From 9f9dd246d4a5bcc1e9353299ed42567f13f2f717 Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Sat, 13 May 2017 10:23:04 +0530 Subject: [PATCH 01/16] mismatch in bin and vec file resolved --- gensim/models/wrappers/fasttext.py | 9 +++++++-- 1 file changed, 7 insertions(+), 2 deletions(-) diff --git a/gensim/models/wrappers/fasttext.py b/gensim/models/wrappers/fasttext.py index 49a6b6a925..4e33b093cd 100644 --- a/gensim/models/wrappers/fasttext.py +++ b/gensim/models/wrappers/fasttext.py @@ -256,7 +256,7 @@ def load_binary_data(self, model_binary_file): self.load_vectors(f) def load_model_params(self, file_handle): - (dim, ws, epoch, minCount, neg, _, loss, model, bucket, minn, maxn, _, t) = self.struct_unpack(file_handle, '@12i1d') + (_,_,dim, ws, epoch, minCount, neg, _, loss, model, bucket, minn, maxn, _, t) = self.struct_unpack(file_handle, '@14i1d') # Parameters stored by [Args::save](https://github.com/facebookresearch/fastText/blob/master/src/args.cc) self.size = dim self.window = ws @@ -275,7 +275,7 @@ def load_dict(self, file_handle): # Vocab stored by [Dictionary::save](https://github.com/facebookresearch/fastText/blob/master/src/dictionary.cc) assert len(self.wv.vocab) == nwords, 'mismatch between vocab sizes' assert len(self.wv.vocab) == vocab_size, 'mismatch between vocab sizes' - ntokens, = self.struct_unpack(file_handle, '@q') + ntokens,pruneidx_size = self.struct_unpack(file_handle, '@2q') for i in range(nwords): word_bytes = b'' char_byte = file_handle.read(1) @@ -289,6 +289,11 @@ def load_dict(self, file_handle): assert self.wv.vocab[word].index == i, 'mismatch between gensim word index and fastText word index' self.wv.vocab[word].count = count + for j in range(pruneidx_size): + _,_ = self.struct_unpack(file_handle,'@2i') + + _ = self.struct_unpack(file_handle,'@?') + def load_vectors(self, file_handle): num_vectors, dim = self.struct_unpack(file_handle, '@2q') # Vectors stored by [Matrix::save](https://github.com/facebookresearch/fastText/blob/master/src/matrix.cc) From d7725caefaee18c5c252eb2fc9238db4c108128e Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Fri, 19 May 2017 19:53:07 +0530 Subject: [PATCH 02/16] support old and new format --- gensim/models/wrappers/fasttext.py | 32 ++++++++++++++++++------------ 1 file changed, 19 insertions(+), 13 deletions(-) diff --git a/gensim/models/wrappers/fasttext.py b/gensim/models/wrappers/fasttext.py index 4e33b093cd..03295ba7f2 100644 --- a/gensim/models/wrappers/fasttext.py +++ b/gensim/models/wrappers/fasttext.py @@ -256,7 +256,13 @@ def load_binary_data(self, model_binary_file): self.load_vectors(f) def load_model_params(self, file_handle): - (_,_,dim, ws, epoch, minCount, neg, _, loss, model, bucket, minn, maxn, _, t) = self.struct_unpack(file_handle, '@14i1d') + magic, v= self.struct_unpack(file_handle, '@2i') + if magic == 793712314: # newer format + dim, ws, epoch, minCount, neg, _, loss, model, bucket, minn, maxn, _, t = self.struct_unpack(file_handle, '@12i1d') + else: # older format + dim = magic + ws = v + epoch, minCount, neg, _, loss, model, bucket, minn, maxn, _, t = self.struct_unpack(file_handle, '@10i1d') # Parameters stored by [Args::save](https://github.com/facebookresearch/fastText/blob/master/src/args.cc) self.size = dim self.window = ws @@ -271,11 +277,13 @@ def load_model_params(self, file_handle): self.sample = t def load_dict(self, file_handle): - (vocab_size, nwords, _) = self.struct_unpack(file_handle, '@3i') + vocab_size, nwords, _ = self.struct_unpack(file_handle, '@3i') # Vocab stored by [Dictionary::save](https://github.com/facebookresearch/fastText/blob/master/src/dictionary.cc) assert len(self.wv.vocab) == nwords, 'mismatch between vocab sizes' - assert len(self.wv.vocab) == vocab_size, 'mismatch between vocab sizes' - ntokens,pruneidx_size = self.struct_unpack(file_handle, '@2q') + if len(self.wv.vocab) != vocab_size: + logger.warnings("If you are loading any model other than pretrained vector wiki.fr, ") + logger.warnings("Please report to gensim or fastText.") + ntokens, pruneidx_size = self.struct_unpack(file_handle, '@2q') for i in range(nwords): word_bytes = b'' char_byte = file_handle.read(1) @@ -284,17 +292,15 @@ def load_dict(self, file_handle): word_bytes += char_byte char_byte = file_handle.read(1) word = word_bytes.decode('utf8') - count, _ = self.struct_unpack(file_handle, '@ib') - _ = self.struct_unpack(file_handle, '@i') - assert self.wv.vocab[word].index == i, 'mismatch between gensim word index and fastText word index' - self.wv.vocab[word].count = count - - for j in range(pruneidx_size): - _,_ = self.struct_unpack(file_handle,'@2i') - - _ = self.struct_unpack(file_handle,'@?') + count, _ = self.struct_unpack(file_handle, '@qb') + if word in self.wv.vocab: + # skip loading info about words in bin file which are not present in vec file + # handling mismatch in vocab_size in vec and bin files (ref: wiki.fr) + assert self.wv.vocab[word].index == i, 'mismatch between gensim word index and fastText word index' + self.wv.vocab[word].count = count def load_vectors(self, file_handle): + _ = self.struct_unpack(file_handle,'@?') num_vectors, dim = self.struct_unpack(file_handle, '@2q') # Vectors stored by [Matrix::save](https://github.com/facebookresearch/fastText/blob/master/src/matrix.cc) assert self.size == dim, 'mismatch between model sizes' From de39ab0df3825ba7b9ea58a13355e74dc126ca2d Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Fri, 19 May 2017 19:57:22 +0530 Subject: [PATCH 03/16] handling whitespace --- gensim/models/wrappers/fasttext.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/gensim/models/wrappers/fasttext.py b/gensim/models/wrappers/fasttext.py index 03295ba7f2..d72d6e4cbb 100644 --- a/gensim/models/wrappers/fasttext.py +++ b/gensim/models/wrappers/fasttext.py @@ -294,13 +294,13 @@ def load_dict(self, file_handle): word = word_bytes.decode('utf8') count, _ = self.struct_unpack(file_handle, '@qb') if word in self.wv.vocab: - # skip loading info about words in bin file which are not present in vec file + # skip loading info about words in bin file which are not present in vec file # handling mismatch in vocab_size in vec and bin files (ref: wiki.fr) assert self.wv.vocab[word].index == i, 'mismatch between gensim word index and fastText word index' self.wv.vocab[word].count = count def load_vectors(self, file_handle): - _ = self.struct_unpack(file_handle,'@?') + _ = self.struct_unpack(file_handle, '@?') num_vectors, dim = self.struct_unpack(file_handle, '@2q') # Vectors stored by [Matrix::save](https://github.com/facebookresearch/fastText/blob/master/src/matrix.cc) assert self.size == dim, 'mismatch between model sizes' From f0c3e25c40d06f259d1ef5f7f0c682f5d0a304da Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Fri, 19 May 2017 20:18:51 +0530 Subject: [PATCH 04/16] support old and new format --- gensim/models/wrappers/fasttext.py | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/gensim/models/wrappers/fasttext.py b/gensim/models/wrappers/fasttext.py index d72d6e4cbb..d74d966245 100644 --- a/gensim/models/wrappers/fasttext.py +++ b/gensim/models/wrappers/fasttext.py @@ -140,6 +140,7 @@ class FastText(Word2Vec): def initialize_word_vectors(self): self.wv = FastTextKeyedVectors() + self.new_format = False @classmethod def train(cls, ft_path, corpus_file, output_file=None, model='cbow', size=100, alpha=0.025, window=5, min_count=5, @@ -283,7 +284,9 @@ def load_dict(self, file_handle): if len(self.wv.vocab) != vocab_size: logger.warnings("If you are loading any model other than pretrained vector wiki.fr, ") logger.warnings("Please report to gensim or fastText.") - ntokens, pruneidx_size = self.struct_unpack(file_handle, '@2q') + ntokens= self.struct_unpack(file_handle, '@1q') + if self.new_format: + pruneidx_size = self.struct_unpack(file_handle, '@q') for i in range(nwords): word_bytes = b'' char_byte = file_handle.read(1) @@ -300,7 +303,8 @@ def load_dict(self, file_handle): self.wv.vocab[word].count = count def load_vectors(self, file_handle): - _ = self.struct_unpack(file_handle, '@?') + if self.new_format: + _ = self.struct_unpack(file_handle,'@?') num_vectors, dim = self.struct_unpack(file_handle, '@2q') # Vectors stored by [Matrix::save](https://github.com/facebookresearch/fastText/blob/master/src/matrix.cc) assert self.size == dim, 'mismatch between model sizes' From 5f5ace68a05f34439e9a068581f410bcab8c1fb5 Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Fri, 19 May 2017 20:31:52 +0530 Subject: [PATCH 05/16] branch conflict with resolved --- gensim/models/wrappers/fasttext.