCGE8D7DhpkC9oGBEBlpdTROIYmbk0Taot8wV6+apO3sWfj9dyhTxtrA\nhBBCCG+VIQPMmAHBwTBihNXROIUkbk6w5NAS/H/w58qZIyZpO30a1q6FsmWtDk0IIYTwblWqwHvv\nwdChsHev1dE4nCRuDrbr3C5eW/QaJbMUIUfzdqaa89q18MwzVocmhBBCpA5Dh5oNgB07Qnh4ki4J\nvRPK0asJlxNxB5K4OdDZm2dpOqcpZXKUYsbYf/E5fsIkbeXKWR2aEEIIkXqkSwczZ8KBA/D550m6\npMPiDjSb24ywiDAnB5cykrg5SFhEGM3nNgetWTpHk/GfEyZpK1/e6tCEEEKI1KdiRRg82GxY2LEj\n0dNH1B3B8dDj9FnRxwXB2U8SNwewaRudlnTi4MWDLPstJ0/sO2Hab1SoYHVoQgghROr1wQfmd3Fg\nINy9m+CpZfKUYVzDcUzeNZm5++e6KMDkk8TNAYauH8r8g/P5cUcBKu04bZK2SpWsDksIIYRI3fz8\nzC7To0fN6FsiulTsQkDZAL7a/BU2HX/TeiulsToATxceFc7qf1Yy7J9CtFx/AVavBn9/q8MSQggh\nBMDTT8Nnn8HAgfDKK/DCC/GeqpRiQpMJaK3xUe45tiWJWwqlDbvH+h/TkHZvKKxeA889Z3VIQggh\nhIipXz9YsgQ6dYLduyFTpnhPzZouq+visoN7ppOe4tYtaNyYdHv2o1athsqVrY5ICCGEEA/z9YXp\n0+HMGTPy5sEkcbPX7dvQuLHJ3H/7DZ5/3uqIhBBCCBGfkiVh+HD49lvTychDSeJmj9u3oUkTCAmB\nlSuhalWrIxJCCCFEYt5+G2rVgs6d4cYNq6OxiyRuyRUWBk2bmpowK1dCtWpWRySEEEKIpPDxgWnT\nTB/xfv2sjsYukrglw/GzB03Stn07rFiR4M4UIYQQQrihIkVg1CiYPBl+/dXqaJJNErckWn/4N0pN\nLMsvlzab/9E1algdkhBCCCHs0a0b1K9v/hsaanU0ySKJWxIcOXeAVj82peYpRf0xy+HFF60OSQgh\nhBD2UsqMuN2+Db17Wx1NskjilojQa+doMuZ58tyIJChgMX4v1bE6JCGEEEKkVIECMG4czJoFixdb\nHU2SSeKWgIiwW7T99Bkucpuf600jR71mVockhBBCCEd5/XVo3hx69IBLl6yOJkkkcYuHvnuX3gOe\nZn3mKyx67v8o0STQ6pCEEEII4UhKwcSJYLPBm2+C1lZHlChJ3OJy7x7jej3LhMdOMb7Eu9Rq5Zlb\nhoUQQgiRiLx5Yfx4WLgQ5s61OppESeL2sPBwaNuWvCGH+eCJdnTt8I3VEQkhhBDCmdq0gXbtoFcv\nOHfO6mgSJIlbTNFJGytX0m7YMoZ1c//MWwghhBAO8N13kDatKRHixlOmkrjdFxEB7dubwrqLF0PD\nhlZHJIQQQghXyZULJk2C5ctNQ3o3JYkbmKQtIAB++cXMcTdqZHVEQgghhHC1pk2hUyfo0wdOnbI6\nmjilsToAy0VEwKuvwrJlJmlr0sTqiIQQQghhldGj4fp1kx+4odSduEVGmhouS5bAggUm0xZCCCFE\n6pUtGyxaZHUU8Uq9U6WRkdChA2t2LeDc7AmmAJ8QQgghhBtLnYlbVBQEBhKyMYjmr/vxReZdVkck\nhBBCCJGo1DdVGhUFnTpxdvlcmg7IRpnHnmRE3RFWRyWEEEIIkajUl7gNHUrY2pU0+6QIyu8ey9ov\nI6NfRqujEkIIIYRIVKpL3GwrfiVw5PP8dW8fmzpu4vEsj1sdkhBCCCFEkqS6xG1C/1osuLWeRW0X\nUfHxilaHI4QQQgiRZKluc8KU6+v5ss6XtCjdwupQhBBCCCGSxW0SN6VUL6XUcaXUHaXUNqXUcwmc\n21UptUEpdTX6tjqh82MaUG0A77/wvuMC91Bz5syxOgS3Iq9HbPJ6xCavR2zyejwgr0Vs8no4n1sk\nbkqpdsAoYAhQEdgD/KaUyh3PJTWBn4BaQBXgX2CVUirRBWvtn2mPUsoRYXs0+eGKTV6P2OT1iE1e\nj9jk9XhAXovY5PVwPrdI3IC+wESt9Uyt9SGgJxAGdInrZK11B631BK31Xq3130BXzL+ljssiFkII\nIYRwMcsTN6WUH+APrL1/TGutgTVA1SQ+TCbAD7jq8ACFEEIIIdyE5YkbkBvwBS48dPwCkC+Jj/EV\ncAaT7AkhhBBCeCV3LgeiAJ3oSUoNBNoCNbXW4Qmcmh7gr7/+ckx0Hu769euEhIRYHYbbkNcjNnk9\nYpPXIzZ5PR6Q1yI2eT0eiJFvpHfk4yozK2md6KnSMKCV1npZjOPTgWxa63jrdiil+gODgDpa6wQb\njiqlXgVmOyRoIYQQQoikeU1r/ZOjHszyETetdYRSKhizsWAZgDLbPusAY+O7Tik1AJO01UssaYv2\nG/AacAK4m8KwhRBCCCESkh4ogsk/HMbyETcApVRbYAbQA9iO2WXaGnhKa31JKTUTOK21HhR9/nvA\np0AAsCXGQ93SWt92afBCCCGEEC5i+YgbgNY6KLpm26dAXmA3UF9rfSn6lAJAZIxL3sTsIl3w0EN9\nEv0YQgghhBBexy1G3IQQQgghROLcoRyIEEIIIYRIAknchBBCCCE8hFckbkqpIUop20O3g4lc00Yp\n9Vd0U/s9SqmGrorXmZL7WiilAqPPiYpxfpgrY3Y2pdQTSqkflVKXlVJh0f+/KyVyTS2lVLBS6q5S\n6m+lVKCr4nW25L4eSqmacbynopRSj7kybmdQSh2P499mU0qNS+Aar/zsgOS/Ht78+aGU8lFKfaaU\nOhb9c3JEKfVREq7zys8Oe14Pb/7sAFBKZVZKjVZKnYh+TTYppZ5N5JoUvz/cYnOCg+zHlBC530E+\nMr4TlVJVMU3q3weWA68CS5RSFbXWCSZ8HiLJr0W060DJGOd7zcJHpVR2YDOmpVp94DJQAghN4Joi\nwC/A95j3xsvAZKXUWa31aieH7FT2vB7RNOY9cvO/A1pfdFKYrvQspnPLfc8Aq4CguE5OBZ8dyXo9\nonnr58dATKWDjsBBzGszXSl1TWv9bVwXePNnB3a8HtG89bMDYApQBlNq7BzQAVijlCqttT738MmO\nen94xeYEpdQQoLnWOsFRlBjnzwUyaq2bxTi2FdiltX7LSWG6hB2vRSDwjdY6p3Mjs4ZSajhQVWtd\nMxnXfAU01FqXi3FsDqYgdCMnhOkydr4eNYHfgRxa6xtOC84NKKVGA4201iXjud9rPzvikoTXw2s/\nP5RSPwPntdbdYhxbAIRprTvGc403f3bY83p47WeHUio9JhltqrVeGeP4TuBXrfXHcVzjkPeHV0yV\nRiuhlDqjlDqqlJqllCqYwLlVebSv6W8kvam9u0vOawGQOXqo95RSaolSqoxLonSNpsBOpVSQUuqC\nUipEKdU1kWuq4L3vD3teDzCjKbuVUmeVUquUUtWcHKfLKdPF5TXMt+j4ePtnx3+S+HqA935+bAHq\nKKVKACilygMvAL8mcI03f3bY83qA9352pMGMTt976PgdoHo81zjk/eEtids2oBNm6qcnUBTYoJTK\nFM/5+UhZU3t3ltzX4jDQBWiG+ZD2AbYopfI7P1SXKIap+3cYqAdMAMYqpV5P4Jr43h9ZlVLpnBKl\n69jzepzDTJG0AloC/wLrlVIVnByrq7WA/2/v3oOtKss4jn9/oJWmgjY6UQkaTOJlFEcqL6PopEwy\n08VLI5V4y3HSJk0bLTRCnbykTsKoUw4omqKoZTE2WUpopUHMCIY3BINEAVEzQRDl9vTH+x5dLvbe\nZ58z57Dde/8+M3s4a613rfWu56zz7of1vu/e9CN9GHg1rdx2lNUTj1ZuP64G7gEWSFoPPAFMiIhp\nNfZp5bajO/Fo2bYjItYAs4BxkgbkMYAnk5KwAVV265H7oyXGuEVE8esknpY0B3iR9OXzU+o8TF1f\nav9h19VYRMRsUrIHvNft8xxwFjC+d2u7VfQB5kTEuLz8L0n7kpKXO7twnFYZv9PleETEQmBhYdVs\nSYNJ33DSEgOvszOAByPilS7u1xJtRwWdxqPF24+TSOOQRpPGdA0DJubxSHd04Tit0nZ0OR5t0Hac\nDNwKLCONJZ9LGgNb11ClrMv3R0skbmURsUrSQmBIlSKvkL6hoWg3tsyEm14dsSiX3yhpXr3lm8AK\n0htJ0XOk//1VU+3+WB0R63uwbo3QnXhUMofUTdISJA0kDRT+eidF26Lt6EI8PqDF2o9rgCsj4r68\n/EweXD4WqJa4tXLb0Z14VNIybUdELAGOkrQdsFNErMzjYJdU2aVH7o9W6Sr9AEk7AINJb1KVzCLN\nuiw6Jq9vKXXEoly+D7BfveWbwOPAXqV1e5GeQlZT6f4YSWvcH92JRyXDaJ17BNLTpZV0Pl6nXdqO\neuPxAS3WfmzPlk9BNlP7fbOV247uxKOSVms7iIh1OWnbmTRM6fdVivbM/RERTf8CrgWOAAYBhwIP\nkxqdT+Ttvyb9T6Gj/CHAeuAC0pvWpcA7wD6NvpYGxGIc6Y1nT+BA4G5gLTC00dfSQ/EYTho8OpaU\nwH6LNBNodKHMlcDtheU9gDXAz/P9cU6+X45u9PU0KB7nkcYwDQb2BSYAG4AjG309PRQTAf8Brqiw\n7fZ2aTu6GY+WbT9IQ0uWAqNye3oc8Grp+tup7ehOPFq97RhJStT2yH8H80iTOPr25v3R8AvvoeDd\nDbxMms2xlNTHvGdh+0zg1tI+JwAL8j7zSV9q3/Br2dqxAH5Beqy7DlgOPADs3+jr6OGYjMq/47eB\nZ4AzStunADNL60aQBt+uAxYBYxp9HY2KB3BhjsFa4DXSZ8Ad0ejr6MF4HANsAoZU2NY2bUd34tHK\n7Qfw8cL1rc1/A5cB2xTKtE3b0Z14tEHb8Q3ghfy7XgZMBHbs7fujJT7HzczMzKwdtOQYNzMzM7NW\n5MTNzMzMrEk4cTMzMzNrEk7czMzMzJqEEzczMzOzJuHEzczMzKxJOHEzMzMzaxJO3MzMzMyahBM3\nMzMzsybhxM3MrAsknSVpqaSNks5tdH3MrL34K6/MDABJU4B+EXF8o+vyYSVpR+B14AfAb4HVEfFO\nY2tlZu1km0ZXwMysiQwitZt/jIhXKxWQtE1EbNy61TKzduGuUjOri6TdJU2X9JakVZLukbRbqcxP\nJK3M2ydJukrSvBrHHCFps6SRkuZKelvSDEm7SjpW0rP5WFMlfaywnySNlbQ47zNP0gmF7X0kTS5s\nX1Du1pQ0RdLvJP1Q0nJ6k3RVAAAFZ0lEQVRJr0u6UVLfKnU9FZifF5dI2iRpoKTx+fzfkbQYeKee\nOuYyoyQ9n7f/RdKpOR475e3jy/GTdJ6kJaV1Z+ZYrcv/nl3YNigf8zhJMyWtlfSkpINLxzhM0iN5\n+xuSHpTUT9KYHJttS+WnS7qt8m/WzHqLEzczq9d0oD9wOHA0MBiY1rFR0reBi4ELgYOApcDZQD3j\nMcYD5wCHAAOBe4FzgdHAKGAk8P1C+YuBk4GzgH2A64E7JB2et/cBXgJOBPYGLgOukHRi6bxHAZ8F\njgROAU7Lr0qm5esGGA4MAF7Oy0OA44HjgGH11FHS7qTu1unAAcBk4Gq2jFel+L23Lsf9UmAsMDSf\n93JJY0r7/Ay4Jp9rIXCXpD75GMOAGcDTwMHAYcADQF/gPlI8v1o4567Al4FbK9TNzHpTRPjll19+\nAUwB7q+y7RhgPfCpwrq9gc3AQXl5FjCxtN/fgbk1zjkC2AQcWVj3o7xuUGHdL0ndkwAfAdYAXywd\naxJwZ41z3QDcW7rexeSxvnndPcBdNY5xQK7bwMK68aSnbLsU1nVaR+BK4KnS9qvy8XcqHHtuqcx5\nwOLC8iLgpFKZS4DH88+D8u/ptNLvbhPwubw8Ffhbjeu+CfhDYfkCYFGj71m//GrHl8e4mVk9hgIv\nRcTyjhUR8ZykN0lJwBPAXqQ3+KI5pKdanXmq8PNK4O2IeLG07vP55yHA9sDDklQosy3wXreipO8B\np5Oe4G1HSqbK3bbPRETxidYKYL866lv2YkS8UViuVce5+eehwD9Lx5nVlZNK2p705PMWSZMLm/oC\nb5aKF2O8AhCwG+np2zDSU85qJgFzJA2IiBXAqaTE18y2MiduZlYPUbnLrry+XEbUZ0PpGBtK24P3\nh3bskP8dBSwvlXsXQNJo4FrgfGA28BZwEfCFGuctn6cr1paWO60j1WNatJktY1gca9ZxnjNJSXLR\nptJyOcbw/rWuq1WJiHhS0nzgFEkPk7p+b6+1j5n1DiduZlaPZ4GBkj4dEcsAJO0D9MvbAJ4nJUZT\nC/sN76W6vEvqSn2sSplDSV2FN3eskDS4F+pSTT11fBb4SmndIaXl14BPltYd2PFDRLwqaRkwOCKm\nUV1nCeJ84EuksYDVTCYlwp8BZnTcB2a2dTlxM7Oi/pIOKK37b0TMkPQUMFXS+aSnPjcBj0RER/fj\nDcAkSU8A/yBNLNgf+Hcn56z3qRwAEbFG0nXA9XkG6GOkBPIwYFVE3EEa9zVG0khgCTCG1NW6uCvn\n6m5966zjr4ALJF1DSoqGk7ogix4FbpR0EfAb4FjSpIBVhTKXAhMlrQb+BHw0H6t/REyos85XAfMl\n3ZTrtYE0YePeQhfwVOA60tO98sQHM9tKPKvUzIpGkMZgFV8/zdu+BvwP+CvwEPACKTkDICLuIg24\nv5Y05m0QcBv54zFq6PKngEfEOOBy4MekJ1cPkrolOz4m42bgftJM0NnALmw5/q676qpvZ3WMiJeA\nE0hxfZI0+3Rs6RgLSLNtz8llhpPiWyxzCymZOp305OxRUgJY/MiQmjNTI2IRaebu/qRxd4+TZpFu\nLJR5izQLdg1pJqyZNYC/OcHMeo2kh4AVEVF+kmQVSBoBzAR2jojVja5PmaQZpJmw5ze6Lmbtyl2l\nZtYjJG0HfBf4M2lQ/TdJ46aOrrWfbaFLXcdbg6T+pNnBI0ifzWdmDeLEzcx6SpC6Ai8hjbN6Hjg+\nIh5paK2az4exG2Qe6cOXL8rdqmbWIO4qNTMzM2sSnpxgZmZm1iScuJmZmZk1CSduZmZmZk3CiZuZ\nmZlZk3DiZmZmZtYknLiZmZmZNQknbmZmZmZNwombmZmZWZP4P6q/4bzR3aEnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# a sample model using gensim's Word2Vec for getting vocab counts\n", + "corpus = Text8Corpus('text8')\n", + "model = Word2Vec(min_count=5)\n", + "model.build_vocab(corpus)\n", + "freq = {}\n", + "for word in model.wv.index2word:\n", + " freq[word] = model.wv.vocab[word].count\n", + " \n", + "word2vec = compute_accuracies('text8_gs.vec', freq)\n", + "wordrank = compute_accuracies('text8_wr.vec', freq)\n", + "fasttext = compute_accuracies('text8_ft.vec', freq)\n", + "\n", + "fig = plt.figure(figsize=(7,15))\n", + "\n", + "for i, subplot, title in zip([0, 1, 2], ['311', '312', '313'], ['Semantic Analogies', 'Syntactic Analogies', 'Total Analogy']):\n", + " ax = fig.add_subplot(subplot)\n", + " ax.plot(word2vec[i][0], word2vec[i][1], 'r-', label='Word2Vec')\n", + " ax.plot(wordrank[i][0], wordrank[i][1], 'g--', label='WordRank')\n", + " ax.plot(fasttext[i][0], fasttext[i][1], 'b:', label='FastText')\n", + " ax.set_ylabel('Average accuracy')\n", + " ax.set_xlabel('Log mean frequency')\n", + " ax.set_title(title)\n", + " ax.legend(loc='upper right', prop={'size':10})\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This shows the results for text8(17 million tokens). Following points can be observed in this case-\n", + "\n", + "1. For Semantic analogies, all the models perform comparitively poor on rare words and also when the word frequency is high towards the end.\n", + "2. For Syntactic Analogies, FastText performance is fairly well on rare words but then falls steeply at highly frequent words.\n", + "3. WordRank and Word2Vec perform very similar with low accuracy for rare and highly frequent words in Syntactic Analogies.\n", + "4. FastText is again better in total analogies case due to the same reason described previously. Here the total no. of Semantic analogies is 7416 and Syntactic Analogies is 10411.\n", + "\n", + "These graphs also conclude that WordRank is the best suited method for Semantic Analogies, and FastText for Syntactic Analogies for all the frequency ranges and over different corpus sizes, though all the embedding methods could become very competitive as the corpus size increases largerly[2]. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Conclusions\n", + "\n", + "\n", + "The experiments here conclude two main points from comparing Word embeddings. Firstly, there is no single global embedding model we could rely on for different types of NLP applications. For example, in Word Similarity, WordRank performed better than the other two algorithms for WS-353 test data whereas, Word2Vec performed better on SimLex-999. This is probably due to the different type of similarities these datasets address[3]. And in Word Analogy task, WordRank performed better for Semantic Analogies and FastText for Syntactic Analogies. This basically tells us that we need to choose the embedding method carefully according to our final use-case.\n", + "\n", + "Secondly, our query words do matter apart from the generalized model performance. As we observed in Accuracy vs. Frequency graphs that models perform differently depending on the frequency of question analogy words in training corpus. For example, we are likely to get poor results if our query words are all highly frequent.\n", + "\n", + "*__Note__:* WordRank can sometimes produce NaN values during model evaluation, when the embedding vector values get too diverged at some iterations, but it dumps embedding vectors after every few iterations, so you could just load embeddings from a different iteration’s text file." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# References\n", + "1. [WordRank: Learning Word Embeddings via Robust Ranking](https://arxiv.org/pdf/1506.02761v3.pdf)\n", + "2. [Word2Vec and FastText comparison notebook](https://github.com/jayantj/gensim/blob/9f3e275ddad22afd54b7986654f3033f9baf8983/docs/notebooks/Word2Vec_FastText_Comparison.ipynb)\n", + "3. [Similarity test data](https://www.cl.cam.ac.uk/~fh295/simlex.html)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/src/apiref.rst b/docs/src/apiref.rst index 7f212a3748..478376dcd2 100644 --- a/docs/src/apiref.rst +++ b/docs/src/apiref.rst @@ -44,6 +44,7 @@ Modules: models/wrappers/ldamallet models/wrappers/dtmmodel models/wrappers/ldavowpalwabbit.rst + models/wrappers/wordrank similarities/docsim similarities/index topic_coherence/aggregation diff --git a/docs/src/models/wrappers/wordrank.rst b/docs/src/models/wrappers/wordrank.rst new file mode 100644 index 0000000000..25f791ab88 --- /dev/null +++ b/docs/src/models/wrappers/wordrank.rst @@ -0,0 +1,9 @@ +:mod:`models.wrappers.wordrank` -- Word Embeddings from WordRank +================================================================================================ + +.. automodule:: gensim.models.wrappers.wordrank + :synopsis: Wordrank Embeddings + :members: + :inherited-members: + :undoc-members: + :show-inheritance: diff --git a/gensim/models/wrappers/__init__.py b/gensim/models/wrappers/__init__.py index d222c0dd98..a9027170e7 100644 --- a/gensim/models/wrappers/__init__.py +++ b/gensim/models/wrappers/__init__.py @@ -5,3 +5,4 @@ from .ldamallet import LdaMallet from .dtmmodel import DtmModel from .ldavowpalwabbit import LdaVowpalWabbit +from .wordrank import Wordrank diff --git a/gensim/models/wrappers/dtmmodel.py b/gensim/models/wrappers/dtmmodel.py index 72dba1a741..a953ce858a 100644 --- a/gensim/models/wrappers/dtmmodel.py +++ b/gensim/models/wrappers/dtmmodel.py @@ -198,7 +198,7 @@ def train(self, corpus, time_slices, mode, model): cmd = [self.dtm_path] + arguments.split() logger.info("Running command %s" % cmd) - check_output(cmd, stderr=PIPE) + check_output(args=cmd, stderr=PIPE) self.em_steps = np.loadtxt(self.fem_steps()) self.init_ss = np.loadtxt(self.flda_ss()) diff --git a/gensim/models/wrappers/ldamallet.py b/gensim/models/wrappers/ldamallet.py index 60ba004353..9b5cfcaa91 100644 --- a/gensim/models/wrappers/ldamallet.py +++ b/gensim/models/wrappers/ldamallet.py @@ -152,7 +152,7 @@ def convert_input(self, corpus, infer=False, serialize_corpus=True): else: cmd = cmd % (self.fcorpustxt(), self.fcorpusmallet()) logger.info("converting temporary corpus to MALLET format with %s", cmd) - check_output(cmd, shell=True) + check_output(args=cmd, shell=True) def train(self, corpus): self.convert_input(corpus, infer=False) @@ -164,7 +164,7 @@ def train(self, corpus): self.fstate(), self.fdoctopics(), self.ftopickeys(), self.iterations, self.finferencer(), self.topic_threshold) # NOTE "--keep-sequence-bigrams" / "--use-ngrams true" poorer results + runs out of memory logger.info("training MALLET LDA with %s", cmd) - check_output(cmd, shell=True) + check_output(args=cmd, shell=True) self.word_topics = self.load_word_topics() # NOTE - we are still keeping the wordtopics variable to not break backward compatibility. # word_topics has replaced wordtopics throughout the code; wordtopics just stores the values of word_topics when train is called. @@ -180,7 +180,7 @@ def __getitem__(self, bow, iterations=100): cmd = self.mallet_path + " infer-topics --input %s --inferencer %s --output-doc-topics %s --num-iterations %s --doc-topics-threshold %s" cmd = cmd % (self.fcorpusmallet() + '.infer', self.finferencer(), self.fdoctopics() + '.infer', iterations, self.topic_threshold) logger.info("inferring topics with MALLET LDA '%s'", cmd) - check_output(cmd, shell=True) + check_output(args=cmd, shell=True) result = list(self.read_doctopics(self.fdoctopics() + '.infer')) return result if is_corpus else result[0] @@ -234,7 +234,7 @@ def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): if formatted: topic = self.print_topic(i, topn=num_words) else: - topic = self.show_topic(i, topn=num_words) + topic = self.show_topic(i, num_words=num_words) shown.append((i, topic)) if log: logger.info("topic #%i (%.3f): %s", i, self.alpha[i], topic) diff --git a/gensim/models/wrappers/wordrank.py b/gensim/models/wrappers/wordrank.py new file mode 100644 index 0000000000..81bde09013 --- /dev/null +++ b/gensim/models/wrappers/wordrank.py @@ -0,0 +1,199 @@ +# Copyright (C) 2017 Parul Sethi +# Copyright (C) 2017 Radim Rehurek +# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html + +""" +Python wrapper around word representation learning from Wordrank. +The wrapped model can NOT be updated with new documents for online training -- use gensim's +`Word2Vec` for that. + +Example: +>>> model = gensim.models.wrappers.Wordrank('/Users/dummy/wordrank', corpus_file='text8', out_path='wr_model') +>>> print model[word] # prints vector for given words + +.. [1] https://bitbucket.org/shihaoji/wordrank/ +.. [2] https://arxiv.org/pdf/1506.02761v3.pdf +""" + +from __future__ import division + +import logging +import os +import sys +import copy +import multiprocessing + +import numpy as np + +from gensim import utils +from gensim.models.keyedvectors import KeyedVectors +from gensim.models.word2vec import Word2Vec +from gensim.scripts.glove2word2vec import glove2word2vec + +from six import string_types +from smart_open import smart_open +from shutil import copyfile, rmtree + + +logger = logging.getLogger(__name__) + + +class Wordrank(Word2Vec): + """ + Class for word vector training using Wordrank. Communication between Wordrank and Python + takes place by working with data files on disk and calling the Wordrank binary and glove's + helper binaries (for preparing training data) with subprocess module. + """ + + @classmethod + def train(cls, wr_path, corpus_file, out_path, size=100, window=15, symmetric=1, min_count=5, max_vocab_size=0, + sgd_num=100, lrate=0.001, period=10, iter=91, epsilon=0.75, dump_period=10, reg=0, alpha=100, + beta=99, loss='hinge', memory=4.0, cleanup_files=True, sorted_vocab=1, ensemble=0): + """ + `wr_path` is the path to the Wordrank directory. + `corpus_file` is the filename of the text file to be used for training the Wordrank model. + Expects file to contain space-separated tokens in a single line + `out_path` is the path to directory which will be created to save embeddings and training data. + `size` is the dimensionality of the feature vectors. + `window` is the number of context words to the left (and to the right, if symmetric = 1). + `symmetric` if 0, only use left context words, else use left and right both. + `min_count` = ignore all words with total frequency lower than