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/gensim/models/wrappers/fasttext.py b/gensim/models/wrappers/fasttext.py index d74d966245..e1ab21fa76 100644 --- a/gensim/models/wrappers/fasttext.py +++ b/gensim/models/wrappers/fasttext.py @@ -277,7 +277,7 @@ def load_model_params(self, file_handle): self.wv.max_n = maxn self.sample = t - def load_dict(self, file_handle): + def load_dict(self, file_handle, encoding='utf8'): vocab_size, nwords, _ = self.struct_unpack(file_handle, '@3i') # Vocab stored by [Dictionary::save](https://github.com/facebookresearch/fastText/blob/master/src/dictionary.cc) assert len(self.wv.vocab) == nwords, 'mismatch between vocab sizes' @@ -294,7 +294,7 @@ def load_dict(self, file_handle): while char_byte != b'\x00': word_bytes += char_byte char_byte = file_handle.read(1) - word = word_bytes.decode('utf8') + word = word_bytes.decode(encoding) count, _ = self.struct_unpack(file_handle, '@qb') if word in self.wv.vocab: # skip loading info about words in bin file which are not present in vec file From 1509512f1185a95486aa86dcfd58c0a639166728 Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Sat, 20 May 2017 07:32:57 +0530 Subject: [PATCH 06/16] support old and new fastText format --- gensim/models/wrappers/fasttext.py | 1 + 1 file changed, 1 insertion(+) diff --git a/gensim/models/wrappers/fasttext.py b/gensim/models/wrappers/fasttext.py index e1ab21fa76..4c42af95b2 100644 --- a/gensim/models/wrappers/fasttext.py +++ b/gensim/models/wrappers/fasttext.py @@ -259,6 +259,7 @@ def load_binary_data(self, model_binary_file): def load_model_params(self, file_handle): magic, v= self.struct_unpack(file_handle, '@2i') if magic == 793712314: # newer format + self.new_format = True dim, ws, epoch, minCount, neg, _, loss, model, bucket, minn, maxn, _, t = self.struct_unpack(file_handle, '@12i1d') else: # older format dim = magic From d7e5403c55fee90ad841bf08a02d38a39e13fe21 Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Sat, 20 May 2017 07:34:26 +0530 Subject: [PATCH 07/16] model trained with new fastText format --- gensim/test/test_data/lee_fasttext_new.bin | Bin 0 -> 209607 bytes gensim/test/test_data/lee_fasttext_new.vec | 1764 ++++++++++++++++++++ 2 files changed, 1764 insertions(+) create mode 100644 gensim/test/test_data/lee_fasttext_new.bin create mode 100644 gensim/test/test_data/lee_fasttext_new.vec diff --git a/gensim/test/test_data/lee_fasttext_new.bin b/gensim/test/test_data/lee_fasttext_new.bin new file mode 100644 index 0000000000000000000000000000000000000000..e9a8f0706142a743e28453cb9330be533b99ed06 GIT binary patch literal 209607 zcmZsE1$a|Q*KmNPxU<;eE-e%mZSPDe#ad{Q;+`gH8%UE9p%k}b#oeX2yR~;FusAI2 z;;_KtzPS5$=BAmMy#LSh_Su{>XME=P+&8^gyE=JvI$dt~%lSW-fGnS{fh^$)9a>qf0`Y-Mr*ICOuCs~$QiG9>ZW?37?ZA-_qX0|(zWpdNoI>h7a|~MybgJx zNV~4C_qRiDHrCb!ctNF(1M6yeA?T^P_jjz_mY}QVg<_I*75Q(I$*RlYg{(HG?zLyK zIvq^oh4*(ntkx4RpttHCd4HRox`*E1NhX-YaW53FH|h?00e!5~WY?v8!5EiQx77>4 zjwb6?dLcF^-7+uaWF0T`LP_y90ff37PP^V>hSALD1SZ{F@9*|{i^<_MTN%M@FB1AP z+jTR%U{bu<5U-o)1rtrSM2kr`&I>z}Y&xeGa3$&zy}zLum?{VLF*cZx&0DIsIBdEE zFJyK)bQUiV4TSN!{$7w(yr^%@6?k%$of)l}^Rt&Tzn5<4+7fxZ*aEGT7G9uYSCg)} z7l;AA6Xpf&!mu1L zF%Gu3n;cLVZVE@WGy#R)qVxAw3Ac*hPBWa|THcaQz%pZ?b&g2T!#Fr(btS|=XB>uA zbO@*|&`MQ}wj`^rrnhCdTsBu+yo|6pOae?WnSdR~353~du(*s2Rm0mxYkdNU9S*kA z57FzYdkd3n_5milLm;A)jaHByoWQ{(x0gD>Y%x3aaOJ9bF^+hRJ8;+lYy@r!haE5= zldh_l+`yKYLvRaia4b38351J)x-wy-tKzL1?y%?+%m#sQ+SqaA<#8sb0J_@jz_$y zFXnQknnNH>u>73D!(9dJ5lsT_%C?77!^Xq8;b5E)HXH}i7X*;rX|`EmWEH#v_1s0^ zgK%Xy(qe*pV3%Ms+hlM|Q*Cz=dQ zfR^_T&FqBL;Sli9WC1x6Z39dW##cE(oOuwODh|d1D4;l-{M%;KmGkyuvDpT&eddUE z4!ENNw3uR@0*V6`kSIV9us(G=+3Zr)4tlE-ZaZ(8-EUo4Z^!NJjBjx;5o8Mo1~75S zAtQ)K7$JufY_RubyzS^g;S+#?ZLomDtwyFF@^V;nxJVpKf=kPR?s|s9bNlHoErL^(ftoFKvE1Wqp~q@!3{U_pMF1mpn5!W(dy z2kUAg9fr)Bm5H1^V9S(-Z+RX;NfW6{WU=n@ko3TU2Yil}-09_98 zJHi%k6%ecs+*@8xJIN9;s2X;ouB3O!z@i5TDAJ_2YCP6o;2b7U_<)u0Dq!O21r!5{ zG*Adc67W_*3uXeWuhR?%fFqOHlG>Rd;iv|I;&mGJ0A(Bjb z?XK_&33?~kX#&(lyA=#8j)LPEFLjy(tVI-BO>h!9DadiKeG&jw+`AxQ@$4)!)q|r9 z7N)##5YD7i0u6e&b-b{>et<_pa7+Tz;00u}I^(6b^>JW^XtoX~iH--o*D9*SviUG& zhf~z8Cw|A9EQtd0h-rzm1vB)Dc_-J2+1DJ3(Udf)*uYE+UfkXUy$Uc94jV6v2V8M{M{c!6Ltm6s-&;g*41;Rv&}KTJt#I|}q4sA3f)NhUDcc!dP8y`3hj zp4}ggj5JxmAz%kXn4>K67-K-Ri=qS<9BoeM&>RFDG{~dV8w{Z4Nuy&d%Pdbw??|?| z5=3it1I2F#SiVKQE9kV@1fbV0125AX>^6r(6vu)p3!IUcJJ^6Z)X|m)3lOqv)5~5C+Eg`||a4-#lH*7aKVJijPTt5g7DlZ1{`~Os7c7>qOIEQxG zd8I^lKRIN!GWA!}JOvU&gVd=WH@P}D+YWA0%kfF zOIG>~8W>gFX>93#Q948XNWL&u)Stuv^4wy6TzL%E4wX;1?V+*gT99!5Bj$xyd+Kgw1zL0nI zDu%}jfDy9k^U_eTp+HlTFd%kCaR(Qem0*~H(#op~yYY5vb5xdy=lA4P#fe%M2XFORRH8X5^Yeth37_JGl7mfl^E`vq@ z4Nh2MP9Ukx{sP+xT)Uja!p0~-aNbDuW8rRb%C0auvmOjJj?pX#0UE(LlG|dIinIp? z#t#KGFjfn@ZoD;%DNf!1Jv&Xj(BZTt3Md|KrhpRQ&KL9^6N?S59ETj>*aRuz5E$m! z0OrXll0dhy3oy}c12>;UuNezWspB>5CMNj=90pb&FVs|Sqks)?DhGgJ!U@9ur++45 zO&|t10oYlCz{4qF>^4{lUY^NTY6}cVH)%Kt8rS0FcHlWSL0h+h_#LYU&xkbEis1g^ z^_a&8^aplcISwu)*Z~}b5CphM<>i**4pKF}1$17cv`64C^r_~wfdK$_k+*DQH=jdb zbW8JZ3$mOS#n^mCWMMv8X%el$lmkn|Usu3;Jd7@r0PLCzmzObxh-uOs5y}ocQ*Ss1 zI83rln=?m&Nd^aqgAkYjkBCDc;`NqT0fDXyx{*W;;!l9#)g%CncLVsZrSZhrk}Psx zp+*z9PQZo9+XLkqoXZ>p?Iu}3z@xPt6&SrSL34D&La?jI>oIW#r%oUSnc)oju7pS8 zNqs}uK$>=_7WLvS!l`EV9EZCze+P#^t_T2DklkTkXo2+v9ZbO5jpd-`UaT#OIpdag zU9WM4{N6**%mSx?Ll)qw0460`h(=dY9D@FAqLaYBm9Uk%AUP zAq#6lut4A(;P~@FG=~M2m!}PgbUnyfQ3X^$;8}bGn#Y7m0FD7}BTbyiP;PK?8Y6V8 z>B1ZnYwuEcyV3#cOr~7A%3F4vRAF@cQfWc~2(O;+SyZ2)NG{IQ$%D zv(xww$MmJhZ*`2pgDm#_?TybQ-d_H zz!Gp+bJ|L+fp*~CPfio5hilIvO&=0qMTocZGRDdUq*>d%jD>(i8F)+*nV90m(H;pZ z5dA^W38)8*n<;{vKHSIs&C#F=#DEeaExr}P6O3~2X~8O*sT?iCqg70E*3gJ?#T@YG|6QE`|G1Z+D*dTP7 z$y7PcnCX|}2-XktDRV??aIHbZupjanWFBFMF0c1GLCX$Ua1Lt*o>U%TW|@R zv1AUhupP50I6{kuOM?b>APViwROY0hu7Q%p!Dw%6onye2886CNHj2Lhf#FGmh6oPZ zR#6q~uQ<>Uq>+H<$|(pKr{#fQ@Xp9k%MgUks6d<=vu zM>$+fY_SLcN5$9@AVES}FHL+%vt?>JyP3R(MGx8(hmw5O5)J{#dtL}epvxjn5A=AD z0K7OFe00nz_Bypwn71eu3H8Y2^=np_q% znX02`R&RlboK&ZtC}MF+T^=vfi!gyM5-(uz6+!BXfIXUwLm&pam?x0eXGt{dta3y& zaHvE9#()oymudMKAlN|WaUA24Z~!^XGzq2za|AeZnT;*rI9qK2feS+J9b)GW6PQq( zn&namsGU{(4uiXBvw}Xr^b$_r3^ZZAOTch;U`wR#A&;pVoLXMNlRW{JI9uLTAyJD?nf=%D~I;|S6? zB3!^MIkDd0bis+0Fpx~eF070Kb&}n4dF%%8!`VeM(OUS2x7waL-oYZ5*GIecoPq@& zm=eno>_GSn&@>n%kCQphI0fi;Fff)_z)_(V(_lDOGAh=hsT!Pw1tM8y1V^xRAL%5; zyI2+gFAWEGbzG*Y%aJU}N2&rww`LFWayyJu8Wk)Ttf^=-Sw4$NzUK)1BZGip@}?Z7 z!CG3dc2PY!4FZPPho;u%_Fm&SmOaa%SeItdaoCft=`RS{z)nNHC?{b067y7Y1V{;{ zCYxhe05MtM!!-MolX)DR4mg}daYw6sgn0t+!p71$<7AoF@N7Yy$~6YB!h@=-L~ zic@GQJ<`z4R=90WbDT$g=49X|1Gy$m#lVsucyR&*rloO!2@F9GQ7rjJfm!idEVrq) z0GXs@jtgEM1>@Bck~l`sG9@_F3j8Ei0ctS>sXa)Qk{V;)V+jOHRCD?B#+Vsulvh59 zIaqlyI0o27gX_#uu}tIR5M*F8PR?N_d6<&L5p{nTzav??C@+bGPyn1EeXKx5LpBL7 zXGum(jTZ<#i~4a8?t*-NJ)tCdDj@JcQReg@dVx<%Lvz?bbLYkFgi^u7@o zmpWleFYpsSB%|2@**(%aFh#%td{62O;)>vo^ErhbAyvmNuP=-sj(J{q!{Dieyb=!D zO>xZhG#GP2ZBaP}q}u=iLS%(Gn|RwSeMD}{2?_}02uQtw zzsk;}5U;|rj9KhMT1Gfs5NqHR%>T~;hd$OM^Dsz`m(P;T&cp_%u2)z5W|=9{GJyFg zFIqiFBjMFNQB-LNk!&B}zDcOM{(*88=DSNsl$Je-G4WhpmL3f`nj8T4$)IEbLS8By zFkT9dFqdI~fPrgU1O(X{4kkZ2IfNawBqffBgxv(T#9_Ev%#eXi;Hc)1?f{l3oC=Nt z`^O0iyFh>g8dOPM-Uh5&X&4cD!$23@SzaFJVrlFG?x+b*UJL_ZrY?s)iSIUhfY+_S zOF(rIWYM18=7sSrUcw=;IyILBN5BTbR0ToBaA`!bCXmRSGzM;kN3-K7v(sOcdprOV z!kg`47Bn6nE#OQ|o;TRh1$zZ*2uFZ3z-P_O8jt41nYr_|MFnPJYMPKVYbKMm4HaY% zJ+v}GEm1LhOgaQ09HeDsK5@7vyyNx|ERheH0X!`FM7UR+A_iQ<8~~wgvoH;VW8e^K z+A2qAinLiTD8MXtd4xEp35^bKCkS9xOi7XY43(w>%#y{g1v!|kOmpRpu`3JmkHdN+ z7>^)uIYQHALEqyDCK9Ac!G!<=R%)@ie2Fx+CF(Y_4Q3pRw*}5kF!Ti6oTbxBZMD@B ze>u4)IZW;hR*zYZoT7eX@tXxuKr#q~*$Q?WXg{3V0X$Vea6mNAuP6o)0$H~l4z;!UBnxQhhH+6)0vo zaEL31(w0GD3}f${Cex@9h|rep1<)Kk1=5YTz^X`~mAU)`F{}W42F9DVYY9FaWS#|| z9S?=jhYfO%IfX@2=r{<5E)3SE3gmo1CN!sDK4Bkr23Ho;cwWvzB$}wqJyNiW+IT*{5EI8y-1gz6#*RBvRkAVyzHUW-c0TZb;2#9(F zHz#m7T@dW$Amc%BXF04n6FAfr{OL?1r1~s?Ut7>KFO=E9{9n8R zo3DUEfs09t!)yepJDyi6HJKR>5>0sC6bRVBm=Ny{oF5>$Iaskfyno>kB(3n@%(Hep+ zz`r;N-xz;^tEXvOoFvJUTEXFtCh$yg$e;(0D_G|o0m=R2pz=aB?tL0iOXAZa$j@o%o!F zPE59Na^_c&CfpwE%6MtbwZsK!hVAtRGjK*xKiUk^Sb(vxeh@|A&1;!UQv0!>rVf!- zz?0o2O^^9kM0Kzw;K`(b!EGxIjy*mFOPqJ+fb<16Iu=moNQm)C0Lxy6Abf&A0kJv2 z`-YF#f-tjLK6{`Q83xEF8rbgtFf3RH$Vr!mr|FUM;NeohPDq%{j2Nj7*begi!EBdC z4{k*5K@1-yDDZHVHA&8K?9#}i(9R^J1Lg2ac27c|fWaCw4A34PauUXZG6gWlX*mG? zq8jL>hIj#nI>BoOY8kh>c*Pdr)zA-O6X7VY!2=c-$A!bZIlvy#NqspInFETKdUEBY zy5LQO#|4^}#EDokr>Ih|f%qK*#t_JIP8p$R;am=aLJhffQe8-&(2{F7gG>0Sf;QR%Zn zN=^dL?|sLtNlumy1MG}b!S!cuAE_O%woLF%20@XTPtFlZ?AafOGF|QRtl*(3*bjoF zqswT7Jr;;~=Hv6(6IdCkO;}w}VSJhdFT4}Xe1m9YfC)T%d>CE7iuqoSldika%`-{q&+R?2rZ*blrzDi#gCJr8FzJlc3q~7Mvi> zq|#{LE5}Z}&+&ouP%T!^>%*o2f0J2)Cm11(8oVGCMTc6_qtv68Lo1(!P%zo$dk8(a zAcukX2;w|ZKCPMW1$`DO30#2E#fZ|o>@Lv)dlKq9D?_{uG8B0ipeosYZbVD=U|*D5 zP4HF*(g}PT@hA;U$nbVN53{9;nx|A+eaJX~@TxqUXqK?! z5`-NfH+glBi(bGEeUbo}J?T;6r2(<5P@nD$kT~i}fCT|_UTRspo}w-7jh-}a?a`Oi zEb~)?zQG3uj!la#nYpews*4tYVa_d%0vYB>8x|FoEU6Tm%Pm_JkNrp+S(HyX7%toz#cV|mLuS}GCi8PLOITn0I!Gz z=+UDEocR(!AYh1)x0) zPdke8(s%+l(s^btA$*uA97X04lez^zuP4aMyJj)~xUDq9P%AiTczGxG0-8f`6p~p+ z1V@Cj+%7oFdim&OGCKLv)D=}cj4D~K08iTFne{LyKz?PC)D38c($RrLI@n_H-tu9z z^ifSiJ)wH3JP}qOhAE#;aJGZ^m)0gU^Wy@%QHX~7=$KBuEP5?07lqR@n@K=gvb}uW z;4QZ_8;I!F);{m0sq^sC3!ENuzBJ*+`sk%D!j9DZrHlkBvB(2nn6iXtms7i}v1Ekl1Z7#0061_BhUS zB{>z#6ZTmLcr7I@uh&H;TJdBV^7;^c0q41i=};UO>Tu`<#M~3??DOIz=564RLE}6e zWNd^PlY#(p+MPp8cFlg^WbAy}1&z_>ijkJX^D!1q46kXEr2d&_80t#{)_k54oRAq} z6&=_h1Ch69)kGo(TL3%Z0DGe#wbUM7n?cqZF9t6%=wKXVE-7%JNVC;qmC_YpYKVMH zGvjj77BvnO?J?;IDl=~%RuU3ArIm5oAnA;S{y7QU74QIP*;oSSdC(+a*g~mC_(F{* zpOO=>C=c*E4zp}w{+xkh9RpqR6>uamKQu1|?+4RcIIKOnftkae0G)KEK*NLFLkVFt$%mhXS3!rA%WXp-IYPA9 z+MCVF`^fZINVABA_lh!yiiSF1gYp`Xqfl2sa4K2GfzL^0S>IBp;FSQ!D6b!(hbRDx z$Z(7i>=zbO5*W{m2(ZLCjRWF|@)7dz7E#X5kk24kqOA|Y!SW%sNEC0BEf`DS;t2L) z6l?)dQaQ@OGAK9%%9z<_H9CP)Q<_|-c=*_n4*^ruWohBLF!C{CuNXxS?d`T$P&(vB zE3$99@gZmtJLa>Ictx}gviw02;zY8vm$m{@gJehxc1ve6k_99nJjt8s%04T>q52ZP zX{}ENRw~Lo+({ZzrXeIKz)uS538W$jRJ7hMUl`8|V^JJsl6kK-Z)x=PeYFhDJeP`{ zkUb!pf}CEaQ1YpOA|)*;@C;^JN-Lp#3r)HdkXRxrLqfaHiH5T$mBJf$E%%=HCBAqi zHK;v9k(LYcdLVHR;>yw#ngukdCwkQz*|S^$d#yXELfgz>FYh|WNA+PJMUuMYpURMi z#W=_yW;F07+JJu`-YRXH_Js<0t-$gGCqj&ja=5hAd}%=&fYHp`^d>liJ-~5bco^Va z1BXFZko3+@ERT+t8O^X??5hnD%kVxvmzD!oh&^2t^&sFjK$@E8%=$11h+{KLhWF&l z3o`S4rBNrvOYLO_+@xZV^6-TUxxtRwb7{{Vur7i@yZ@)BQ@>`vS{v6P80_k zlc)lM+$tc}pEMuu(^RQN?c)Hl=6B&^iSj?n60mtQ_&#|1-I>#geawVoKqUf)p(HyX z^S}h2jO^StWACF(0?zz~V{L)y1TjamCc$_m&nr<5dS7Tum9*fKzi7k^f`rp+LCuN+ zW~!G_fRIZ8_mESATi75CPUHx%4wZ09(NeNYjO42L^u zpN-|9(GG?ohr-~#T0vlO1f+Vyx`K;@W0>R^H$iSOnDAbQhTkLbCy%G=VI(d1V=cMVE_pNW+72t=t;7dx@Kb)#SW(G z`b@SXxLrZCNrTt)6W|)WO_sR{$`-H|j`Fy8l54NDISq@#I;62_ z-^mHk-lTIH&k2)PQ}{Qec~)!t!1EbP74dbVr0v>*|Bydn!II0~y6ci9}Ma{*)i|aKMh479J zSeJm|RRf$&`D(S#(U7hLd>39?W$k0!+UM>iWOR#Y zsZTi3a{I6^TCyY`R9I$C8b`FYB{Kghhr__WmB5ysWK3QR-;$BmC>j``G!)N6EAZ4N ziuOFJkwIEHEveV%s6e1p-cyKeN{uq_0(?_cmf5YtyNC`T+e~U4zDL6{{^d0Qvr*zH zpynAMsK_Uz=U=AdDE4`DcK!uXdvNHoPyKNc!LJ1lK2-&8b)}KBK$OosS?mYSuhb4C zR!D*yx7b;{?L&_~D-#8B6b2&Z$sXJWXlb;3 z{P3Pj)_uTrBOeo{BuLfS$7y)Y2=-)OfKiY_4pC2DoM|OW7$((x6kF{pDY6n3Dcu5) z#OyO8K1=5LKyN~A(Tfc}MrT_0S}9 z!|^7W`NfP|j_^2FWf*K*UTTU3(^%SMI3(=LUUCCq?c2eN$*aVIc_XbM<2ycwTvJJW zZxTFxm2WrunhT^L@)kjFg>+#K0_&1i#cNH8a+cZ#S$@8RF*>JS$)xkCsE61m5kt6Wr-WS(>Tzz zC9n;MN}1Kw`(2PW1MN#dwQEa50dB{_QKA%F(FuvL00IM_CuN*TAcO@bH3aJp&RRY? zh%(BS0Mjw0PNJpb=kc&fEwMyV*{)<}zErHa`=p82Yxw_>*bbNWE>=D%V1Kf&l1Mc( zubfThK!ZSg@L~QC>+!Mmo3R&}e43ubM5)a%$m{duKgy~Ce0s$N-d$cz^C3d~TdL^w z;{DIm;a19$g)u~kTlfkAjcbU;BlQLrXcGwN+gHT#L>fWkdGaVNGcaOs3CVld{C~s+ zJP~3a*x-}OjBHDDiUkHG%8d}G6A*k-Ryq)#WEN2hJ`A6Q@P3m?8X&|9AgPM??ooNA zbH!9rQLJSIOSRdXJD(na>uX^~-k>KvR+n-{ez)rZ&?*QNe81s@*Uo8(+=L-`M%Bh62j##f#s zkcZVu;A^2}DQ&e1lSOV4G_5jPNe`pWd1J`Ssb5j6{JH42#e0;3BZew}EI&rGk%?qz zu>tg*E)YMdk&TobQJlu)IYsVA6vONBO!V%zI%M)H1;_LaLs@^;!nbxlAAvq_$ z+28%hOZ8>#1+;$81}J9hv5ZFPBi&nawx+c@C%6}$c!7uc=R?su?Nrx%7M}BZAWg3| zRQ<614(d?jAM~c>PI~vZ_o&dGIyBGRRl)oEoJ3>#4#z96MbNO96b<=0nUq{QgElWx zhR&&aneNy)5pP)k66OD^A$>6PiW**|xNrq(N<;4ZB;k(n(vE3xUT zP~dKhdiiJot#SJTdS1s5UHr5jMWy_p&E^MUdOfFm?)_zW>%6)2+Z zZt6}7ZG4UTpYo&4vfZas%eZjOdzESFx>GWW+OYbcX(ax0YXCi0A}g(){SVT%-z-el z%t6(nccDHnmZ=p}6Vm^Tx`STtx=0q4-b0Kd%)#|eD7bpDVkExvdD`{*J#ysHRI)N# zVf-UVC6<%fIrImDfeml&#yM)EXm; z)4?S|(1*HLl~GFy(3CgT@UZ_9)QP{{Lk9;9Ch;HklV&HYqldTOkm7Sv$%_x`mGIx6 zpj+e3G-!KA91@pI|1DUJ-sxTyXB@w!yxP}_{uOy!&9%EaE?%`cotScm4v26Qa-twP zR}PVjMT6+~3qk+QTwY)w>W)njyaVIgYu-;N`W zhtrWyZj*xd_NLc4bB!FVK8E5lgVSTK1)|-xw-9&y6%yEL2Hw5oL^=&El~FNlMewkg znt0RmKB#v4OK8cLF64_T7;X9zubSQ*C9j5-p+zPS2 zMyKv=MKm%+`TNK>^nO7Nnq&B3)uDfnI@}0yU-`0+yna!{t($fbFaI}{lw9SaOS^PL zscIGUu=EHe{Y4x6ZHS59UcZ=p8|Y7C*F923R31&Njz`Ljz3oY%L-$E``zn%id~N)- zdnxy&F{Rwkwr`|8lxRF;%rSBxZM&+Q)Cu4H+MRstlAFf$yrS+*tl^&jWft)pmCarF zRusNaA`JDUPI5ZrB)V|ADlHp74m~!M$++`}k-EM=K-Xe=(0+LjqoK{Vle&8vqK46l zsC~C3%DI3AsQdl|Qg&tm`lQA0_+7_vdSvWq2c3dd-~^)oG+t z2fKfe;Wg{gC;2MVl{1!+J2h^SN^?u0b`5IaHD@gN=guIs{9T8&mX-;(-U!svwGN8>Ez=F^R*+GAsIak6{rN~L_Y>@=~Tjt=ggpEkU> z8l{chO#kUUjQX!CN0*JMgRa~2qf_r!s3R^l#lL4{q1o!*CyO$cqAphvo^vV^jnXZ~ z?|Y`u<^e-!p7ba@y4?j*y44-^Q89ngPr0Y&`kWL0TX;9_;`pd^?GT_8^V>`!Uo6AN zviG2K^DkC@{k14sSFRIY(S^{`Hxd1ua|UgDqy#pM|ArENn@a7AHlxJj351xok;W&( zly0*t(I z2UJQ|N=$pJ4vV^t3iRHMjN^LIw8lB*I(e;;B;e(qgsoM(lnw?lGF9FX?{&b_K57W-A$LSxPM<{qV(vQKZAf7HHX% zykvQv74&oG)->(%L7L^6-fG z)n_+*qr|L#pzC+GkgwO~U~@nQQnz*_vD0hdkQW{BrG*J}?Ca(D#OsQ5`?0ZV(~IH6 zHZVJKOga{v?U(&Zr^GDyXG9M7w9r$EJ?H@~P^BtvesdhTSG*G~vbZ%i_wGpamN!cI z4UdVv&1Z74A41s<<)hp3CZj3iwvyzy1mrir4%zcM7N06`4|hr2t_*zDlU})#s=R;j zn3Nka1&`WO3SV3BnVt(6MCaoYbWxt$sAth+HF8*P_vCehpaYk%uHU7{l z8vbq!F0y75`8}Z?iAdf;!t)r_#Mq+vag*cZ>a%=7YipFCTTXW&#|- z?QRBn@-_jT${$bNW2Yl~)(L7O)Qo&Sc|_^aB?oTU`5>)bp)fV%Y=xB%dUxL32K*%X zclZ6D)9}YEVRX{4mh|baD!6^|!OEgN^_9Tb#<=?Hv$SV)c3NOk_@gg9Q~>KDEa$&=E4%0M^lg>b@vgU6j8T zsxfkL#`ECkiuz?7TJ>!_zEFOMTG=_4ZrqTAHje8;uebHX4ayxx1y5ON(@GtYb?*+` zC4VDa>{)%1e|`=;rQ!tKyI5yD)3yrjUNZ~-w?Bw($k&;knpm06KjJ`XZKCk~O%C^3 zza46!js4sqJ)h%FJu#WrVg~(L^DxSO{w=w9>RFRgJ?1N$sw-~Wiy*quuYtRK&^Y}2 zk+o>kyK5z*w~{g&v?Z)0i0f|qEc5l^ur>>N!Q@&aAB+nlD1*@|W*cFQP2 zQ_$o-P4Sbv2HLV^^^o0pTj1H9a)m@}3#IdOmLrA@dDIU(R?uTJcA!Iz@1TI8#ZhGH zUNT|+2~wzNbJVEh0hFGl30g_cDD5haKn-FMO}J5%9=TyfNuMjYH;ymozH;aU&D}LG zM#ujnlUBVWW6~*ZdAchdWW7sL+8!s*CUnMkXWqe4`;MZ$yDHL{>1F7`Ni}h?=}V}k z+B39XM@jUgbo8Tmm5kK|7bt_nHj+DEXRE&-s)xTVzC>1(eu;KPUQZugv;e&maY+6B z_igA{!&&52`$cM!Qjnx{nvV+i_6rURT7cX+HjqlgMg|9_Md3MHYq~!V{7M^6`Io8> z7vk^zwvoa8tJBno-T0s4-SE5*rBH!MxiWUXT8%HwZGr>)9LIP2{jEM;*a?sPV-fl= zoS;^N{pi~f{Yk>I_ozsCZ~CL?RWj*iXS#mmKj_iff7pl7ngCBz9CXu%Qf>n2 zoMBepXDmk*CcP(fI{bzkrUsIuL+2+Bx2Ghk z=#k*hRTD8P&<^EJ&q9C6XiZM_`GlUuH=yN)BW1vUKh$bFZYs5&RH3b2B{%->TQmB- zVF3Pe!cFT`U8^kodkj-Nl4yr|KH{u-V{PSo9qcl}e}Z7!XI_&-^U{rfJa_m1z!#-udb{MjD#{OvcI z@x2I6F1V5|I{BySe7uSj8q+N!|HdYyLxmq$e@I6IaugtI+sq_2?v%#0a=s%k%M>TS zoIOMQB6BPGDlMSyop)%?-z(xG<-RMA)|Dd54*evn1CHa^34@6B`4p0GX>L5IND7W| zPDc6?k@#WZQuOegyGqVgjqs{{^9f47LM&ZoldRSS=uMX*xbdbSq^sQ-eY-JJZ623{ zm_q`TpiW=Nl}dk*uFBNlsV^L8PQ{Hh@yg^5kIVvyxx9d+dGGHKS zc{7!CvG~z~+pnQIRiER}SLTzEU&kP4q=5$gI}z{wbsYV2_az!--bDOR0dlI`QMA3= zHvBrTL%kAqjO03bUr9*u$IYW2kjpu;(vU3Um3>jiP{-bt+~?<2b#J(`jUHEqNKK6*B2iEose$=utzSdzm4WA!}T8{pW{xdBnZoeoXqi;e^`gPkE(*NguRHbt@ zcf_Y)w=p(_CI+;?