this. + `max_vocab_size` upper bound on vocabulary size, i.e. keep the most frequent words. Default is 0 for no limit. + `sgd_num` number of SGD taken for each data point. + `lrate` is the learning rate (too high diverges, give Nan). + `period` is the period of xi variable updates + `iter` = number of iterations (epochs) over the corpus. + `epsilon` is the power scaling value for weighting function. + `dump_period` is the period after which embeddings should be dumped. + `reg` is the value of regularization parameter. + `alpha` is the alpha parameter of gamma distribution. + `beta` is the beta parameter of gamma distribution. + `loss` = name of the loss (logistic, hinge). + `memory` = soft limit for memory consumption, in GB. + `cleanup_files` if to delete directory and files used by this wrapper, setting to False can be useful for debugging + `sorted_vocab` = if 1 (default), sort the vocabulary by descending frequency before assigning word indexes. + `ensemble` = 0 (default), use ensemble of word and context vectors + """ + + meta_data_path = 'matrix.meta' + vocab_file = 'vocab.txt' + temp_vocab_file = 'tempvocab.txt' + cooccurrence_file = 'cooccurrence' + cooccurrence_shuf_file = 'wiki.toy' + meta_file = 'meta' + + # prepare training data (cooccurrence matrix and vocab) + model_dir = os.path.join(wr_path, out_path) + meta_dir = os.path.join(model_dir, 'meta') + os.makedirs(meta_dir) + logger.info("Dumped data will be stored in '%s'", model_dir) + copyfile(corpus_file, os.path.join(meta_dir, corpus_file.split('/')[-1])) + os.chdir(meta_dir) + + cmd_vocab_count = ['../../glove/vocab_count', '-min-count', str(min_count), '-max-vocab', str(max_vocab_size)] + cmd_cooccurence_count = ['../../glove/cooccur', '-memory', str(memory), '-vocab-file', temp_vocab_file, '-window-size', str(window), '-symmetric', str(symmetric)] + cmd_shuffle_cooccurences = ['../../glove/shuffle', '-memory', str(memory)] + cmd_del_vocab_freq = ['cut', '-d', " ", '-f', '1', temp_vocab_file] + + commands = [cmd_vocab_count, cmd_cooccurence_count, cmd_shuffle_cooccurences] + logger.info("Prepare training data using glove code '%s'", commands) + input_fnames = [corpus_file.split('/')[-1], corpus_file.split('/')[-1], cooccurrence_file] + output_fnames = [temp_vocab_file, cooccurrence_file, cooccurrence_shuf_file] + + for command, input_fname, output_fname in zip(commands, input_fnames, output_fnames): + with smart_open(input_fname, 'rb') as r: + with smart_open(output_fname, 'wb') as w: + utils.check_output(w, args=command, stdin=r) + with smart_open(vocab_file, 'wb') as w: + utils.check_output(w, args=cmd_del_vocab_freq) + + with smart_open(vocab_file, 'rb') as f: + numwords = sum(1 for line in f) + with smart_open(cooccurrence_shuf_file, 'rb') as f: + numlines = sum(1 for line in f) + with smart_open(meta_file, 'wb') as f: + meta_info = "{0} {1}\n{2} {3}\n{4} {5}".format(numwords, numwords, numlines, cooccurrence_shuf_file, numwords, vocab_file) + f.write(meta_info.encode('utf-8')) + + wr_args = { + 'path': 'meta', + 'nthread': multiprocessing.cpu_count(), + 'sgd_num': sgd_num, + 'lrate': lrate, + 'period': period, + 'iter': iter, + 'epsilon': epsilon, + 'dump_prefix': 'model', + 'dump_period': dump_period, + 'dim': size, + 'reg': reg, + 'alpha': alpha, + 'beta': beta, + 'loss': loss + } + + os.chdir('..') + # run wordrank executable with wr_args + cmd = ['mpirun', '-np', '1', '../wordrank'] + for option, value in wr_args.items(): + cmd.append("--%s" % option) + cmd.append(str(value)) + logger.info("Running wordrank binary '%s'", cmd) + output = utils.check_output(args=cmd) + + # use embeddings from max. iteration's dump + max_iter_dump = iter / dump_period * dump_period - 1 + copyfile('model_word_%d.txt' % max_iter_dump, 'wordrank.words') + copyfile('model_context_%d.txt' % max_iter_dump, 'wordrank.contexts') + model = cls.load_wordrank_model('wordrank.words', os.path.join('meta', vocab_file), 'wordrank.contexts', sorted_vocab, ensemble) + os.chdir('../..') + + if cleanup_files: + rmtree(model_dir) + return model + + @classmethod + def load_wordrank_model(cls, model_file, vocab_file=None, context_file=None, sorted_vocab=1, ensemble=1): + glove2word2vec(model_file, model_file+'.w2vformat') + model = cls.load_word2vec_format('%s.w2vformat' % model_file) + if ensemble and context_file: + model.ensemble_embedding(model_file, context_file) + if sorted_vocab and vocab_file: + model.sort_embeddings(vocab_file) + return model + + def sort_embeddings(self, vocab_file): + """Sort embeddings according to word frequency.""" + counts = {} + vocab_size = len(self.wv.vocab) + prev_syn0 = copy.deepcopy(self.wv.syn0) + prev_vocab = copy.deepcopy(self.wv.vocab) + self.wv.index2word = [] + + with utils.smart_open(vocab_file) as fin: + for index, line in enumerate(fin): + word, count = utils.to_unicode(line).strip(), vocab_size - index + counts[word] = int(count) + self.wv.index2word.append(word) + assert len(self.wv.index2word) == vocab_size, 'mismatch between vocab sizes' + + for word_id, word in enumerate(self.wv.index2word): + self.wv.syn0[word_id] = prev_syn0[prev_vocab[word].index] + self.wv.vocab[word].index = word_id + self.wv.vocab[word].count = counts[word] + + def ensemble_embedding(self, word_embedding, context_embedding): + """Replace syn0 with the sum of context and word embeddings.""" + glove2word2vec(context_embedding, context_embedding+'.w2vformat') + w_emb = Word2Vec.load_word2vec_format('%s.w2vformat' % word_embedding) + c_emb = Word2Vec.load_word2vec_format('%s.w2vformat' % context_embedding) + # compare vocab words using keys of dict wv.vocab + assert set(w_emb.wv.vocab) == set(c_emb.wv.vocab), 'Vocabs are not same for both embeddings' + + prev_c_emb = copy.deepcopy(c_emb.wv.syn0) + for word_id, word in enumerate(w_emb.wv.index2word): + c_emb.wv.syn0[word_id] = prev_c_emb[c_emb.wv.vocab[word].index] + new_emb = w_emb.wv.syn0 + c_emb.wv.syn0 + self.wv.syn0 = new_emb + return new_emb + diff --git a/gensim/test/test_data/simlex999.txt b/gensim/test/test_data/simlex999.txt new file mode 100644 index 0000000000..d57b2ef344 --- /dev/null +++ b/gensim/test/test_data/simlex999.txt @@ -0,0 +1,1001 @@ +# The SimLex-999 Test data (https://www.cl.cam.ac.uk/~fh295/simlex.html) +# Word 1 Word 2 Human (mean) +old new 1.58 +smart intelligent 9.2 +hard difficult 8.77 +happy cheerful 9.55 +hard easy 0.95 +fast rapid 8.75 +happy glad 9.17 +short long 1.23 +stupid dumb 9.58 +weird strange 8.93 +wide narrow 1.03 +bad awful 8.42 +easy difficult 0.58 +bad terrible 7.78 +hard simple 1.38 +smart dumb 0.55 +insane crazy 9.57 +happy mad 0.95 +large huge 9.47 +hard tough 8.05 +new fresh 6.83 +sharp dull 0.6 +quick rapid 9.7 +dumb foolish 6.67 +wonderful terrific 8.63 +strange odd 9.02 +happy angry 1.28 +narrow broad 1.18 +simple easy 9.4 +old fresh 0.87 +apparent obvious 8.47 +inexpensive cheap 8.72 +nice generous 5 +weird normal 0.72 +weird odd 9.2 +bad immoral 7.62 +sad funny 0.95 +wonderful great 8.05 +guilty ashamed 6.38 +beautiful wonderful 6.5 +confident sure 8.27 +dumb dense 7.27 +large big 9.55 +nice cruel 0.67 +impatient anxious 6.03 +big broad 6.73 +strong proud 3.17 +unnecessary necessary 0.63 +restless young 1.6 +dumb intelligent 0.75 +bad great 0.35 +difficult simple 0.87 +necessary important 7.37 +bad terrific 0.65 +mad glad 1.45 +honest guilty 1.18 +easy tough 0.52 +easy flexible 4.1 +certain sure 8.42 +essential necessary 8.97 +different normal 1.08 +sly clever 7.25 +crucial important 8.82 +harsh cruel 8.18 +childish foolish 5.5 +scarce rare 9.17 +friendly generous 5.9 +fragile frigid 2.38 +long narrow 3.57 +big heavy 6.18 +rough frigid 2.47 +bizarre strange 9.37 +illegal immoral 4.28 +bad guilty 4.2 +modern ancient 0.73 +new ancient 0.23 +dull funny 0.55 +happy young 2 +easy big 1.12 +great awful 1.17 +tiny huge 0.6 +polite proper 7.63 +modest ashamed 2.65 +exotic rare 8.05 +dumb clever 1.17 +delightful wonderful 8.65 +noticeable obvious 8.48 +afraid anxious 5.07 +formal proper 8.02 +dreary dull 8.25 +delightful cheerful 6.58 +unhappy mad 5.95 +sad terrible 5.4 +sick crazy 3.57 +violent angry 6.98 +laden heavy 5.9 +dirty cheap 1.6 +elastic flexible 7.78 +hard dense 5.9 +recent new 7.05 +bold proud 3.97 +sly strange 1.97 +strange sly 2.07 +dumb rare 0.48 +sly tough 0.58 +terrific mad 0.4 +modest flexible 0.98 +fresh wide 0.4 +huge dumb 0.48 +large flexible 0.48 +dirty narrow 0.3 +wife husband 2.3 +book text 6.35 +groom bride 3.17 +night day 1.88 +south north 2.2 +plane airport 3.65 +uncle aunt 5.5 +horse mare 8.33 +bottom top 0.7 +friend buddy 8.78 +student pupil 9.35 +world globe 6.67 +leg arm 2.88 +plane jet 8.1 +woman man 3.33 +horse colt 7.07 +actress actor 7.12 +teacher instructor 9.25 +movie film 8.87 +bird hawk 7.85 +word dictionary 3.68 +money salary 7.88 +dog cat 1.75 +area region 9.47 +navy army 6.43 +book literature 7.53 +clothes closet 3.27 +sunset sunrise 2.47 +child adult 2.98 +cow cattle 9.52 +book story 5.63 +winter summer 2.38 +taxi cab 9.2 +tree maple 5.53 +bed bedroom 3.4 +roof ceiling 7.58 +disease infection 7.15 +arm shoulder 4.85 +sheep lamb 8.42 +lady gentleman 3.42 +boat anchor 2.25 +priest monk 6.28 +toe finger 4.68 +river stream 7.3 +anger fury 8.73 +date calendar 4.42 +sea ocean 8.27 +second minute 4.62 +hand thumb 3.88 +wood log 7.3 +mud dirt 7.32 +hallway corridor 9.28 +way manner 7.62 +mouse cat 1.12 +cop sheriff 9.05 +death burial 4.93 +music melody 6.98 +beer alcohol 7.5 +mouth lip 7.1 +storm hurricane 6.38 +tax income 2.38 +flower violet 6.95 +paper cardboard 5.38 +floor ceiling 1.73 +beach seashore 8.33 +rod curtain 3.03 +hound fox 2.38 +street alley 5.48 +boat deck 4.28 +car horn 2.57 +friend guest 4.25 +employer employee 3.65 +hand wrist 3.97 +ball cannon 2.58 +alcohol brandy 6.98 +victory triumph 8.98 +telephone booth 3.63 +door doorway 5.4 +motel inn 8.17 +clothes cloth 5.47 +steak meat 7.47 +nail thumb 3.55 +band orchestra 7.08 +book bible 5 +business industry 7.02 +winter season 6.27 +decade century 3.48 +alcohol gin 8.65 +hat coat 2.67 +window door 3.33 +arm wrist 3.57 +house apartment 5.8 +glass crystal 6.27 +wine brandy 5.15 +creator maker 9.62 +dinner breakfast 3.33 +arm muscle 3.72 +bubble suds 8.57 +bread flour 3.33 +death tragedy 5.8 +absence presence 0.4 +gun cannon 5.68 +grass blade 4.57 +ball basket 1.67 +hose garden 1.67 +boy kid 7.5 +church choir 2.95 +clothes drawer 3.02 +tower bell 1.9 +father parent 7.07 +school grade 4.42 +parent adult 5.37 +bar jail 1.9 +car highway 3.4 +dictionary definition 6.25 +door cellar 1.97 +army legion 5.95 +metal aluminum 7.25 +chair bench 6.67 +cloud fog 6 +boy son 6.75 +water ice 6.47 +bed blanket 3.02 +attorney lawyer 9.35 +area zone 8.33 +business company 9.02 +clothes fabric 5.87 +sweater jacket 7.15 +money capital 6.67 +hand foot 4.17 +alcohol cocktail 6.73 +yard inch 3.78 +molecule atom 6.45 +lens camera 4.28 +meal dinner 7.15 +eye tear 3.55 +god devil 1.8 +loop belt 3.1 +rat mouse 7.78 +motor engine 8.65 +car cab 7.42 +cat lion 6.75 +size magnitude 6.33 +reality fantasy 1.03 +door gate 5.25 +cat pet 5.95 +tin aluminum 6.42 +bone jaw 4.17 +cereal wheat 3.75 +house key 1.9 +blood flesh 4.28 +door corridor 3.73 +god spirit 7.3 +capability competence 7.62 +abundance plenty 8.97 +sofa chair 6.67 +wall brick 4.68 +horn drum 2.68 +organ liver 6.15 +strength might 7.07 +phrase word 5.48 +band parade 3.92 +stomach waist 5.9 +cloud storm 5.6 +joy pride 5 +noise rattle 6.17 +rain mist 5.97 +beer beverage 5.42 +man uncle 3.92 +apple juice 2.88 +intelligence logic 6.5 +communication language 7.47 +mink fur 6.83 +mob crowd 7.85 +shore coast 8.83 +wire cord 7.62 +bird turkey 6.58 +bed crib 7.3 +competence ability 7.5 +cloud haze 7.32 +supper meal 7.53 +bar cage 2.8 +water salt 1.3 +sense intuition 7.68 +situation condition 6.58 +crime theft 