`7I&jUA7uDt^NzV+3z758k~(5Eq)7CX`IcyqSq$6Hf1c`x2vbX!Ims}(ZVYQXu%R6$*eIumA2LH zlj9F>;QePY-4fajO$wY&jmIb9;b-=dmBoW;(HNDyELa%#dentBsk{+4|8E&Rzos0X zy)%%8TdSb)C0f$2Kbzu84YJa-E{#dE5efM2m~p7q$57lP$7NC{r7m*6nuwM(EI_BO zwBv$3`;i+r7YA3{(jK?J+#B0lp1{{~ccQV8jqulfD>K|txzg>aMv~|DYx1a4E_^HZ zF7j%PkzDG(nB4AjDdV4*7pS1IByv8TjM`irO$uxZSJe(p@v(V2_wOUJy7w? z>e&x<%DhMvYIuhXNk!egS2slK%*ScL!#do3MjUFCdjvHfy^QQji&Nvi1In}tH&E_7 zC2`P=0cic#Hz?ncB6MMTKI(Vt8LIOx7rpecx{&X@fT4 zWw+ARcL6&5Jf9z;r}EJ!+xO8dNeju;;Xl#zS~pOhmSbrnXFc3{Qc1je$!L6};b!ur zPSP+j)|{ZW>zAy(hZ3xEZZcB$kYLdsKPQIt@)I@CIE?9zjv7R^L zIqpDrspd~f&fXQ=LuW0++5a{u*#=am7n41x7`m_6ZS~f>h)U1CBc^bQd^oohXr+a@QGmQCBiPJ|> zlPVWc*S28u9?Yp!Io*L&J=27owG;H?Y(eE#N?Nd5Y!#Vy?I$YJ?K7S66S*U76R3Z- z{5Y*${-Ed8*OS|m(($f?by3wB7uBXG%A??Ex6$&ak=PP2Cdm5d8ual=37XBGhD!7) zLvtm~K$d+jawEMgwVU$b*#rGU4wW55Zcph+2F}?@au0~W70QmGpXY2K-FCbq;j1d9 zn|~|nuHP-#Jz5Q+C02e$?SgNUr8OwEzBq&P_UKBR=RBfDO<#uoY5pe}x%UJ5x;{Ip z-20n)wZvJ{ui+0k%Wp{Vr`~A9^%u%B^JsM70YRhZK2T;oYKo%Qhmmi8Jw$W!M4{M6 zYf*a16GZ=RKFL4+rSfw3bG5{$&*J=m!wH~ z?`K?^u?kQAuvV%1#e%ctUqC7uuBpL&3*z__Md`WOm~>oFmF()#42O2j>F$?4s&T)k zPw0tab8(^6Y}9>yDM=2=i<_)2LW0`r(V0to$g<{EQaN94a%=rbwep01s7IdcwvnW$|w~;_56CQn3*>u0KfjI8G{O`@7H= zzf{sc`8`P;w@f*)qcj>3-if@!e)Rd5uBc{sVRHG*57hrRx8TCxkCXkI7a?cVMlyIsJGy;Mb9MZmgXxjwUxE*;%Rp%_ zBk0tml}d;HIo;3ho+BqOM&YRsYtcF_Mq$UpL|Vp_Mn3$JO2;nGfvu6f=H zdQE@DBd?c4NBb8bqfFD)^e7|JzdT4fEQ&-eRu;$0k8dSQf9xkKMju0Wu8$$ELHE?` zM=zo8({rKDe~lvbk4_=4yN)BVg?ErU)r#YUU$)U*<^1r#*ME{i9}rq-xTb9HKUH14 ze-YZ$CmUVzoT?qCuSFfY+#rSf6h@{#|Dt|N_LKhMG0NG{AY#2ZL)ow(5B=UwCAkwy zg`D>*M+41e@X^ZQRNtuywtuZa&6l5|lheV!_}5H2sdh9SSiv5WkDQ@hmz2X>!;8{a zqYkP)pS$Uc{-x=KGQsG-V>?OTfUNlL-f48v_fq(ESSb3Q_D1M?ylU|Ab`1dC>}n0o^6#i|Y$|(C9wN_1+J! z3^;@XxB26SKduqovoqwurmCoId^s8$+=Z+tyNfsySD-ib(`Z_Y#d1pKVpgkg2qIzYrDy7WP_^}i=(UI+sO-L?O2&%}k}|0ej_+^+{oAA$x{s!z-)2rhHA-|Ri)Usd*;--r3sD{Zrqx!=puS!0Wmle>oCS#90Qu`|D5S425{wewDj zM_(s{L$1-$FALxg<9BD2-vqu_Mrytq0Z7%jS^4Ia%qt?L}zUE^|=R=cknE<)4$KCB`DZL%Ye*I#rc_DnCZk zE_XvppK^3${4dx#^R==uU>y0{@n*)m*MT^>Z5A@2;b?NK+fp=TWp7&RRBzNje=j$1AzgH^(0qF1zk|k$To!Dn7ax;biG9Ha}=XXhg?t= zotRC(&&VB;)N~a+*K-y=8~lvy(Y;m%kF7*&RQ-*#`}=Y5ojbvJM%Seor?dSe)7MNP z6CT6_RSqtO{s;+GLc@z-Yk`BoX~UMPr&IHjc|DKfr|C=3xGBBx<~;RjyE)I))pK&; zsi*(TIP&LJG`mP>dczu(aLgth{j0$ToUisuYBr8WR;3u(*y$Z=y*>whS3g~uH|s8` zU>lCE@10IR^?pQ0XTbh_-zE z*+Tw0IiCz09EZLy8G$q@E(bD{BrNR`XxT zPG*LMs5t$IdTmW#e6?y$S|xuobgy1DdL%txkfqQU67^yY8Mv{a+IN_P-2JN{{(3YE z4qA6x30)jPCii`$%pSQ>yr^--%cRlkedy4H33SQLY~Zstksm*DkQ}uRle%9Y zpyZHPdaKt`G-yI$+U@0-0|Up7M+Y8$L&MknhZat2LEmi)bWd{S3OT$0yNiFEitnx; zPwpyt>4>#kNv&xXWU1dxP53cR*;()m{yugRzLRSb-tnv(-M4*%YBYUAyOkoe;M4nL z&|nkEa;G85aVH!fT=XIMORK5Mt97eUXCSJ@BytE&jSZ4(+j$7H^Xyq-?dNc+|@#m_~G>O;c6!YpqkbKJufbv(-eG zzBMN^>*U7ks#l@=y8WR0;{28P>0405>hffJ!JgDsc{}c--$^2EY3k55&(+$8S0Vpy zh3FI8CDbKgV6d8qN#Cn|P?`05RAg={IXmwm+4tX7^r`SAdc5jpdbQLlGOqqj)avYk z;5mVp$(Ih3aiyk(l&UYP%#*^xwc%^hdLG^h}pu@%uUPC>`{Lbz`&OZXGVG zT}C%0?F*hj9aoe?RW_&51qUkOJeLlr|Fp_Wo`juOBd?6aVE)j#>sr(3e~aLk50lA& z5toT2FbnzCbs*RsZOOV4sifnzj-+U<(db8$H08#i3V2I_i=@^5l4Qi8j`ToUVN|L4 zHdJ%61#P@^80}g*MD105q%wWZWArIYI_X=zA$9buOxrZpt8f4gGEzkrFKQ|B!UuahT(iznAIai~I9|y?9nQzsY`4tHH5k;apXT>vLA0(;QPAGdm z96(EwUm=pe8%oaVR>_YUYMmixiS57@JSY2Ra$v$iTy#-B`k?$wR847ur~e&8{u=ok zZt-v)Dl#TYIT^B>_Hw=>^P6;|ud1~|^8-^*kvF%<)n@VmZk5bZqtw~cC zJt2M8)}SH3e!QWV$_Wlk2SfKa-IZ|RE!riryrYTLG5%l zQh#+z6guIF(%3apeKq($a$@!kb>gIfw7+Ww4Y&|bGb-1{9rB!1gZul@*iyZ4yMFg* zHtP&^&6$46;5)Iw{ro+}wU{C?FeO5&@VDB*cx#Aey`Tir) zr^G!}cGxtv?)@(4;qKdH#lb+_CtncC_5ELx`$aKYbdku@cMDELPjr7N=OgRke@eBa zKU2S=dIk0=J=S$56ZJYeVWEP_o*U?k@mHmDcN_k9#3Z%EVTyXp(b2%l>y)`U&yyDq zTcDjomY~#G*U&^dii~wH0X=C0ZdmLVy*RffUT#O^=ldb#zgIQs#Iw6dy?8sCJ7tTy zc)+^gVV~O3qF-vF2mR7W(d?T@|9LZlOO<>WbZuxW+H6@)(sq9l<#?smI3jHYY8Z4| z4V_t34c}CXF3&Oy|J~yfX#kzkd7uu_I^LICjL6=BM`Ve%w;b0Q{ zBOYR($CW1O22%3Eq~P{+iGr+E=%{kz@TK(UC?RW^5D zM9=(u5FA?W2cF)15Sg`6BqlY%$Wdc7`?8f!7$9-4|4E)ArE z!4DPKY6lAHaRGh4H(PZcru6hjor*?5zmMDF13yb+rQT?IpzPa>0p(K_`;N!z{mTV# zkh?T0cx)7n{PY@iF7Z5L(|sfQXzNDGuV{+#9#yqp}YQ=ZQH zuPct4S)A)W63LYjko!gGAEO77kiV*^%d-5STUTeOtt%X(uXByVyJ%5##PE{T z{_>jrW? z+bA^s(i2iUK8{Y=ypR}!BC);v1T~`VXgb}$6fS;Z4lO(=fK<#=nz}mIB>m?XLZ^C8 zp_Bc_pNnZH7Gg`G9uJ&l%9K9*uDC4)re~?edE75-b0l0sK+UTb8 zi2U5L8uk5_mF|3XhD7H}&$tqP6$SU-sxIsM0bSZ!61`rYicWOOjW7HtPwFlVB*&WM zCY|t~>eUtliQlcN!QC4L(@FDkqt;P_NQr0H(64?LH0IY0WaOYcX#BaU$do&n8b;5< z=OY@?Us7D;=Fze=_FET{x?~4k+l>al3zCI;e{YCS64U5AO$CFPzygFh0bi;M@v0w=&sYeIxb^dqa1#4 zG5Br2E2L5AS$tVJi#Cr;N3NM?)LCUmqg{>Gk$mNI<9+ilpzYmnsFhN$lVg+0VYLQV_x~ZMy2p{$jn62% zR;1u52kw$>w?07-lO1x@R_oz5-44{!N8onEkoVBIeh>6V|PaHqY?$@JGv zX>HwewN(}q*?#;M`IM_088mq%Ew!l;T4pSaA66?vW|DaH_m#nzUy zw(|{rTXh{uDsxwPaK5m*C8!E5nsqNWG~a`c_F0H3H=c%yRa-=JMC7D)zlC)4Jrx~n zR*2NRa)|VgD2w~LTcY|An=`g}3Zie0J8Fq}oymcF zb4ZDM7WATBF}fM+s`@ZmtE6v#I=Id?|5-K;`J1iY^_8O z%&w|to4SU4iYr%*9Ii(q>w@&<^DgzMfHekOOCJHiblOABKOK znv;GxorCUZv>5##MQ0jLRojMPQ^-7}P*F1EZ4i}Vulo@Z70pVe(x{MBN|Ve}#xf*C z5rtAR+v|Q1g(Oi(qyb5qO9|;)-!Fdcu1iUwh-H-HY+Rxmm38iXbpq zd>dX*7a=#J_g0+I5~ITXODg=PTqA6D3b9-3NqHZZkaZhGV5ZgrJQnwopWq`;1KYmh zlfdOvQtm5r(RBj83K&JZbF!d%%Y$kMHethrAJC(Hj_#Er9Eq|5a8GYxW4I0^ox*mZpvOsy1z}Px}K4^1$4=b{%S^h|9+hKg3!B(Qlx&M!gSbRD>;2Z7q(xB zH&JSu#)f9a!=A0zn6ncvW60DzR^-ZGlnPu;l)k?vzhAoZHkHSKMap@aHuV-6H=RpY z_h$2^E4%?SdWS6W8=xQbYiWPU4SLSjh2-78Ld12wXrlBavRI=NRi&5Edd+sQ5-ft( z6TR_u^)FnTe;&?9Ou}jbCFnXSK}vnMQ<>3VJS1jH!$6l_uO?*tv?1NT(v8I0#GvYB zI|%obB3V}~aP`PMw%ys3Ccaz-2irs{9yEA?o-*Kd1tWT(Y&xC!jk|UKn1_#Fd}sFM zK4ZHLL&3NG5HXU9XB;=&Vjm}p!|^-Z*txGS@4~?qQnY?+ChGr{MvvXUV5Y+b_$B?6cXuhp`SwpS?pq5eS1yJ# z6V8&)Rt*?+dp$8;TZylqC(<8N!ujhW7t`pc0>sJJjHZ}}5MMO`GRyV`(Y-K{HuaUz zub21IZ$I2=%W8Kr@9`!q@Nb}o=RzT|`xrd_T7rJs4pi=4IHo#2AhatRD-zU+iM=Hy zpEmR1PcrsbUx(uXS3zGz6t+9Pgzr6@$q(Zs9I{PEg}D~&+4e$EZ#Sj<^)dM4kqZuP zSOt9=KxFSfrwdmEka?BP^w&ETzP;=*c-npqPR_rKEAtk>hk$3G9hytpGEvgf!$`wZSVSMO5dxJ&QoNG%PJKw;XPm?2+%BA09!A`Rgz4F# zbjEd57sR`?@NepM*!Hmm1vQU>$Qu*f6(b6_3wJ^B@hy-uQ-})Aab@Sp^?}I)2dbzq zL=GN~rF)bH;1(lDZ6$&jn_GO0TrNqrUJ8VQ%p`v5il?mN{cB+Ab%@QE4}y7RLa^Vk zk2(F@n1P+c@a9N5-f&BSeL?@&!W0d3=$eT*sg(Vy{uH|_RB+6{huxkxn`Wp^qzTS% z(SB5%+yWmmVNjR03xC5uJKES{&FOHqX&0@%9>cS*&;h4K7WiN46TH65m0r(mzz7>v z(%AGFrcIQg62}}!X3<=59w_L|-OV|cVf#(^6^;dDF$7|Sq_7VSqMKF9k{|PO(aXZbg&sa5GClGTz z1ep)7V$bXypq6w6vMv>{J3sY;6jRL9>xj_ach<~7T?ss!Gm}8b40?;7$cS^>S>kX5 zJk(g&b!7^L|2B}V4Hc}7)NV9fpvasx3}o}7-Y_~PNXxHXB9jYJXu3uKah;(63E{u^ zQ~heN_wG@cAh{KSzsQs0|MgI}RbjL$@B(cyiy`epQB2%XG3s!51d`1pjpSonch2RQ1a>&SSvN18GKR9|8pxBqSV#t zthtkk)LlaqI4X#iyG*gP^9`O~R|t!A)-cn%{F%(NlZcc);$z`a=Kkz_oZ8!t+iYI) z)+$bBoYjT3wSX2i|8Kv0WI02KJ5v7#r&?C&PZK&#&)cW z#Sg2GkrmP+)I<0jb5<)9e4cKlD>{71OQ)yo8TZR@>7X7p4((^MS8LFdC0}@7l?3UU z34%mxP?>Ju=|wjN3DW1~9c9xE%W!$a9T0M!4beu0jE2EpNFTPubN{}=(jpT$eKG=K zFMUCot6Wx%m8kJpi`EEnd6QK?=KTB*=6Gq--BSON&FglXwmg{voj14AQ(h?$HA9J> z-Dgj&EtP0bpBlP;4WdDH&mprhky`jIB$peEP-o98IHWRw_iigg$HzgQ-Hu3n^kfH) zb_dhdCUr2dOO5{VAxz2aVRXwo3snoY(@p7b@&4M?H2>cNf;u)tpuYkxZK&YSJ$?)2 zuFDY3m~3n@aA#sKX5$~f686;XWH1-M374#HLdfcLELeRHTXUMA^MWf>+j-JJlf@v> z{~cmKidRS+Yo=K-&9u+mpQv_3)1|X3DY{z{-Jb;@|2Po#8%V))ixsrN(2*`WdDzI3YLGk$KX(~J|I?%Q zoeQ}xs~vis0zhETG*(mT7zxjqK^@ndgHPBy)|&B!*Jal9_W4V&<*kqDg{Vw4TYQ-4twV6Io@4)-$&p)am zMsg!>N(O;msM4Hzk?f%0|(WqB`oT8q8fQ#K^G?Kgz}0N6~-gEV4vv zG1*ir4O`2diTZ!JRBGfjT2Bq9eZpVikIV%KmGYu`eL*mMwSg^Pe}g?{_>s+jphInQ z@?pn>ebn_&4!nFb4y(R};`2NCFqXU?-fx%3@dH96WXltF?{Ez}J^gdnNLMIWHi8=wsCc|D zfGiKl!^b}Jsb<^+w(7$>e4eulM~~FQ1Nkp>v!@RoFwCPK)hEd1%obc#y`K)hxI{Lc zFJo69$!1SUDneua#EPr8E>p?uY`R73EBx|L!y}Ue=zHT`L}h5035pLk4gBthE9iCn zyvL8|hPdPEH);F{@3;=PRG5@4yTg`VSVN3Lk3zd~0aL6aOQ(G*XKx%{K;uX2Slv8B z@AE!^TU)XfF4p6dq+Ps2#e%<|yl+h~foKU~OqY^u}k4V68!p*gM&4keqA-C0|3 zhF&oW#w;V&?vXfmX9{uMBu(R|8sHU~3fTN>2#o!5*xhXmDz~nN_4do)U$Y!NHMWyk zt{?~Nygz{Bxmh%FW*hX}UWpS;>d{+BgT!|h@axGMI>+iinvu(Am0W+av8}Oiw|fPy z%8?-pr=7zV!R0tzSe+Otm{7N)CZzTE2Kq2g12(KvBY!_lWP48j!{oh_S??Vhp!DMp zRlOGl3Spzvvs{fJIm@5&lRH0Heq^_{Jc2WSG->_lW_T=E&(2k}rcU-N$m8Z3?Bs{R z%BpMpz-_W*!O150d3h>H`DaeTB<58Jw(HO*L!YSK>3Z^Us1DBd>(IbHF;a59nCXw0 z!P82SVk_$B5R2h6G-|yl$ren#{br`%w03IPQdDO}Jd z0;0w9&^Rw1Z|}On9C`K}Z@*YX1(Ri|Tj?b7IYN$GTlG!tB0J>V`~ zN>#6A)3M`1FzI(3_Lj{ell(4Y<)f3tVxb{D*)fYQ7@L5TW|(t)#2vWoe39F}TR{H# z>Conp2leGaAa?#2uh+w#U7KEuzn;z{PVLTcbly(FcM!&BTpm7S?@1gty@64o)2X}P z1zhi}gb8{*S!a70Id{^3_au*+u_$tjE%G{9v`rD3yD2Nu3Gp`I&ZLFmU^ zdb9owRMrTfzD5M2vc?kDiAzvny#TDTS;2S;hLBG}enjhz4O#g35K|s9jcyvh1cgRY z7!VuH9AsPZIlRW%gGS^@|0PfixW}fBm}1H*F=&|I43WqFvWwn)XGV9eMaN-BeA%N$ zd?Okei%q@gpREe@DXHw-nX|yZ^&i$|+`-LDBEb%f@Oz3RwTt)&&u?-^fwDJjYK|i^ z#R4SVJQ}W?R)ZRDo98+u7xWMJ(t4G-sO%d@Be{Fr%S?GEHS2x|Fk5h=Q$NOtHe(Gkln%+($Px^`1NKFnza?v_V|PX~e0CXO{J zmm$YD58#I#v2eUg4|ZL)HrevudAw-!4r9``)2hgy@F@H!-5D89#J!~0lS<-D&G#1e zM3N=d=k~yb{FiWMw2G!3??UyJ?p&td3SJ8a*miKF-LN0Vf`!QCJ%>Cu$%C4V@WXT9z9<-JwJ$k*T$PIC2EhHO7PPle0*UVPrW#4}>F7&_ z2=ui;^wV&-v+*Au($6EqCnnM=?^F1g+j81JDP$YJuAtSDu4rr4&enZAgipFo&_@Rh z@NvEYO`7=zY90==)7k>jA!8<)wqZ6A@Na?m;5_jDP(xoT#KSc%34fxq|> zF1*-H%7t~&PA!$i5n;GILKD zvo?Dvx;&6z4{2|tKimmP_$UPZ!SeLsZEdq>cdE$ZH9ts;9!tMeoJZr$Iz(Fm);rGVmyW@j0tJxTmd`|F*6`1F6$q%dso)d9$6jIeyy51q>jKb*Gc$~ zm%!}%cnp%f(_m9?Ah=%g1mVv*=)LtVF&5d4?6DrWqZo-!S&bn6OM}*0UPHcoF($pd zj=L^hBfk}cNw8u#84J%vCQO$)y>%l6@tRcB&z@Qg61v4T6r)#2)0sPh$@>uj8l50T zdS_6yvM>eJuPg9y(gs{@*Ud(sD1e`?{n(Q!0r~=ixc!14xJ;f(f@e;LUj_G=wPwA{ ztZQXN|799|cl96?ZS+B3+tV=qz6>@W;qj997Nbg7CM~QSVzeGau$`M!m<1_scuvCo zCJNkMf8NhdRL)hSq3he&y$7~{N!=-!d+HDWMUV)oJQ6}@XQeS?RX3=`{Z}ya-#31b z+f`(~UxQl#dntc{Dg?YbfY;?Oz7bN^cNKN4xN5rv}`Ne2u@% zMq#dA7X2VG#J+qHN`Khs5%FHG3m1NbP4(79%`z5KRj#7*uqE^#iU#4y8q{X10-QfS z#3~GLg1bsVs6RLdyM*UrOM4j8z2pb`|2{CLqYD1*H={hZW=}eBQ<+RZCI@rOjcBK=06tJ}2O~FMHZJT6*YIU*TiKo@Uaj`|__NPfO!)9ZP#xzHb- zBp2{U*7+mHt>W0{RQQv4hIJ@3CO3AKg11i|-gs}x79IG-6I~Dou{&f?cZLG1sx-*G zk77E%ER5!bc+t!Q+3;|3Dm=L&OIM4`CVQ9cqmkt?7!lwJ3fdg+ys?a^2~A)|be4m> z(=dKd(jbLCzpyj%A7j${8<_p2_#k`_k#3zu2L9$khQ$d`^ihTeg#h-$8?NKOuR$*+ zi;%cZRoam1PemTyrn348c;c2k5wqa#l_7H}-Qq)fH-!Sjb@s0h*s+RE0u0YXge|e| zhpE5C;DSOiC@@9fY;1|6Nl!Q^;VLxBt{@tpSJNwtZ?hX02vI4wGUoeAXOey*8rSEf zf}Z&$n9-UGbCrK$;Dlsm;iFVE9G0UtCzIK!j1n0R5~KDelQF#ZA*836Gb4|eg8h>~ zy5D98s+4=sb%&;s(r@9=+OnGt4kKLq>w=3`2;imoe7IlXhv`3?aO8wF{o*|x6XxcF z=F4DMSAG}f$4(_`MN0s5*CHG9j<}gGz$5F*NXeiErElHghWT`&ds>l-<(Q+HKHy%v zE6mLEi|CG#-AsGJM(na3h5U@?ptpS)x}+{A7Vj^>&_$N1{zbs$T@2&Su4DtZC^N;C zmQ>toAuv}CGRjpd=sI?mw%KaJ`kxW(#*dA-wsyeaLIFsc{S^ZA^y;H>F`{nk!b_)`Og}^Vljg4KFT@Vw@+wCoax+;NwYuHa;cCI6~Y4W_2;(~Pf?aSoS^A&Vf{V+_=bH^jQ`L=u;9+#mrjl2@!_X1EHjSJPK1%TA4+s- zjXWv-G@TZTCBfnw`PAXkZ{AIgUDWV?1fN>PXbv%;trx`Ty~&0k?Xit~Y@9>)4#*Q* zyaJ1sDRPWT0K>obf@yXBip{UA;mUDgTHG_jIyIYMUi&!ohju{K2|Z+IOOl)KU8&0z zU0T~Vf&r~JSo5hr8Mhu~%A30i?ECJZZfgZ=pjZbl{KfK$rhxMss{EL2p7+VBpZqh~&I zebWwh$MZ-y6Z`~Y7I?72i?XrNQV#^@mD4Nx-{G4n5wvolGm$&;8s0|PQ&U?bqJGT@ zM=HY5aghMI(-%*p+uG>TH9aU@D~=}x*Yj1L_F{#hJQ<@7^p(IRO!vFZ{(NzlzVYK` zj8_lQ-&)*G3HRfzf5mt>;urk2{Q;eOb@A-C704g*V@q$GBuNLf=>eOCuwcqo8n$FQ z`66wEXJRK3=cXDk*AgZH7Bi{W?l-^%eR!E%W#4`tgGWy+d86qnu=TwNIru~m_nnx| zXlgoAn^94^Hb)Der&X};=D&pAYlcjQwgVYTKZn;H^RdR;kGWkCf)aL7w9Vxo1lA^E znEMcln#j=ws%~V~>Z=gHKOVPt3*vpBt7O+eD!cR9Iby7+OQm*gW`1w(0P}~L%-qa) zob6b|N-eq#2YgIGYLNk19d3`FS-SWwrU@^`6@dma$#LXi|9O1i8AYF-d;rZ^cVKMi7A~I-!JjosB(r%3>zH&A#n(IsG1Y!}UfRU2 zJTHu_;}WvrBIjICYGD0Gw~_pBT+Sc43-;1=Fw0PmBwOflUDrn1efJLY_E!PCSj}fH znduXo&1JC9S(QAR)`5`~9;9}KHF}*%MzT)}eGE@vYe+8CHJzb_A{AVon8K`=N(1rp zjf~O*DVj3zDjAW@U{x#%Fy3(ryK3%MdZAI9Zj`a1b?v9nSLPN-%(v(D7V)6s!Z-F% z**LCu+0LxKRK;(+Sp;X+4dRSNa`+g#(Ai81pI7lQ^r$cp*BD&BvJ8F>i&BT_BDi(i z0J`Pwg{q(7{Hnh7I8*U1=#6f|GMh0RR_+8zVJ-OOCc3ySW#a;!M><}`I*x1(a0Tn;HQ zUk3}LmeQr`4wF?L)2K=K8sN2xVZKo)Xa>bX$wDQX_iTiEVHQy6WhH5_lyKt8D-U@lqulbuFqX_l81wFq!0 zd?O>&vv|cWEU9EJ%+TT{*M8K8^A{xTzf5Jaqrh*|d+2UUMt_+m7}FjE$+Z*lyS5ws z)YtHZ`FJoP5d!C%QjyR>=Pag<{$%A(*3_iUG#^u|=BOWSmyRlF7*s?RytG z(kqz*<{9XE`T>4i{Tn-vE}$#Tym+BZG)!Li3NJ7H$v%1f8)r(a;9ogyOw1gMIsVUz z-n6Z&sY5U~(QMmG@^?1pJ8zNrMq}yVhlVw^`6C7EYs1ZM8AEy%bHr;#t+janTPMbU{C5* zu-4ZlyB8X;A7pjubK_9VS~mcmZi~R}V<3B@`YFzJe1J<PMivq>7DS!h`O;h?_N!(GsC@@=-R7E<3i92x?@by0$;REd4m+_Rt%P zrLMrotM=@o3_h)QpGGU>W2sN-3NjvVh#&40pu*uq#c2Aui*N@#W1!hi?V0rD|XgN(D;|L;mW@+cxqK64uwXOy1@u2pSYOY@BD*d z?FIC|-_P+H*-d{KKjP0?cn>yb^r72>QQn06T*fu!C@Jn1p?}XDBENc+sCcOiDUS4K z(_KZV*z3v&O5!AdejD> zp2Q=zJ;ee#e>l1ause7qI)^b9{=x(s{YPiD zox^nr5#S(FNMmy@z*b>9s&RD+`Be9sW6tJbs6r(2j z4La}IK{#L23qDpWuzqPWOph)`95n|cV_~%Qw_$ak)u2P+Pt5u@pA@_1W6_>O_QV8# z*5th+hWQH+<%Ny#cTWlPV8t=A%#sfqN>X6)*H<_Nck>j@XHdo0Dj518j#t87U|u)h zq4RZ`u`@`H{+?vUB)~-wpJ>M1&@KR7i$~1e-%9Xe*={zgT!nsqy_%MKttgj~&%^Uy z@}TgsBHf@+%m}n|+`jb%>^`asE{~e?~tFmucDK{gs)W-ng(lkg-b|}2vaE^HvoD5qMg-CJL z67pt;9=r{|#eR(n#tUaolm|3xK=N{qdkXmoD<{80V^I&@x17l|PEZqA4|B52q74sK zB(gs$pW*w153uBF4u7rtY&>xCgXxRx*L;J#0ye_BhS|U@1MaNhiZhYJU!L#J4TjOdZzF}yp zj!=E3jm>C3i092j$Ze%h)YkGKefIhrwT6wvxYmy?$a{g$tWFT!1M}d61=p)h>SxN_ zy~*YDbkaEYA*C(+HA0&}e9#t~M|QxRxvmf#DMf;g&xb*sU6?6v zhO5e3nTDRf%p)BkH23ny8ji=V^b3T=MG8!QYBYwm)_`7nC-Y?GHN3vF2ZzN>v2JMy z4*Jc2jOlqqN#iD(*xw_|qR!JFm4|VPxByut^Ng``Sq0T4LUcoS9%xQoM6#;)(AblK zM3*;;y*^&tJy?=p^HWGDk-`spoA9*t6Goyu1Erxd>Bfc zBB@w5d*+ou+Ww`mYoF@##3X3;9c4^B5z zSQzTTxfJwq;FdXvTj`JsSH!SwnjQ1%q$cBWatb;4n$NCYm4)AAw&9HK>kMP@ikEb= z0BvImvCN|k&Tc8--@dvB4_D@3-XoULpEa3;b|tbRwPP^LL>?>R)6h}|V8(PMMzK4G zeXnSMC1*mw;K4AQ7S066@;jJo=1&UEYhd)-Y@9rvLpY3U*G`RD*=$*GEaT>Z~CnCvgjp-&saB zoEV_>%DME)olVr}uRQQgGvJcf20H7c2x(WCk56vT;Cy{y;LF<5qT`e38?{9=;mIHr z#k^#WD&^tY%@_EV{~lq!yC=qO3gpT6h!H;bdi;wnBt1}B8V!6wAhEDZ_jqW-|V zxDIHP%wm$KUcm{rcVMNxG`Vs(jb?J&3d^;c$+^VSo6J4b%!^BE+=^cuNdq)6rrg^=0JeBAJIDI9kf#Lu16!0CxE zq(&@aXOG|KAIZ|de%Hf{gn$qzMWo>r(ROB`r6xJ~Zz8^XdjzKRJjLsW)L8+;rc#^l zr6{+dff-yE!34f=!fD^%!skWbP&!SM6a?I4(=WJVpF}!QZ&M{+?w80>fz{My?@U%Y ze3UUip+(!<=dlZImf=^fi(F@rg-I6D)G0fhZjKRQ1cScAnMQTGY3_E|U?@ki^gHua zzlC|;`hlv5$yf9RXVU&TY9v8(3uLZ(jy;k=1ZS2qTg0>A>7fE}eY2X@FUW^j`(4!Z z&~!4II~!i~8qjU(4v={GE6(HmbHAe4@-piSbYr6_YzhtFTvrQ;-Ea|`T^o(lixfcZ z-XBJ>Hy3iwCNLWsmr&Qr4=DUefJS&Ae0SXskE2A`fL|gccQ}FDRI8E8*?aI-iXT1r z_z1Q0=HbcYZDix^OK8aXX6(~-*h5ddSsg`foFbt{=#0a3_MD^itAIFayt)O*6tMM= zWmts<1@iWc7I-a@1zF!TX4J`=?8v=FtO8b%KiuE1D6W)uLU9rCFg{JEfHSU%DTi|N zRm9_OG<{{RL96+TY40sjlAa(5f2TOn`9YFUpZJb0*FVPGR(A(|i$qs>@mT8gEfTPZ*L3)&fK;Emmm70F{KA!+vJiq`s%B>DGB za9Bxb^XzHl!50H+b^I5cY8Iihu6t4Cd+nh0IfDvq@+0bb7xB~LiR8=(5YY5B{b{%d z&Y8Y~3hPAbv+x#GRIjUfHa)XGvh?2)`YcMFfido%iLm~}}!0+S< zBJKOPIhD<3j;HzFaYB!IX0vlf&U7vnFj4!ExQgE8S9XVO+` z;niiGxJ*AE&A2Z5akwR#-rqtWW*E?zKhI3e9Li8SRe`oPX0g>r4e;6)L$Z*|`L?&- zqW|hI&~Z1GHYuzkH@+wm1~1VXele`~b7i+@rDNm)mbI!0q?QN6sj&S4`X}`T+;j_u z_j7%4YwAo8J?Bhs^y#y_g@JHfxQQw?Y^P6-^w5o&Ind@jv#h?eg$;t6NoT}T z;_}FVb_zTsC9b2e(X$<%M_yocC;7t8_1@4C*?=Y$zj1kN7fL>KVV@d%A{?aj-%KBz zB$(IpoD+!go7jxGaD& zZxyLg*aCRS`AN6Gyh6&)YtWvIxrASI9@{$Ku~M{)X?XUDx;Rb5lvk8K`5DOVt)DRG zxwCwRB?}u5tCC+O7YXS#W(V?xvGiR9n4V0-_g@Xk)z(Vhbk#Dvp1gsAnH5N%Tm=t0 zIOoY+AF@<(6A?Ui40>1pLG#_AjCOwubpQH+*?z|4;G16lfa_Y2G|eTajNNI$q8_q+ zn7wb5|76IQydr8y4{@RCw0m|Pteh!Q0xSJa6Ox9hHZ;7akFAgO+z!Tl76 z45KITxzm{uycUap`rg8a*9+*mc{joGQ8?7tOa%X(GL(`1zZ;<)W0*P+GO?#Z8|G2B zel?o-E4jSvK4QsZ3s}2Pl$=^nzUq7DX2nmY3!*oX^|@!k!7`cZ z@E4Q)n#SDKW&%mi7NpLhHZ(MJ8=0^qkZx7jOS}sh_Tn@-W*|}vq8K5Xc~yp7x}Sx2 zuG-V_eIaz~og4IzoE`Ztbs2W7dw}<4GED6@9)k2$1kBprLran_s*R1ZE*g?FUq*wu z?r9IHD|xi9<2#N#j41DUn~i3Ztl;PBJycV5E^S@$98YxQ0Po~IwkJi9{u}XS&n<}u zxuIId;~&RsIwaAHk0#KMwoVi-+mPY4azuH-Vm#Ac1NFCl;a2Nbv{_OPpC4_a#o3bd zTGbZX=;RM`7)N&O>p}L$u3p%v^bQ7MU2sctx7h{Uv1a;cR-_!=99mJ-}7>W8sMPeBv@!kZNVJa(R%TMRJXiB@3tryp$N6|pgLH_bfVMNU-sQwLDt_F-bUao0Y$rS=^Mb?j(= zEtkW&zlMrsc63sLEnjz90o5y#Bl%o5^4cgL7x-Vn+;J^BB)pRDdOZa1y(8#`){D60 zyD6oc?=famb6D417L4UTz&jJPVToV@o^zOr(Y^XKzhn-PSvZQjq>6zSw(<-G+V}$t z1?X<_l<%EZh%c61M&-^>>M!>UCW&970_R0Y*ykXu6kLlMxArkAk9<(|mO71mnhq;n zU8%>m1orpSA*?jCgZi+|XnXJ)K9DpZUe@;j&lG|($Al%s{brQCv&l8hwNR>*j7tAh zKu1oHOkR4J3VS8+*NeF0?l*)E%wEm>)16H|zlcLuw;s6rZU&7x&$%#WN`acPA|48T ziZkzWdyT%&@L8YpMqoeW?CuN8T0<8jxmzsefZpI8*TM6Ayzhu;5Bn1f#vaduR9i| zAE)?k*%Y)-^1)-TSXkdGi~CMeRy4R7<`;crEQD3isWA!9J%|Bii*TGH@Sbg+zKknB zKC-sb$LVvQOpy6K6+aOz+!RpCbgoTBpNi`!SmO!vIB!B-{0f?CHOg+&=>oGDKHuy5 z0A8@a3BL0hAn0osei;3Wz6&pc2m64??`~$TcRd5bh~VH+R|a&{=}o%=C`zq{#yS(m z>(xyZd?`i`4Nd`iJ&j-FAWU9Om`Fb??