7.53 +style fashion 8.5 +boundary border 9.08 +arm body 4.05 +boat car 2.37 +sandwich lunch 6.3 +bride princess 2.8 +heroine hero 8.78 +car gauge 1.13 +insect bee 6.07 +crib cradle 8.55 +animal person 3.05 +marijuana herb 6.5 +bed hospital 0.92 +cheek tongue 4.52 +disc computer 3.2 +curve angle 3.33 +grass moss 5 +school law 1.13 +foot head 2.3 +mother guardian 6.5 +orthodontist dentist 8.27 +alcohol whiskey 7.27 +mouth tooth 6.3 +breakfast bacon 4.37 +bathroom bedroom 3.4 +plate bowl 5.23 +meat bacon 5.8 +air helium 3.63 +worker employer 5.37 +body chest 4.45 +son father 3.82 +heart surgery 1.08 +woman secretary 1.98 +man father 4.83 +beach island 5.6 +story topic 5 +game fun 3.42 +weekend week 4 +couple pair 8.33 +woman wife 5.72 +sheep cattle 4.77 +purse bag 8.33 +ceiling cathedral 2.42 +bean coffee 5.15 +wood paper 2.88 +top side 1.9 +crime fraud 5.65 +pain harm 5.38 +lover companion 5.97 +evening dusk 7.78 +father daughter 2.62 +wine liquor 7.85 +cow goat 2.93 +belief opinion 7.7 +reality illusion 1.42 +pact agreement 9.02 +wealth poverty 1.27 +accident emergency 4.93 +battle conquest 7.22 +friend teacher 2.62 +illness infection 6.9 +game trick 2.32 +brother son 3.48 +aunt nephew 3.1 +worker mechanic 4.92 +doctor orthodontist 5.58 +oak maple 6.03 +bee queen 3.27 +car bicycle 3.47 +goal quest 5.83 +august month 5.53 +army squad 5.08 +cloud weather 4.87 +physician doctor 8.88 +canyon valley 6.75 +river valley 1.67 +sun sky 2.27 +target arrow 3.25 +chocolate pie 2.27 +circumstance situation 7.85 +opinion choice 5.43 +rhythm melody 6.12 +gut nerve 4.93 +day dawn 5.47 +cattle beef 7.03 +doctor professor 4.65 +arm vein 3.65 +room bath 3.33 +corporation business 9.02 +fun football 1.97 +hill cliff 4.28 +bone ankle 3.82 +apple candy 2.08 +helper maid 5.58 +leader manager 7.27 +lemon tea 1.6 +bee ant 2.78 +basketball baseball 4.92 +rice bean 2.72 +bed furniture 6.08 +emotion passion 7.72 +anarchy chaos 7.93 +crime violation 7.12 +machine engine 5.58 +beach sea 4.68 +alley bowl 1.53 +jar bottle 7.83 +strength capability 5.28 +seed mustard 3.48 +guitar drum 3.78 +opinion idea 5.7 +north west 3.63 +diet salad 2.98 +mother wife 3.02 +dad mother 3.55 +captain sailor 5 +meter yard 5.6 +beer champagne 4.45 +motor boat 2.57 +card bridge 1.97 +science psychology 4.92 +sinner saint 1.6 +destruction construction 0.98 +crowd bunch 7.42 +beach reef 3.77 +man child 4.13 +bread cheese 1.95 +champion winner 8.73 +celebration ceremony 7.72 +menu order 3.62 +king princess 3.27 +wealth prestige 6.07 +endurance strength 6.58 +danger threat 8.78 +god priest 4.5 +men fraternity 3.13 +buddy companion 8.65 +teacher helper 4.28 +body stomach 3.93 +tongue throat 3.1 +house carpet 1.38 +intelligence skill 5.35 +journey conquest 4.72 +god prey 1.23 +brother soul 0.97 +adversary opponent 9.05 +death catastrophe 4.13 +monster demon 6.95 +day morning 4.87 +man victor 1.9 +friend guy 3.88 +song story 3.97 +ray sunshine 6.83 +guy stud 5.83 +chicken rice 1.43 +box elevator 1.32 +butter potato 1.22 +apartment furniture 1.28 +lake swamp 4.92 +salad vinegar 1.13 +flower bulb 4.48 +cloud mist 6.67 +driver pilot 6.28 +sugar honey 5.13 +body shoulder 2.88 +idea image 3.55 +father brother 4.2 +moon planet 5.87 +ball costume 2.32 +rail fence 5.22 +room bed 2.35 +flower bush 4.25 +bone knee 4.17 +arm knee 2.75 +bottom side 2.63 +vessel vein 5.15 +cat rabbit 2.37 +meat sandwich 2.35 +belief concept 5.08 +intelligence insight 5.9 +attention interest 7.22 +attitude confidence 4.35 +right justice 7.05 +argument agreement 1.45 +depth magnitude 6.12 +medium news 3.65 +winner candidate 2.78 +birthday date 5.08 +fee payment 7.15 +bible hymn 5.15 +exit doorway 5.5 +man sentry 3.25 +aisle hall 6.35 +whiskey gin 6.28 +blood marrow 3.4 +oil mink 1.23 +floor deck 5.55 +roof floor 2.62 +door floor 1.67 +shoulder head 3.42 +wagon carriage 7.7 +car carriage 5.13 +elbow ankle 3.13 +wealth fame 4.02 +sorrow shame 4.77 +administration management 7.25 +communication conversation 8.02 +pollution atmosphere 4.25 +anatomy biology 5.33 +college profession 3.12 +book topic 2.07 +formula equation 7.95 +book information 5 +boy partner 1.9 +sky universe 4.68 +population people 7.68 +college class 4.13 +chief mayor 4.85 +rabbi minister 7.62 +meter inch 5.08 +polyester cotton 5.63 +lawyer banker 1.88 +violin instrument 6.58 +camp cabin 4.2 +pot appliance 2.53 +linen fabric 7.47 +whiskey champagne 5.33 +girl child 5.38 +cottage cabin 7.72 +bird hen 7.03 +racket noise 8.1 +sunset evening 5.98 +drizzle rain 9.17 +adult baby 2.22 +charcoal coal 7.63 +body spine 4.78 +head nail 2.47 +log timber 8.05 +spoon cup 2.02 +body nerve 3.13 +man husband 5.32 +bone neck 2.53 +frustration anger 6.5 +river sea 5.72 +task job 8.87 +club society 5.23 +reflection image 7.27 +prince king 5.92 +snow weather 5.48 +people party 2.2 +boy brother 6.67 +root grass 3.55 +brow eye 3.82 +money pearl 2.1 +money diamond 3.42 +vehicle bus 6.47 +cab bus 5.6 +house barn 4.33 +finger palm 3.33 +car bridge 0.95 +effort difficulty 4.45 +fact insight 4.77 +job management 3.97 +cancer sickness 7.93 +word newspaper 2.47 +composer writer 6.58 +actor singer 4.52 +shelter hut 6.47 +bathroom kitchen 3.1 +cabin hut 6.53 +door kitchen 1.67 +value belief 7.07 +wisdom intelligence 7.47 +ignorance intelligence 1.5 +happiness luck 2.38 +idea scheme 6.75 +mood emotion 8.12 +happiness peace 6.03 +despair misery 7.22 +logic arithmetic 3.97 +denial confession 1.03 +argument criticism 5.08 +aggression hostility 8.48 +hysteria confusion 6.33 +chemistry theory 3.17 +trial verdict 3.33 +comfort safety 5.8 +confidence self 3.12 +vision perception 6.88 +era decade 5.4 +biography fiction 1.38 +discussion argument 5.48 +code symbol 6.03 +danger disease 3 +accident catastrophe 5.9 +journey trip 8.88 +activity movement 7.15 +gossip news 5.22 +father god 3.57 +action course 5.45 +fever illness 7.65 +aviation flight 8.18 +game