}g)P;b3~R5k91yVPAP$fMR6>v2NHvn>jXW zX7fB+yS*P?EFQvIgRMB@iZnQMT*gzcpWtZiEbJ4NrO&%rkf?Kj=d%ZR_VRKNTpv#h z^Cr@7gNt!4m-|eR)};TOZK%)D^RRSGlx#Nd!}A?WF(|Ty^^OxGZhBd8w_zEriqoX_ zL%JMS5y7--FNfwBRcg?0K}`6vWc12wXt=1y-kWm?+;vt#qjwSrg?nM`LlKhJbsLOF z)?t9lD%|rWjtwjqXI?0Ngy!$Q04f}-2QsDl)+i2M^34woi;v;46WbSC(Pt?S<@YgJ{%|zl{}{!@N&Cc@qEQ zA_|tIpl4bt7^ZNZjc)_E)IyK+4lB?qFMawz){-c4zvp%xA)n8krM;VU$-UPG z!oOu8NPIgMg1z@D@I6`w8aMT6?dQ$>H>Zjjo&!?FOCEIBgEA`ReUZdP#qwh!Md;Ty z6OumbHr8F{cK+v-h)&@xs{f`QFPG#{CzF$)(ccS~o90qJavpfKxp3m}W@wu+6#{o! z&>rW*#BvHl6K`Gz+n!^*1IEUvWgtOy7I!lKi|SZ$`ASy)l^*2pT20m;u%@vY?(ntG z49in4L*aG_dc`Rk6Hjn1ygQT0gov3HjRzmIo?$g~?Ub{m{cIr!3vH&w@$Cs~eNn~G^YSA}K95Jak z3$JBX!1kzp?7I>Z99q-`|K`W>tj3o;yatA}41VY(7g;BV*{u^FPj)$983mJ`- zEub~(1!n6Cz;RHB37j#82cojzjcgq91w@#bzKPW1P$;ukw3m7O^dju3-->%B3t173 z7VMMe&S!>Vbeq=)ex>gml(}AMI{io!BVMr^R%(dC3!PdBNZv#@1Z1Fn#yZ+-H^TLX z9~ptk)o9BPX9~?PK!33Sprbx*8woI7wzm-X$KGX4tm_z|79(co-dg-u{e(@}S%b}m zJE-E3yV!5s1cu%}VbUdcVzt{6r;iV!zONB0;r1RJ?p0&;)Po?FJOM=w56~N5>LEmk z;;a2#{EW^J=8UW)n5IQx=;b)rvw91Ox$pv?d{iTeEf%Jdu$UB9Rbr*98+?xsWK}Z) z@V21>_B?6Eaw8?ukXnq+T+h_-b_Jd8pbpPIz6ND3Bhc^P&1*ThiaERDD8`9qp``f^ z!V^7AT$y1gGsC>uT8Iw)w=j%N{OiUgmAdo`u^h zU&2uKCY%-dj-GfBO+RD?)5C|o$l%s`+}5|44n=WJf{qG!Tsw`~cv=POg13{fE&iyT zcYv(ouf;hkf@I-XE2#SSGmi5OLCJ#8+ja0icHe;qAimF!27dYr6I0MM`tDkgP}8A#hmF`2kfyNbBF0JhlOY{! z$q{d;S?R+#U!BP@?zb^+*-|_wcMMf*7SQH-cd3N%3=}bY1z~Tk;90)}JvC@Yvh+sq zuizNlq}s{l9GO`5VHHgHsSHkrqIhjdD93X=!o52iV6|CrJ`?k+daB zYc=5e<%*d8LlV}SC4%qsBq>?0N(zl0wxB&JPXCO zTn0aXP67PT+RBV8$W!Hix>WD5C9PN`NkZ9mX!KMcg?Ii0os~n(`+^Vrf#AoCMl_Ee zF&AT==P#sXg;Qb0`#LCTS&VN~is6&kHTFbu56@}CRh-w@#Bs4)_E&a}>{)IElI9k4 z_)-{g?Kh%9r|sBv?^>aD8;|w+sZJJ0eM7$ZZI~}4jd9{`aO0f=)8Z#fG<59P46FOB z>ZBZ2TSK_QWXX1#H?NK=`f@y3bQ_Ggy~q6O>Et)t1q<2^am%TR_(GuoMI6i_?!!;a z9FH*-f76A#qa#7PxE_^dirC7zqo%6TXV`o{M9B#gXukGZ$lb+&Y>N=wjNZzssklJ1 zxF9oYMgs`7Jcnt0ZuDxY1Wl8ssM=yoE>C^R`G8faQp*@@X&V4T<4i{W&|5Y~T#Sr= z=h(Cq6LRBR18%4Hnc8!8u>X<(#@+d9a(aR#{ucPmy!a_W!zLPoANM^L*WW3C?bEeH zBVHfvi$uwUs)vjvzX7zExeVF54HufvrD*iMo^WRBe&H5Q+YjrC-dO(z% zP&Gq->|{D?EsuJ5-@sL>nSjO>tXHiGEl+4h$?_}UZE%RUwyK<`up*VROd1I?zD;H3 z1d(;eS{MN{aoVOj7o$9~U~$uOIPs;Pxir3pN^mUDd(#rQaXy?EbBfRWXZ8bA>tx~m zmVJyUh%jH87vs7J1Ntl9lNc`efUh11ll$V0Wlmg2pj^<(k394TSH(xbvcq%Wd}S~V zsEEf;Hy6=A!?MIJs|J&DqTul_Ggfb{FTeQgaYo)dlt1jnf~@CPURbmtIBxyUcqQy& zBYwm%E7I>``}YdwsV4*Z+r98Vuf24`P#leQ+QmOKzmpNK`++lE2)@FVWITs+_B@+| zM$bhcA#hd2uIV4x595Xvznor?IUTRylk8<`_g5EU)&FCxp7pYgN0OPv)j8~sIuknO zRSmfN`{OUsU}h*)kV$wVMl^0t=OTkb&Q(;$xD`&rk%1r*U$lqjy(oa0mRB*TNuSYB zx5e!ywJ2!6A5sclV?w?N>zy;5a}Ju)l7VO_i0#Dwo05dQP=@Qefp}NB42={{u<`{{ zVfPzJs`+mrkiNJ0IVp-2HMwVc_|RI2x*pEP?g(d!a(+SE#WH$AB9^v`t3W9C8Ht)! z%F}(;h*g6?*d2cvk+_?%)#)71^vgXoTDq8Yth|Y>_NruFQ!LlX@bFYn7oJhR55Kg! z;L`hCY}vM)_FPFIpUwh(A(F=w?5pRv;B=T}c?L5@#i>KWHSF_KVDCOwr$SSwb6y=~ z`X{}B_0_(>n-mz#n(w`ilSe+{qJyaz8~vQ8AZc4(I>`A^woM_v{O`=js$-zOpaU%q z&xf%z2iP&p;AL$EH0qyCHm3Z8B^95*Bhw4PP8qEBh~s}VCeY04WJn$cvRh{|$0iEW z{)wA-zuXx5GGh=Px73!KepaMe{?gPT{R6kx3C5~aCEUGo2l@8tDX(_MBqIK9C!BB$ zKO%WCr5z#P||UIR>Ogu zC0j^^`&_3%MMIm0BBlJ=dnXyms!(VkWfw}a?sFX^6bUIU+DS^J?Oqv@VD%)u>V%2jn`%y zadp+1e8+#nyX~74MlTz~@*Gv^Pd7hIi{{Ah^Z@K?RCBEom_QUNYth$pK#tvZ6vw`lZu7gc8 zKEsR$Mzl%jeRmJp0w?|ji~Ua|kc9S;;FqH#3Rt5rTDZvw9+_Xp-_xUbj%@-xXO+WG zWuJq~ZYunuLIbY*mxrs$)xiIl;q=AQeD^eg1ChQGS9V&^W7FT@dH310 zZCx*R6&``FpWk7-^FS26_am#_^Ko>x4*xb&7K&9O;LJXE?(jN_@_0Em{%Qc6RGQ5f zjhjv@X*P!CtJA`r1E^HMU}$->NRVsykC7=MZA(ybp5J!-~5n9%j8hhWM>wAXhV)CiE7~=oZDnB`zBjxbjuA zlI0mD)cEjdT3&O8Zy#$%6PAQxh|gm3dv-SzkC<1ot3L|6{nbm3%&Moub!A}C&68Zy zJ&Yzg0q%0#fZME0a9_(Da%CNl|r21f6nf!*P|MCCrfwx8AHhUQk{U=WMrhg!hlasDiJ z+%4>~l7vB3p7=Y-ksp=_7X7)FC%&Hl3`=Lo@ZLR=+&=9VNNoFv0sBK+|yYC_B%67WvuaM2Xeu>R3cmm%4&a*8WV@O_Z0oj{J$+y76Og!){ z?(f>d{tQ*d6AuKZOS&a`=f%J$k38INd;?l_#6WfiVtwjyzO(2Nkr^n(8~>XG*~aB! zsml4#wlfml)6T(=rn9hO^+;-_z6^$)ItL#T0w74s4vJpifK&S_(Bz&uU+sShH7oX$ zYnKpY>mP%meK^s6<^;Ko`*CLL6QcU!3R~sa3PtXN(DG6bcCUH>a|@=4OBPwu$DeKZ z>-t>up5+O|ZWeo^IgI|QQX+bNXRt)77Ebz3VQvFoz_-)WP=EO+!WN7pZO4b>4!K5L zWLn0Gn;V#Nm`yZSRCi}M1+>n+qvfh1oe_wFj8znHtH{!OKPCXY%M5#wh2^f z+t>%SX?*=&U9NrmLb1ipPUbz;lwTM%hNjnP@`2Z_aCz-ISfJv`?G<7n$Z#LuJUNKW zS@wYiY0rd|F)zSY;(=(w#(g;LTM8MI{!MuA-$d`*Lm-RJM!D-bqKax8DE+4_@VqX; zthF}SzRys!PJ1z*ro9&Lrwrqxy*+TktH(@IHxaws3JE?fW*O$Dc=7KibT|y+&13h{ z>M35ZH>*!U6gz6 z-@M2JNOs`9lj{Tqd^PFmF(>icVz4A64@P>_lZ>?aaHwGzO#b8zXD0NqLe(eeyki6& zlv@eW%pC^i$kVt&W9~Vr5Ndq&?N@g_h2;W=V3C(4F7CQc?4uTw^ua@mXO{@fs_D(R z-6atKvNy}G-akc%KSkb7?cOH?WCpMblk{ciK zzd|{BVW}$q9YrzD;|28W9m#jUKFOyKI0500{2Q8oE!y;r)fM zUQ&*0zn;d2r+vqy7FaFpW~8(+W-?;!U5pRn^f7$$HaHTg&$z#ndy!uw~KQi=P{P~zTNtgBZKxq_!g z-0zQrqRtYDl1iK#+|I6a$iX(LCuF(K1^n*e47VJFoT=hcPs?ZGlQyv2I59JW& z3O^|A?gpvLF<>kGiGcobyi#OCi{A<(?xo{U?p+$`9#zXODm3ErH_u4O?g~il^~1VD z4*Z7ONd9`Xu;UtHPbcRbg*SzR_}9Uf_-J+<7zPxBV&w@4)7UMJ7JQ6hzQf?O*c38G z4<>h>c#!XL^YGpHaCUb6a@gGW38a}h<}ONQNq-&_`%T^WJvI|I=;y+g5x3aipk1Pm zceSB=eGCTd|0B*`?1?(w=J@2B0W6b>0@(lycpkbJ#%H}}Q5E0udmqEQ$K_yIX+E6s zdbdl?8}zt+>rq-M6Ibt2tQ=oN5j_S z4Lmw{2N&O^e8|~K_GMuqs9p(UUcF=K%E=iRyK^*&iaLXpdm{LJwf7j}{Y8j=`N6FN z~&6 zv+*iH;$jrYqBFK2DBgf+DhX&IJB^;!sloKgN6E^mZ@^H>5Oz1Lf>o84G-5;u7N7V> zRr@xB_0L55?szPwtHt1j8Ip98qbFaZHG~%*9E_juKZ9XsgL%LeORiYkgq2){dMcfR z=%Xt9CN7|vsi$B?!&N+@_X5tAMG_~A>sWg?Qt({$61(PR@DXz6%?$&o{hrq%v3e>x z=;z^+uqaAIrUFa&8aaCJF*C`%2{x)H+5I`qxFK{D{|y7Vx|amk7wx4nR%Vi@%TAuaMZpx_%5mFTYP>*)&x?Tj`?x zno)zu?yHUHq#R3DO7xHbug`46=lv||N;FK|8wCwXEyU!E1uPc2EF)H2M*rg+jdoSR z{<(W0`)w4IzN*Cd8#Sc&!(jZlCR<#ccnqX{OT~7>%E7tm3jg-lig$Rq@b1wz)aQT+ zKL2RQje{*|V0r+&&iV!OR}aS#xgB7>RTpz|hVifc66C7D91Li?M%L_1V7KEgLjCY% zINxI&ys}E<$SkaB@u~pi-ywZed#!G^*~tmZ~)%OdQJ}Cl_sK|_vDi! zvWkZt7#e-re!fpVv)$zfe;uBoZfGfdzo~(VUa4SxeGjgfd=>k#oqhTLj@>5;w)t7m zK<#IEdsaOOdN>oOC0@au?VS8E&f<%=MDhQU_w)N}N6_`k2^jPEATK^Qh&D(JM)#;- zY#UiY@}>`^VmtW-)|Vm^s_ia+v;!tP~|wOBMy?jVjdUxZ#u88`+j5qGzp;N^9M z9~Jh)Hg~@>@0@q=Q(lo8f9)5q`ZWnGb~mC!y%o1?>}3Ip(PVT>0?a=@9VZ=gMZb^3 z(3`e^!uAr9Y-oxL9;)KeQCG01bPk_+Aqb=3HXiyULm!cOuwcR%qTKC7<;AO@=z|_T zqHz&jW9(tV2M-unqYST3YmzEqS0DY*n@ssOR#+k`&~wKr9X`mMxi8DY4Q-OVQDhHG z+s=v-x4(r+?V9}B7>2jHTX5T33BCz>nRnB1K4-iSKk?ZOSA8*He?y||rL>aJ(&Yo0 za{W5H@ZSQ+|Imy@ArkbYOB$^f=GGdix#)5w9&J4b(gbJ)4ucVzsk^X%sD$s}m#%i{LV zgD^U*8E%Pn$(Q5$JbHZ~l)c~rDgJ6V!2 zfllbv;?Zsg#pT;BL#3X&c-Q+RmK>D^KTQup-ukmxyFrdeUZ22aFUiqk@*AN@Ssvfb zoyX42y$M}0>%i@PqR1vLm`i9y@d>V3qJsk4BF%IWPWchUoNhlM+KwT3XyYxmX^A!s z_Yiu9F)6sKcNEXb8c2U!zb$mce~XjnC}W$(X!x)4JihVX3&!zF>28-VaNzP%YMf$C zcC3g2Ga12uBQPy3o)|$mFUPZQQrYq*5Bk?Q4EiQnP}3taTv0;>{l|5X+t1H}g<=ql zbPr`+5gzE_I)J{r(80=d*U?`y;?VPPuV`(=Qf%2CNPY|4upiZ9Nc!l(;w|+P=y2b! z;Oz4n9M2DjqNW6rJjor++v_lFr5ul{If@4+jUh+Iq;rLe-z3TYgwVz9ht;{NY7LbLmP2#VgGvLAF1lU-SPFBnt4N?1+z|M8y_*=z%{ z&h#7c+N%gFcQ>#h+XW_Wu^wL+CU|zvy77Xy7IeT(L!$V3v*6)I=nJ*L<=eI~xuyg- zbov%r>W$>zZVP#uhwcz`q=r3K{mX0wmR3(q6&@TS%U$w!K?;e0XBQ6e^Sy24Muie< zm)ry?v)AH_jH66H@H)g^IgeKl8nAcr(X_PNfL8qqr3?8H+^U}-y1mbmYUsa4Pnkjp zxIB>Rx@2LnyDEI0Gn8-A8o|4CSK?1I6*{P)9jBUA2|cSs4Cz*-lc)PRBch4{D7{z=n&WTcyq8LBS;T3m+7Neo0Hi7Vs$!LDv0$U~a zQSa}^u>Y`-r@yLBRoOrO*VcwV+%uiWS)@Va&NzGD;j8(drC!u%Y%o5ADWLUdC$uL8 z@_>bYIQ@YSzZ5zQoPP@Uv!yj?-6Xih{c>Qf<3+M@!FHfB9r*j6Fyj!I3Nf$j0sSW8 ziIDO5Z1FHKmC=N}9y!sgUFUG4*MR zv&6F)P@~VSv;xs^u?%m~2tZYN5qwnb!bQHav^HDt9Q6sl17Xe~H}f0s7T%*f!h8AQ zc}wa3xql;B~rdo1-}FyqTgr9&=@7b4gMt&KR!Q?xz~o`?J4ot zsdNicv}2h0GiRo{&5*8$J_qZ&$IzAy8wsCggEixq37O*{hC~%mrI($hUXUyOjXU+- zVL7^~JTKmXQuoJ@C-(&F&p1(+KXI`BR|ZO~2!zAw!}#=5LZro73uCR%5s8%#*!a=) zc+R;P+~useFH@%Pznjw=e>jixFrHMF7{lw2NYEr{OAK;I#lBsA&|ngQcXkl0FYFbs zyKBThclHSyt43CBDUZjE-w7JOMdCF^GAw?X8f-|9Wv37A#VJ#o3k}Pzz|^!q_)bqB z}*7unqX2Pda} z!oAb<@Svj_9Y4T}J6_$zWxws_2lX$D7vDIB-I#{Ev<^_~nh;Rzxy(MhECn)Kg-)?@ zf#jbK^vR^dV#nbXsJ%Q3&Z~p|CYX zIGg*giEi~+(z|IH;=(Vc^rYWRj8&V9Q{IwnU`(>Mw*+|eUDrRKv7wS5p;v>hI$b z3)`0jp|aqaIX_46BJRutU(Gc9x#1gVHlIWP_gUiT;50}QcsV~79RjWB5*&Pb1|6~d zC76EFrzz{=(INj3T1j4mBTET-l^fGS_nWXL{R2Ad+EcCg6?BeBOYm(g@l~64L;D*K zm}&T(`RZK914+HO+#v}x;`8y#%Jsb3046&YVxrKQ zu`ZXP6|Y6aV&ON~95ET&^83XOu6v<2;}ssBBEdxid_@@#Hlavv7ybU8(p}FKsL#Xe zq##Gme#RReEQl0l((!e0r@0g2Udi%LH$uQHdLQ1gZN|5aRifSz!rNLl2@;|yA1(3$ z_xt@gs38zu|2fGm<)Y}RgLirSXE(vOEyCs>zS#C)G^!j~0y*DLpnGyA*j<{;9on7H zKYR>-_;?fi{@n~e>YkJ62;pCC(LS(hY$bDdO`!J-!