action 4.85 +molecule air 3.05 +home state 2.58 +word literature 4.77 +adult guardian 6.9 +newspaper information 5.65 +communication television 5.6 +cousin uncle 4.63 +author reader 1.6 +guy partner 3.57 +area corner 2.07 +ballad song 7.53 +wall decoration 2.62 +word page 2.92 +nurse scientist 2.08 +politician president 7.38 +president mayor 5.68 +book essay 4.72 +man warrior 4.72 +article journal 6.18 +breakfast supper 4.4 +crowd parade 3.93 +aisle hallway 6.75 +teacher rabbi 4.37 +hip lip 1.43 +book article 5.43 +room cell 4.58 +box booth 3.8 +daughter kid 4.17 +limb leg 6.9 +liver lung 2.7 +classroom hallway 2 +mountain ledge 3.73 +car elevator 1.03 +bed couch 3.42 +clothes button 2.3 +clothes coat 5.35 +kidney organ 6.17 +apple sauce 1.43 +chicken steak 3.73 +car hose 0.87 +tobacco cigarette 7.5 +student professor 1.95 +baby daughter 5 +pipe cigar 6.03 +milk juice 4.05 +box cigar 1.25 +apartment hotel 3.33 +cup cone 3.17 +horse ox 3.02 +throat nose 2.8 +bone teeth 4.17 +bone elbow 3.78 +bacon bean 1.22 +cup jar 5.13 +proof fact 7.3 +appointment engagement 6.75 +birthday year 1.67 +word clue 2.53 +author creator 8.02 +atom carbon 3.1 +archbishop bishop 7.05 +letter paragraph 4 +page paragraph 3.03 +steeple chapel 7.08 +muscle bone 3.65 +muscle tongue 5 +boy soldier 2.15 +belly abdomen 8.13 +guy girl 3.33 +bed chair 3.5 +clothes jacket 5.15 +gun knife 3.65 +tin metal 5.63 +bottle container 7.93 +hen turkey 6.13 +meat bread 1.67 +arm bone 3.83 +neck spine 5.32 +apple lemon 4.05 +agony grief 7.63 +assignment task 8.7 +night dawn 2.95 +dinner soup 3.72 +calf bull 4.93 +snow storm 4.8 +nail hand 3.42 +dog horse 2.38 +arm neck 1.58 +ball glove 1.75 +flu fever 6.08 +fee salary 3.72 +nerve brain 3.88 +beast animal 7.83 +dinner chicken 2.85 +girl maid 2.93 +child boy 5.75 +alcohol wine 7.42 +nose mouth 3.73 +street car 2.38 +bell door 2.2 +box hat 1.3 +belief impression 5.95 +bias opinion 5.6 +attention awareness 8.73 +anger mood 4.1 +elegance style 5.72 +beauty age 1.58 +book theme 2.58 +friend mother 2.53 +vitamin iron 5.55 +car factory 2.75 +pact condition 2.45 +chapter choice 0.48 +arithmetic rhythm 2.35 +winner presence 1.08 +belief flower 0.4 +winner goal 3.23 +trick size 0.48 +choice vein 0.98 +hymn conquest 0.68 +endurance band 0.4 +jail choice 1.08 +condition boy 0.48 +flower endurance 0.4 +hole agreement 0.3 +doctor temper 0.48 +fraternity door 0.68 +task woman 0.68 +fraternity baseball 0.88 +cent size 0.4 +presence door 0.48 +mouse management 0.48 +task highway 0.48 +liquor century 0.4 +task straw 0.68 +island task 0.3 +night chapter 0.48 +pollution president 0.68 +gun trick 0.48 +bath trick 0.58 +diet apple 1.18 +cent wife 0.58 +chapter tail 0.3 +course stomach 0.58 +hymn straw 0.4 +dentist colonel 0.4 +wife straw 0.4 +hole wife 0.68 +pupil president 0.78 +bath wife 0.48 +people cent 0.48 +formula log 1.77 +woman fur 0.58 +apple sunshine 0.58 +gun dawn 1.18 +meal waist 0.98 +camera president 0.48 +liquor band 0.68 +stomach vein 2.35 +gun fur 0.3 +couch baseball 0.88 +worker camera 0.68 +deck mouse 0.48 +rice boy 0.4 +people gun 0.68 +cliff tail 0.3 +ankle window 0.3 +princess island 0.3 +container mouse 0.3 +wagon container 2.65 +people balloon 0.48 +dollar people 0.4 +bath balloon 0.4 +stomach bedroom 0.4 +bicycle bedroom 0.4 +log bath 0.4 +bowl tail 0.48 +go come 2.42 +take steal 6.18 +listen hear 8.17 +think rationalize 8.25 +occur happen 9.32 +vanish disappear 9.8 +multiply divide 1.75 +plead beg 9.08 +begin originate 8.2 +protect defend 9.13 +kill destroy 5.9 +create make 8.72 +accept reject 0.83 +ignore avoid 6.87 +carry bring 5.8 +leave enter 0.95 +choose elect 7.62 +lose fail 7.33 +encourage discourage 1.58 +achieve accomplish 8.57 +make construct 8.33 +listen obey 4.93 +inform notify 9.25 +receive give 1.47 +borrow beg 2.62 +take obtain 7.1 +advise recommend 8.1 +imitate portray 6.75 +win succeed 7.9 +think decide 5.13 +greet meet 6.17 +agree argue 0.77 +enjoy entertain 5.92 +destroy make 1.6 +save protect 6.58 +give lend 7.22 +understand know 7.47 +take receive 5.08 +accept acknowledge 6.88 +decide choose 8.87 +accept believe 6.75 +keep possess 8.27 +roam wander 8.83 +succeed fail 0.83 +spend save 0.55 +leave go 7.63 +come attend 8.1 +know believe 5.5 +gather meet 7.3 +make earn 7.62 +forget ignore 3.07 +multiply add 2.7 +shrink grow 0.23 +arrive leave 1.33 +succeed try 3.98 +accept deny 1.75 +arrive come 7.05 +agree differ 1.05 +send receive 1.08 +win dominate 5.68 +add divide 2.3 +kill choke 4.92 +acquire get 8.82 +participate join 7.7 +leave remain 2.53 +go enter 4 +take carry 5.23 +forget learn 1.18 +appoint elect 8.17 +engage marry 5.43 +ask pray 3.72 +go send 3.75 +take deliver 4.37 +speak hear 3.02 +analyze evaluate 8.03 +argue rationalize 4.2 +lose keep 1.05 +compare analyze 8.1 +disorganize organize 1.45 +go allow 3.62 +take possess 7.2 +learn listen 3.88 +destroy construct 0.92 +create build 8.48 +steal buy 1.13 +kill hang 4.45 +forget know 0.92 +create imagine 5.13 +do happen 4.23 +win accomplish 7.85 +give deny 1.43 +deserve earn 5.8 +get put 1.98 +locate find 8.73 +appear attend 6.28 +know comprehend 7.63 +pretend imagine 8.47 +satisfy please 7.67 +cherish keep 4.85 +argue differ 5.15 +overcome dominate 6.25 +behave obey 7.3 +cooperate participate 6.43 +achieve try 4.42 +fail discourage 3.33 +begin quit 1.28 +say participate 3.82 +come bring 2.42 +declare announce 9.08 +read comprehend 4.7 +take leave 2.47 +proclaim announce 8.18 +acquire obtain 8.57 +conclude decide 7.75 +please plead 2.98 +argue prove 4.83 +ask plead 6.47 +find disappear 0.77 +inspect examine 8.75 +verify justify 4.08 +assume predict 4.85 +learn evaluate 4.17 +argue justify 5 +make become 4.77 +discover originate 4.83 +achieve succeed 7.5 +give put 3.65 +understand listen 4.68 +expand grow 8.27 +borrow sell 1.73 +keep protect 5.4 +explain prove 4.1 +assume pretend 3.72 +agree please 4.13 +forgive forget 3.92 +clarify explain 8.33 +understand forgive 4.87 +remind forget 0.87 +get remain 1.6 +realize discover 7.47 +require inquire 1.82 +ignore ask 1.07 +think inquire 4.77 +reject avoid 4.78 +argue persuade 6.23 +pursue persuade 3.17 +accept forgive 3.73 +do quit 1.17 +investigate examine 8.1 +discuss explain 6.67 +owe lend 2.32 +explore discover 8.48 +complain argue 4.8 +withdraw reject 6.38 +keep borrow 2.25 +beg ask 6 +arrange organize 8.27 +reduce shrink 8.02 +speak acknowledge 4.67 +give borrow 2.22 +kill defend 2.63 +disappear shrink 5.8 +deliver carry 3.88 +breathe choke 1.37 +acknowledge notify 5.3 +become seem 2.63 +pretend seem 4.68 +accomplish become 4 +contemplate think 8.82 +determine predict 5.8 +please entertain 5 +remain retain 5.75 +pretend portray 7.03 +forget retain 0.63 +want choose 4.78 +lose get 0.77 +try think 2.62 +become appear 4.77 +leave ignore 4.42 +accept recommend 2.75 +leave wander 3.57 +keep give 1.05 +give allow 5.15 +bring send 2.97 +absorb learn 5.48 +acquire find 6.38 +leave appear 0.97 +create destroy 0.63 +begin go 7.42 +get buy 5.08 +collect save 6.67 +replace restore 5.73 +join add 8.1 +join marry 5.35 +accept deliver 1.58 +attach join 7.75 +put hang 3 +go sell 0.97 +communicate pray 3.55 +give steal 0.5 +add build 4.92 +bring restore 2.62 +comprehend satisfy 2.55 +portray decide 1.18 +organize become 1.77 +give know 0.88 +say verify 4.9 +cooperate join 5.18 +arrange require 0.98 +borrow want 1.77 +investigate pursue 7.15 +ignore explore 0.4 +bring complain 0.98 +enter owe 0.68 +portray notify 0.78 +remind sell 0.4 +absorb possess 5 +join acquire 2.85 +send attend 1.67 +gather attend 4.8 +absorb withdraw 2.97 +attend arrive 6.08 diff --git a/gensim/test/test_wordrank_wrapper.py b/gensim/test/test_wordrank_wrapper.py new file mode 100644 index 0000000000..416b2ff5e3 --- /dev/null +++ b/gensim/test/test_wordrank_wrapper.py @@ -0,0 +1,84 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- +# +# Copyright (C) 2010 Radim Rehurek +# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html + +""" +Automated tests for checking transformation algorithms (the models package). +""" + + +import logging +import unittest +import os +import tempfile + +import numpy + +from gensim.models.wrappers import wordrank + +module_path = os.path.dirname(__file__) # needed because sample data files are located in the same folder +datapath = lambda fname: os.path.join(module_path, 'test_data', fname) + +def testfile(): + # temporary model will be stored to this file + return os.path.join(tempfile.gettempdir(), 'gensim_wordrank.test') + +class TestWordrank(unittest.TestCase): + def setUp(self): + wr_home = os.environ.get('WR_HOME', None) + self.wr_path = wr_home if wr_home else None + self.corpus_file = datapath('lee.cor') + self.out_path = 'testmodel' + self.wr_file = datapath('test_glove.txt') + if not self.wr_path: + return + self.test_model = wordrank.Wordrank.train(self.wr_path, self.corpus_file, self.out_path, iter=6, dump_period=5,period=5) + + def testLoadWordrankFormat(self): + """Test model successfully loaded from Wordrank format file""" + model = wordrank.Wordrank.load_wordrank_model(self.wr_file) + vocab_size, dim = 76, 50 + self.assertEqual(model.wv.syn0.shape, (vocab_size, dim)) + self.assertEqual(len(model.wv.vocab), vocab_size) + os.remove(self.wr_file+'.w2vformat') + + def testEnsemble(self): + """Test ensemble of two embeddings""" + if not self.wr_path: + return + new_emb = self.test_model.ensemble_embedding(self.wr_file, self.wr_file) + self.assertEqual(new_emb.shape, (76, 50)) + os.remove(self.wr_file+'.w2vformat') + + def testPersistence(self): + """Test storing/loading the entire model""" + if not self.wr_path: + return + self.test_model.save(testfile()) + loaded = wordrank.Wordrank.load(testfile()) + self.models_equal(self.test_model, loaded) + + def testSimilarity(self): + """Test n_similarity for vocab words""" + if not self.wr_path: + return + self.assertTrue(numpy.allclose(self.test_model.n_similarity(['the', 'and'], ['and', 'the']), 1.0)) + self.assertEqual(self.test_model.similarity('the', 'and'), self.test_model.similarity('the', 'and')) + + def testLookup(self): + if not self.wr_path: + return + self.assertTrue(numpy.allclose(self.test_model['night'], self.test_model[['night']])) + + def models_equal(self, model, model2): + self.assertEqual(len(model.vocab), len(model2.vocab)) + self.assertEqual(set(model.vocab.keys()), set(model2.vocab.keys())) + self.assertTrue(numpy.allclose(model.wv.syn0, model2.wv.syn0)) + +if __name__ == '__main__': + logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG) + unittest.main() + + \ No newline at end of file diff --git a/gensim/utils.py b/gensim/utils.py index b3a9a5a786..8cc7f9574c 100644 --- a/gensim/utils.py +++ b/gensim/utils.py @@ -1146,15 +1146,15 @@ def keep_vocab_item(word, count, min_count, trim_rule=None): else: return default_res -def check_output(*popenargs, **kwargs): +def check_output(stdout=subprocess.PIPE, *popenargs, **kwargs): r"""Run command with arguments and return its output as a byte string. Backported from Python 2.7 as it's implemented as pure python on stdlib. - >>> check_output(['/usr/bin/python', '--version']) + >>> check_output(args=['/usr/bin/python', '--version']) Python 2.6.2 Added extra KeyboardInterrupt handling """ try: - process = subprocess.Popen(stdout=subprocess.PIPE, *popenargs, **kwargs) + process = subprocess.Popen(stdout=stdout, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: diff --git a/setup.py b/setup.py index 55f8819fbe..c268d524f9 100644 --- a/setup.py +++ b/setup.py @@ -115,7 +115,7 @@ def finalize_options(self): python_2_6_backports = '' if sys.version_info[:2] < (2, 7): - python_2_6_backports = ['argparse', 'subprocess32'] + python_2_6_backports = ['argparse'] LONG_DESCRIPTION = u""" ==============================================