}))QR`Ty=NB9lfY8LBv752vJ zah2lj?05eN+SZVQV^`O~xBoU$%bqy=P^nIdNdev&GnV?eZe-nb7Ri;h#l#&m@Q%wo zh&erjU-q2EbA;LO7j-|@Ge-C}dcDT6<*M}Y=IwBF&~Qv>Y9_n#FVQcbACtSaTj-D+ zWgfUJgS}i?3QdN?xsFuNL|8D<_n%Yt!maXP*I5b%kjD`0z>wl9d+OQ z9_%*@9<~=I;IMKz4NUVw1I>1Du(#p9bJs$~j79AD15=pzcnjMtoWE9G4Nxof6~pf- zVRV)s%hOJRy)+&~;rH0^Y6%<_qsB!Q^?1jh;;-?#+{`Ida1!*f@5OPTZm0n@6_kHk zp-CTadPb5Tmf)QqkFjdjYYbgc&HcOn!a4OJa6t7Z%iPgHei$iJk!ctn^}Z?U`QwdE zqCN<*z73Z?I^o<53-RFE6f&@6HC{3r!h_mPAS&GqW42WY?^YjvKrfel8{^!wD{Fp2& zoN0f|aUJZExPl*2(s50{BbE7TO*OeL#2@>PC#E#AS5GIx_|MWj(PkXcu5^dP?z_gZeq(*XGQ=U0VzT4-e%1S0(8%<8%n^bAj1sUW%HI z)`8@y<@ifpi(9XnfHS7WvJC?DXW>_D;2baOJ*JC_3)IJ?}RVyh2I#)+&^Y zY#{69+u4Qfd03a71jFw4aB~SR_`>q|ThVm( zO!`-}73ITCY0QK$tUaT`1HLzrIy2WkDqv=jhh|gsm8a+#y&w3KiXhIWoxIe(;!W5jE6eTK%HiV~h1t$&o`+NcX=UM?bt>%&IFL$yf|K+oTQ5W!!jXaOOR|ORlVrlA|F1*ImrZGy22U&abU3UN2TC=-gHo6ieC%h-R0(0b=RtRqPTqO=X zTmws{MqU5pvfze7EDc3M;(s)eRA#$y>eG;DWM0Wa=whT#_wxqT}naFy9g*7Jt^h-v`WYDGGKS`PVW_8zk@-39d}f5ZvK^<>b1m6-PCCjQKjqS~8h zpqAz=PV4e+W99kIkYuZ`(eW^Wy|wt!^T^KbCVyT|!*t zN3p%DqrvImRs7>M0%RA|;lqS8s4}CJIC<^^r)8Ej=|Uzb{FhBuoqdOi5@jIseF=Wi zvO?Ew7umbx`DEb~VIHzvoBq922QGg@aXmalo#iJ;gL)-a#;wI2c(uL3k!;0vy{fxGA1rWMgm6E&jbzoz{H157DD5;IwTuS?QGpPYZSuzs6*U*f@?j zX9f{=cn#cnA;Uv94dbfet=MyB5UsAhLBN6R-gr`AHa4ABp(Sf?!n$|+F=Js8-i;o?Gb5HVvz|fVxO4_NVIN1l-)r)+ zCMlSEu$9~$`$}Z&WzFQ>WcjG0G7!~xlTGT1L^>;w?F-8k`?g1e%Eth7-<~Cs4ZjIz zE5DP5jnTwx$YWs!Ai-P8dPF|Wa=fgx5z>ao3z-sW@!&h!^kafBw~@XJ*^)B2yeSK& z3-{5c4;+*JX0yt!92}Fg4m)p2iw7`A}|5dOM7ggxO-nv4O#VjkV(%ykJ7GE)6;*{Whu%yqOqOnm^ z4yEsp;CO|B2O-+dPH;26Y3{lWh#8llPT z9a-c#hs9>9%yr{q;rv(Pj60{T*AtffK#+_RzN+T`z;)jS<7hrNKi z-JPV@Y&dLaJkL@-Zh%gM1~}X#0)t!=9vLFVy-I|?QPl}p9k&P{_%2}RUR^X*!3ND= zQyi@^l0Qs!rES{&bZANgNis#0ZkK|kBQ@v%9c8|~EkN*)U4n@1AJIUyjMV5DLH0Ze zetz>y^7Weo99($^_qv9n`Ja`zMb(u~D$ih60e^A(ZhfxOG?7o6%gDt<3F`PmnO|I& zj*}f!_^bW#Ot)vQxLQ98FL&ATSFM()bzX&D8F&eAJ&?sub9LZneLwh8hM59;!^6dz zo+#wt_g4%<+=_7J>NNJuT7@=FhzDKemt^;GXB;%)7#;FRwZ!UxF&p*e8lS)I8`LE; zn4PnPyBozp#7!Ic%TiJ6%UROBeE@G*x`5stR*cK051?<4j%Vx46Tsr*Yr%gK10PPb zi@}nk)gaD3SSawM<7KeZ{|i|adyK4pKM6ZN_7S&zuSorbDmG`@CJ5{4Brn%`LGig7 z^6SETqHsnTr=1OAk8?7>zbzK$Eh&QF_;x0CtieToC9G=nNYEZtNG@9*70#n@oVKNw zjofAf_K$Ajtj)1-{L608j=zN84c3!lj}@$R`6Yp@aFg7>KaDN%T+i#JJnR*&>+zP>$>e<7 z8g$K5E_ADhMo3tUeR|5|zH(-ca6fO)~&EJJ;($1xw?2o|o?AkUDPUrk5emTq)?|f}w zCsptA)s|k^oqB^`6yJa&Yt-nNlNT^a$())+hr{7OIqH?(&!W6lY31lv(F}7rI#c+) z-;XF)xQ>IBBn_BcFN;f?Kc93jsm1^*q6NAtn~VEOdC_;=e<6u*AO&fgqE56HD4 zO&m%U2ec9NzsBO;EXN4d)=r{HF4pX&33S?lvqv zECI_*&6}+g&r%ChX2h(Zry+yG8wH>$=D=tDLes-D%bOQ66wHoh-gjT5dL;fDV**D!L#y)i04FLP~lhB zs=Ws14>(H_`uo_k+Eyr@Sv~ry53on>ZiD}Ohrv_69v<>adGf~t5cnq@9~doJ9sY__@Q-9 zEK!)=OLxUVj9wV(dHqKV7b)P;nnm=F?`TXAGg8oD4~4EJ_)a<;*Y?K2l*!)g|MQYW z%b8qs)fA_7w!-apKX@Ez23{{0vt3(W!GE{zLxFI2{A5{+g<6T|nI6iGHA-ND$umfd z{)j!AGSEDA3i|$-1n)I0aEPcH+8;QBo#289m=9n}cEZTsZ=w$>xu}_GDJlsaNG)1B z$@+99eo6Tsp0;)3?xm*Crn?;1v&$B+02e# z%y*y(ct`qxhnqJ9-3^C@MSaBf=L(eX$ir7I92ebL#Xi`o(I1Xx*n&4)PqEQ8E+W;vfAQm;7sVQSn)L5$E&d^UDZlq& zDY-hL7QfZ~0`bsP_N*lyy{oI3x=|+DZ3|}RIST}iYam}IIMUu3t;ZMdXX0n200^!> zg1R%K;N|=g{G(|P44LqPIZsUnS?k{rrnn3}Guz;mz+lb4w+_bq+%MjrJe5U>#zUZU z2Be4Bpg~^}+V(HRm%WD6y5TG<2{#ZK-M50PKV+D(kOf-4Is%^VT|s4+CW6n0QFM-^ z7T;!g0`KjqAXY;(i#I2%K+oo29O9A#Dbe@gLjKdRV*KYnb{)DG`xV7Snz%VN2?G};3#^fN_>iMc6GNA-8E`Yj*uUT8KB z{AG^zd&(fZaylN^A>{K<%A=;CI$ve+7cSTlzWL5r=$fCvMo;v>u+SKoc>V?~OrDKk zDsWATrE$pz8TP8(6tAbP6?v$?f=7#QkT*u>G3ZV>Zf1t);y;SbdachJ1W)P&zbE2O zo(xp|G$dO(!KR}rpjApOd^ZW}w&m{PBYiT0!NuHYsT+C)` zUp7%$$fVT|pm1>%@-Z6d^GXR%oKrwArF4kd;(5Cyqv9(GU3su!sut8yM&UhA-C4TE89n;n&q%x+ZD;Gpcwe=I+(mxE`r0sB{<&a1ukgz z#TkP}^0JX{;q5bLxHuw~v=&kV@9j{p#szvmUcvkupJ9hUF3LT+02&s2h2uJiu1l&( zQs^9!8>|yNy`GRUbP5(8Z38Ga=Glw(z@=L=u`%s47_5tgi1BmT{zPqlO!yYiB|Y$B zb_##fc$9QaAIxP>IzZ~KHuh=I64bXUfXTyZ+57c3AZC*z+iYJ8VJ#B0vg8X%i%rBi zm-0aNzCMVrTSI|x|IN{O%WUttixz(!i1xN12;%#91VF((MJcT3>&DPp$qMHG03e+8(>#J>1!vn<2jz2ddBT*^uY^Z?-oooA0xxJ@Em=J48pg`_K~zg9uFm?4s?sWO)b)i(b$JYA z5Qf!9)p(4{66mqK3L0CMG3Qz8oW66VX5M|pZ|~Tk)t0|v&Ag@5)5wTg-b#lL%^^(Z z{w@^d4WV4vLFnJ$aP#M29Ik$mHH;6Zo9FA$(NB-jGg;=s_q%28Kk2NjtMZa}RP+}&{vhd-{tkOnPy+B}Qf|M!>e*{Ol|lj=e5 z=mWeQSIB~>9_znR04nLiH^^6tj_c{fo~#*A+Gk0gSXHtE&O)|u?*{x`8w^Gdj>EK^ z5)co02kFdG9vdrg;oj%LG%a@J5W9Da;s-Fx)Sn zj8h9*Kzrk83>Ir%oY!{DN-jgTc~B5AOfap|A7$ zFnV_%jM!Jj2cJmbdvr=Mg;y|_uG3W1lEzgVCQ~1~3a~gAhbqRxS@JxbA6o-dYt0;f ztUyob#ij%NAgsi$9!+Wv!(oZ{P}|DL?X{mEV`4d3z5FIjty<2^$2Y?5e1B}u`b$h5 zg{+&wWysuY4a@Wezw0Jl-Whg~TK=3RIwEIN3LXS@> z>A?A(x6wuFD|2;Tfdhoyvg&e2T4>w=t?@}18LS63!W-z)oXMh2%O+8DnLcC$oUz}a ztB3oa6+@GoD(!tXm##N_h}I+gseN8EM2$124c}Mc_2IQd?Rz@?}reg5j;Y4$SGQTf5kRIt*qITn(Sp6V1k~-HJQ?^-fwNyDMzFmi0xd;oR*5Pbb zS?X}rlDuP&F(_^-^>hSYvv+Wd$mvO3>C!3-ZzO0dANta4=6VAxT+s^qta4e6m{uzGw{Lat9*e z(4|gxr9O$@H-3!8Q3Ei3t{app1&dad3RwWnkFZ$X1Lcg4gU>rRw0Wn&qw;3(552K$ z*04y?m8yME-66yK3kPAbYXX{NPGdFB#V9%~L$>w)!4d6oLL2fq*t+xih9XuhW32%*lL%F#DY>b)C7R4CwF-HX- zpX)Jr?Jw-nOugvUqeoDGGvdPnKUD1*NoO9B;%A=Tv#VauamF(PcH!21{xD(+@16Y; zO_yZDx1v-u->=TUy1f=1iYjCFBd?G(HP_+Wje3xkkl{CCROm*V67sM@iAvT9=h+is z{xh@@&fhh`!Y)bhzifc(2Z~5mstm?ow!wWfROt!J_jn;72CJ?Kb4LAWT`bSedRyLlDn~($(C641;w*vlj#t?otashuKZ9v~=I>4AgVfgsC2BgiI4FVb$ zWE0ca*-yrn5fTY?22YLZZ;FP{~09p4@!ClTHz+ye5Pi#iBHpT$K1C~_}kVPQ*1X1`Fj z2mFGNu&-q9A8no!x}I7px>4D~sqj$q5r$Q-Wn=u?$)43e@S%0Jc-AUo3=|l=HP8m_yd4EGEh@lex3=$>niN8&?3?&UD- zFHxhTr?|i)H-V=s6Tq6bT*vLVvoO_S zIeH7MmF!o8;Q9UtEdHvGKNg&T(sgIZv(r1VA|i#IiwcEhW0YXylLT&X=Z5&e)y4e$ z>2b7lh!pjHpv;3txQUm}&VbDA!!c&oVCc{t#q%P@)7t@G(BnxN80~(-^n`4f?^8Km zaOep8`nwvxbnPStQ!M#pA*1;A!c;DQtP;w{Un0kz-(;FiZ?Vfd2}TMTF6RMu$kxAu zzv{wl#5=Bd)|DV!WIG=tha%2SIgisFzA>ETMND3P6-`<+2J+4tkke|H(QS1+i>jK2 zEgd=-mH2^44z6Q)4a=Bu%TTs_zXQK2^^K(*KE~4zcEHrBy729mFY2FPhppozp}|#0 zl%lDRaSJDw+*o6WMwX*WJ_qil%gl4g$pC*oeXtdkrp1`)ZzKBUv=;YuGFoGQ3|-Bt-ZAA>(JBzysqgX=;lqH}u$r=f;o2$%_RZg6b`PZ|wwbJ9!3AqX;t( zK7w&aw`0scX*wf88Be`93a;I+gnhzMeyG)ni+=_3@H1sJpk=}Xt(9r}x`F)P zFM(Bb^Ngr=%su=NZOb*hZ?W--YShW?2Cg~LiR&Bvp`^3{wx%wDHA?ZKCM!E$*c%1w zoJON}-8if~KAxsMaK-tnbkV)$xmafF3|y`t-0h+Z@!G?5P@k2CFE>}fdrJzwFAm_F zL#_BMpdVjc&VUHtKj^WOfZNN%xMR=UxCyf|T;1U{%K1_p@-4btL0rvkY1 z3oAag-x_BXoq?EG1D-bfEy(0Fy&Hq}=lg20gihwZE*Ge0~Iy zS4#X=SOK21_`}YPorG&{xnYUjezYvRM>I_`Aneq1RP4GAm*#IqjqTsCkqLSJTSsBp z-CX!IPm&i4ycYQrw}787B05ixLDjV3d}?bE>Ry(Fk!7#JPsm)@uhPM(5_WKQmn9}` ztj5H|ax}XBp50t93#R9{umZ|EYl*d&Ic-0kFQK(45A z=1FM#YXNh1uEt^qEvBV3mmFQcoy^6fSUI;G9;Nn!m)SvL9CQW#8T>=tR!3OuyAEWo z)I-6VQX!*V%G{(r3Y_v#@mAR{&}L#suCF->5#h5$3KPeW>AObZnh%uO*4-nYCmh7o zlS@FfqYWZ`K9UzL;~`^hDWqB~?! zsel}SJ1`=}3$INlh>4NtGGI0?)yjZ&r54cnsX^Z?Ek@aTj>(RL>Dr0W*mG_IkG>iM z8(mL`298g_g$c9ijx+Q4-YEslYr-g2w{RLX>sw-$ViLTv-;3kVe`Qqy$DGfLgZ@z` zN&B$|d^2GooVcbzzw1S^x_on

SVhW3vY>x1Ymeu{zhwmFC7(MlkbHAv~%a$^$&F zu$n99$?DZsEL^y!ReA=2N_!j5Q@e;86zd@T)l^J*whnJx$%kq4g4wqHQDUWEGvR2( ze^_wsJibg^1K*BPR8$y%XU5v$w+#}sY0*XUDeO7&`2B25`E};o7LO0!G~znG8uQNv zL5oQ@O0@igjc<;V@B%bL$wHiUlgy8xd4cX7#&yD;dO4Su+6 z!|Dw_kQ*N-(J2r5z<y6ruBkBP&3U{jWkMBm zOR#l+Ezb9y2v2f^cf)jf(pDde3FDu@iHeEDDm;Q0?!Syf?VNaK=3DV+cNOefE5Sn- z4WptZcd+e(BVoP+ifnajNN2(X_!OJRR(to_Uf<@5nMVsm372Y6|GNU#t&Ai3Lvl&$ z%n3Zh^A^s#{g90h_)=VB`kYXgX^zchzeVl^TTCAM||`~Vr>=x)e26qcBeJ` z)hb2nEj1voqKB(uWohU;IsPlmgZVXzKukuUx_mUWD=&qQZ&hJX(I0$uNXX?ZH=xxC z#bnewU-D|n0-|NV7YrIjJgVvqT%k zoCrzHBT?^Q1whtd7C5bw1s`z4|50?NVL5$W9BwWZ(p*X+N;FEUXRlM{5}|~M^e0jj z8KMkHrMaYmN`y2?G#GmJ+M&=SsVG8)&|pr64DWfr`jm4$*ExHy_50m-O`|r*U&|*; z9|i$eRzN=m+=kM_sUUMenNz-;L9fDKtxGzIsEo4`Px0p{~v-(Ej6l!*~%b!K@u-ElG--{cLS4)(*{`&p=d zrVKQnia@03F|^JI!|OH2m_z z3}^1>f~Qu0P_=3ntb^VB^Robjp3!9Rhy*tIC@}vE+vv_CN1#$u5%$Q{z^6(Ho|PX- z6kRJZQOA~RvCa^lsL$orpB}(hZSgk$Zgqmp!3w;PVkZo-)rNNedNA=6G7WbfHZUoJ zJ^dod@hcUwra^&?S})4wY?kBf|6IV1#!;A?8N|)3&cs2byY=7UNfg8qhv#gT9pzJLj)L2J%j~0VL!`V0EL zg`<_x7&d?EG0cui1-s3k>A1LfbU85>+7C-`#kub){$A~%FLUCNUu2O7X&E$5Aj<&fO+V=&y+tN>vz}a|t;A_4t0iB(q71 z5sX^8omz^l6>4OErJqH`IpR7@HpLgg@;bZ>#~~q*NI|kT?ANncano4r7+NR zSK#}}i)4Nr0Asv`hn8K2y(vTV^laXR^K?7M-QqpF4?7@6uo}qY#g5+72CCWw>sh`(S?hE1W2QBe<|SjC__9hojH!v1;Q6%&>03 zfp?F=?PUwwJrh_#)Dp&`owJ;QbanK9(E>wsKO-9&N5s-PJrIGb8x9;2mO$+7u9-4 zb4RUi0H|9-x$G4bHwh8&*FM;3e*uO^+n`-wEqQ%A34MOba|>2)fmH^xVE(*jcr>95 z`nqLc2G6gXRc*vDd@eo}xr1GsI0%?I3183Cz^?SY_;PSI7-{T+A=^R0O1Eh8e7Phu zQQr)vU!SA2fk%!edaFlulWk99p`YS z)I0E46Gf-knt-?KajgIF#)iIi#HsN~#5qA7RIz3 za@kXQc%}gvqjwscmgho!YbaTHd_M$^Dx)?_V<29I_wl~df@_E7a63*&W7gLIe7v&5 zM%kUh(Y7LV*r$Lw^S{wQTc+Y<+as{k$&!RuPT|g6F+lO1S0G?d9+bx$5}4bA%b%Sk znm6juXYVvtSn0+Tt)!XAqaE~z`&)YCiaZ`%m_f#6{~?@cEMzP@j1yg!a0|!G=S29O zomGbtc)V~%iPd}tgx}HMd8f#|_8q2F=cF*vCxy;oRd6`Agw$QlC*yy&!71iJe+)(8 zsdc(wrPvKK=KR6)hU(nGcuR62{<&baoC8(^LsiQmQW)|dz1{LxSblgPsLRT6?P>?v z2A@f6uaX_x#j`u?Om0Kj#Q=VfBm%CA2cf(9Ar`F=g1YM^_H)VzZo&pvmOtBplRqQD zed&COex3GUu=5BE^ZcEJ!6JHmZ8GlEmSHKQ#Mm2l9lq4eg6H|-@bg_CEH4YE^WG@o z>;`Xa+cAP|Ow+@8ZwyhqKMWe5y``G3UgNtzVW^uuiIn#~Am-2A;H;u6V{|0bTI$7q zdW1t|R0cTo_0wh3E8(GPJU-2jB=1%%gt>#!Sga+=+W)Ns&bbu#dw-_c24~@L+A$b6 zMwQ>y24KYUtx!;Ah+nNH;*+XIX=wrvgA{BloQdN%#bEij0DQ{#QBxh3qm9obER$o@K6V`_tt)`< z85;$oI5(lfdRy|_M+Pl3O}NeW#U$uj2z-~bf+Z#i#7b`@ozC}d;~qSwBm5^)r9h4i z<_F_7d1YoiR0A#}3^7a9MPTE_caegwQuUB_dSFBtY(6PYI`tF4@Gk#RH;6X=AN8`(gU{qU?c~lG8ZA2;f-~ocW~S3 zD-e-7f&~=+AeSt2NpW`+bjmCd#J(Pj#U-v_Whp{l@htpvx4wXH<-*Dl@t*v>LANrP z@8ONWBQUD}BFj9xo6CQG1>XC9h10@L;hJ-=Fx{Y(?QY)&e$9_;eq>!GYv-Q8$vrv{ zZ~Bv#WhTN{sbr{$dBQMh6T5!YiLKrC25J^2!)eI_Ot>kA^SUa*H13Nrfv^f5$d2Jw zPCLT&etJZnmE;IpocVumox#P;FU1E#9eBps85%SuaW7|Av2kzh@M-f&=00I9)H}xG zo>yKh^?eGQyIzl>oieOPE{9g#QDJv^Ke(5^H>)~JVR`>akk{y=R4fL9-JXElRU^2t zQjASqE5dn+im+2AW%S_VsibbYEnVkx1vY&wgWX;e@cIco++Au!T>IxU9St`j6YW6p zAyd*nRuzqgMd^FbOQikWa@;umJ|3FEb6U?$WJR}X@!?2Y=4d~fb1>}!duYLS6NX zWdf?&+6uSz&xQwu4Un6nhikqdL`9y%lg~S$R#KX4k+P_a|N9Pyt)^AhT(0BPXV{Ri zoeSBr&3p&`h76ORmqwbrPr==Yk*wrz58k$jXO0JU!xPUKEZ821nRgc8iEYba#`{{E zv{EyWD0O6eKnA{hZ9*%RbcnosQ}{Zf9XE?Mg6bI&Rur6x7Edh6r3z`b#zTiyCR(tm zUw*>@zE8Qi&`t2fNFL&%7gO7oK&-P_OTLEmkcQu0xF`>W%MNaXuQRuzXGI`BdT^EO zy%hy!T8GvYOFZ{_KfbVah5esD(C>{(_(wMq(qAP)(C`G-6Sj~kj%dIVK^FwC%EsJd zeQ41+3m)&Y#>>vX1*@cvlZ*RjVYl*DY~M1KUR*v3M=!XIlhuymlg(?Po9{M1`8WxZ z=ElHKN(9NXR)Jp^^049dE5Q!O6C^6&4_M}$L0x5jMktnn?f+)t6^C@L##2bIeYN9e zAIuUq4EB%@r%ky7Yr^QXPz~-+ts39|J%(x<47iNj)49(RyP#}jJm$V%U$Lt>1(~!l z6K~%Mio1{CtjT}rniUJ!c8g;;pM9j_$0}h?dNHIfO~d-JlDt#P6tCH7vKan7a07R+ zl6pn9X`C_h{ix5iX^L1_^dSZ@XQ@n0zajUI)b8JFQ!UoQTA zV+B9F%Bjtmc&3-(&a9f|v1{!f+;-~$FcomDeEC@J;JpI+Dkl@{Gj8G@5fiQ@Gz2VU zb-~bl8~MYtI#{Y(B`x z{zF+gZC1NuH+*QDRB=W2CDUBAoy}8!#B`6&;MSU%;>R5iF?IF^ZpnsS!gWeJpyl!o zu(-RATm4)Jt()T@ah4-_Jk&#?2BhHCj9QX?iD&tU9w5KsCxNz2hK+^4oM2>D4h$x| zMk{qI`25rzt`1(gaYw8aK59ymLa9|)JjR#%$9G$UChy|j6pcmyL|NRTC&E25O2q=V zmBLx8G^tL@)zEvXx|BUTtv9vV;y0{wU0ELXTS|h zTVn7#V<1l!gR+e&tbF$XUj|O&JWfb*`(o|6Jp6}Su7zUA9RWGMoA+JMj-c0N$AIss ze)>@SIZQ)MXtE$UxMnPley@W&Rm`!fd_7XJPz+>>Q0(jv-v$;inJ0Rzkyzq-r;Rw* z`xsG83&E**QSjY*77R-5gZHVP6)uU{_)t=U(~Fvj(y6zImy8@7y(A7D3zbpr`)wGb z8;w7#UPDEfIrF>3vxAhj!3fz5Xny&O?742k=2-~AQB#`TIp&Ek-WdzuXlJpG8_hkOK{2m#6tS834}9$RVbhA!P&ulRy7rhcTS;|LP#eo?bry5*=%!6s&T+w| z|03x9dnquq%#|K`V-9K4T-X8EB9#4+z;;wl=aSYvw;4Zw5teu+@h&|(sOLE$x9pzM z9$j7NN_U3bIh}YdRRc{IT!6DGIq)#98+y88P>eq>#%z~nXTSP$m*tx=r^bzI%ge{r z#w$RhQJ0(RQGmlbTXEROiVS!3!UDtfEdJvHi1rU*2{nI(Pv7x8vp5;DFu#%*JiSFv z1?+<#@g2 z=gh$Gev6^Yua8C;I@yS{DBzx?B%D*348=V2rnhxEn|cEA>WIl~q%ko~UJcSTD$E%b?fI`{-K#t2AU)C^>ff2>m zpxQEx=WR-Hx%e2BJ(kka4-J%alp;xs9q%sZ)go+>Y-9F>fUAgH_<# zWG%?d4<&M0ZY(26iq)prvnLKyID?*bFlU-L`c|HTY@>I$pP%2CpZFy_w?__6ML(wE zJ|jt}UOddz)1vC}_i4~TJo(eG!)7qv4DvO+Q1Pl3{`%=HSmn#->ONnD%J+;coSOkZ zx%I%-x8m}lnUI*=hL*fv#rV%w@}gw~7j?B?PnL2>BKJ3WT}K7soXiAq6XcyMn&%Ef6)F2}2vT*@$1q;Lp@@8g{mm z6e?EoJ|&(pTwXv{G>M@>-ZA=rF1l~hL7ri*M^(EB?y$u_ONeBPlAqGrd5?9rv% zmkAd5>R&ju;Il0frmH|PY8rfBdx_A5?^LpAtYBc)O&A=zho1)-W6s&FuxHa3bW)My ztm-V`WmmCaS-BNF>bgp|KDsKfce#a`w!I)Pb_64p|B>bM9#fr(OYzHiS160rfhs96 zSb69Go=F$y-Zq57xTqt7!ov|5uIhsKeXrwpGE;DV$2GXh=hCe`C7GT3J@gus;i6JL z6L`}@?Mr>Qi}fpDsHg?D<-Eodd*TtJTp;iI9A-+rL2{)WY)@;VB8wiv1ao_OJugh~ zaIXma6Xptiw%K5%6GFBXqzXpCMsOMUTk$@r9twS$aOTev(C{C?m}^IfXTubb;hhzu z3VBwd_b}P~_d1-}_zcV4RB^G2Axk-X2L3yohVu1C@x{eUkZ~s;JB?b&y6>&9GhqOG zLn7(;2^TTNM2*w;<~;_2d^{od6*_MEVQaNK&P@Lzyil*l&A2W?)D`YRXSzH)Hj8J3 z?yZ74nIm|>qnVV5MWFTpN&Ki+fEDf$7{=!SJBsb--_f6FmR1<7s?DZ;Qaxa-9)lq~ z4|@CA_1vsA$?&*PowGMErxSHEL4UD29I84;7gufu^|XHYr;rY-O_W&BIAd(&`}t8> zMGzjT4^Myg5QU(TcxbB~c~yKC7FoQ6w`ucGtvJSu=mV;&sT1aAE7U=a|r7EMZpiHJUOUhSd z?&f*)rLhus2V&8$>nB!^T}OT{&wwR6bFi&%6ciO4#;xUwEPKZ&mee^Oj_{p{RcE#f zdQOHDg}_G@C65;4*6;wB)BONfN~^NAYsyUS$U%sd98XiDO7MBmNUn3D9_$e=#jxuR z&{^Aw8+kUE(##pGRI(Q`9;}7DbQc=pkVYQW@LfW31SJm1;JE%q^nZUFf-ikUtF4WA z^~(Y5>XJpn(n(BxNSin%YgI_>GlHStN4a@n5wO;a#54HCg?>9aX=8ytY=31! z4gQ&e=JJWO>FhaBU-e7q7Pbj8;_nOXJ^A?y{|(AscLdK|x4@K0Ex{I(lYFmSpBuUF zJKv*8g0osbh<21HH)u2-e?+*^z20A8=lTCgy;2@Hnq0-(4Pp>&Rfw4;8sKC-23-#8 z;uzHlkbPzfe!>-k1t&FdhF=pV#Ej$Gdk<0Vi+x~UatDirH=x`~7pryt!;)ouSD~gI zYEBB+&a7ry5}w75y|>|f=kwpzm$5iiMVhn7cgMRq->B-rvt*<Dm|Ja7;0g^cEQr z7n^)AKYIr>v;*+`tVVwB?uXNg+wg*WGC!N(SzS{10Hq2@A~y`J%YKlEi8Z)(LO%qw zUuM&5_TpyoqV^qRsOiv@;FSsa}NKzx&eOb zgp*MMaWXeZtg>_LXWD-E4>L7g#l0CEqSIa+W_Lc>bGvW4@ICyK#3-Uk;A{60sDu)k z7&V2H)4hhh+V8M@;!G<2m(dOOnjqqR32i-$^IH@vVJzc<~^QvUk}hDEpE_pZ-5-@-;Na>$%6I%E8($C7R(Hu#koAbPso$g zLL<3m0SA)Y6c0nDav?|Hz<1tOROf=DnFG6*B8jCo(^#*c1g9CMj?zw>(IaaVo_yti z!N-F^^s+y78R^64^CqLL>K#xJHj%6lAIQxPfwP6@LCx|et{V!3X7r?bCzrF8k#f+n zu?p=zkK;&|>a&{wva(lM3}a>+qD3C(O3dfn&RBXiV}XW-XRWe4qUT0ngqH4sxgR zSreJ$t@pU`oC3MBpbd}j7zuf2l$dx#v`}Yz8Vc5y;xn@*y!qe-nL8i>-PO`J6tsuP zzMmrG{fst}sgZ?xH`JkSh{HBxH<-RD45#z+|1E!>kr{!vVVYkg^y=3W@8Y94#kU?C zBSYclt~!_z%(3zBw0Ji0K@vSniW}T~6L)Fs6dc;QOIRqn1YcZD$D|x{e0?R5Nteyw zvdd(HM5J6Wt&gl$1QboFt{q8=ZMS_ z?iCB=>T}XSa_&;Fs_B6^J}bXVbu0!*p65Ht3t_`MGeoawVab6js6F%(N7Pl(f_rN4 zcpT5M-B62x(H~KKGQUSIyoW@jk@Qart_VKIGb0YUz@_gQ=+U1*_XZsmyc2b&Gk#?A z9E-hh`tV8264)XlnTM6evpK!MPO5ZEjC$BVO=oLl|?I{0%H@M?p*PCTRO!4WSli(K4e_m^-@_ z3XMG2l0q%ErEw|S_n-}ouPVdL&Ha21;2#M}d`)-1Jq?~W!ielDMe^{o2GdZJqf2fE zqUBj3x*k$ss;e&3uGdoBN(n+2$!Nmevb*p@{~NSkQ{nQ>dxYa|#0fiUd`Z-ZQreaH z2}#WgT(9<&Qs2>dT+j@0k537n|=~fwM=V+stKb#HQ6YG6y~rBP(+l_k_ZgW^FjRH5()3 zy0CLsGN*ZeAGdXvC3od-Bo67v(uv1xxjyYsbok>7G79-L@f^diUD?nvA(87Cxr$s< zoR8;U93wq(vq)fRBc`_8pqnHkFc&i_nwkI~KXHIt@$N9>nvDTA=g{_R6=+ECd?*77 zsRs;DNEX1P$5XM;;4?{AF@&f6H_58|oikgz2T50(7`Fa-Ng{7|foFLMSec)|are8S zSL#2g{Z$FS`(FwY=@00ue2mG5|JZnp-9VmgeT=XAYH;7Q+i>@x6$^35BBySBzLA&F zi;=w!V5RwkT6?O2{;AXGlIsUAG&HfMC=1qHjYJ34NS<_i5$(kLX;s}ah)WeA79Xon zYPJr_r+P#DyQ#2#b1`}tB zbzOsVJD|f(=I)0-=IR3Dk1?p_IuVoOsv!EA2$MD$gTbF1apNjCxO*nEVsLLUEYE!h zA*bfytc@4osE?ySW65rT%8?j+xH1V^B#(l>Yc4dtT?Li_F{se}g{E28!f_29_8`)U zo;3|+x`GVo+w4axz6RNBT``$kKeGzm?5>k6FQENB?&0Cn(t=@G(eiyFG#z^^RmaOL5Gbw?;4i_?a~yw!X*yZ@y~nGk`nZp z*G;y+oq$Io#JEb$op@#xf`*X@b{EN`T_HcS>Y2oMVpP~jV_V4ci=_Aeh=62yJl0k3 zz{O!lAa!~U9&S;Akhxo^^65A9`uO$ikg7b3=W~PaG^;@U>UxYh-ADd0f093;9dE7_ zB^nw%naSyY}D4Q+={r%xO2ccYZbak#bn)CCR37bLqxSvG8EEW@XNlm)JB% zq%yg$4?-(sAS+Ihji0T^DSS49w&LX=mfK6G+x!PFd`jr|6WU~v*eDj@83T0AHekMu zFyZcedTw1g>Ib{=_kdz}b|s07`};`fB>znCFmeSN=efWiM-}X0Z{X*p3i5V=J878x z9rV^YV%cT~{4_KLTZiO0*SISf%J&YRtv7(J#aG}%-br%pRSB8t=mY&2qRw# zcyGdKGPryTXaC!UYu%;BP5(WJW?fPA+mDr8-#9rmOl%|lsx>s5pV?*mu7zh=0fI$w zOTc+;Ft(Nl!w)l0{H1Z$dYR`|WOHJu&+ImVfX|E`b-j)6rj~=pzXL*x_*|0t#s#Ju z_+fp(XvoVprRzQ$K*2x=JggkXB>h-EdzOp_zR_^~;%R)U90M^G%h6sgMKE_)B+Tm* ztu)?S$|B9O*vqF+U~9iPJX&hTo<7Xy9EPvMu9ca%a%&k3Y?s7o-?HKC$uppJa2zaL zTZMC5D(Hu2o6xdXk?VeT8fJfrf%GrQoJYefD3Bk^>5SE4?GDW#CY-<>9yg33+EO@s z{b)EWTR}1#PQVkbotSFb29c(JNXV*tcr*75Oghy=#w(?x@are2FDk}qg_caq=q!G$ zrWjbhoKro0f?nM(&TcOq#xboauteOHiqvYtpUuzV@Xirz+7~l;RQ(&%xz8|V;XZJb zO@rD6*>GshX;L(OIqo|&9~MMVq$e+e!NeqT!2T3$KPHD+lO2$q*@9y$j$yrj1{ut$ z0I3uOaO)A{cBn<-mgXrq@OT~`GPMJ=)@08oi?g}A47jF<&urxNGTPIX%3R4c=;occ zm1=rS+dB~gUyX+Rkw;;?pDyG$&t)^RHDQA6Z(&|fJ&Y~ALo7qRsG-et*132eP5ZkR z+BUrf_sJ5>)Win!q$|;3`Z^>Btl&#nIrfk2!prB`jqHLDU^=qQ<8=+(6m=EMomEED z4MKT!c?I$JNTt<#$FpstEwI-RK*9bHOmWtSfi=?LRJ0kLQ#l+xBnNL?5=cN$JWbq{ zWs^PL*rp`SAAB<}v4#XQP(3WcvdWaWy!wgU+rLUI;er__ebt*(G_1juV{1XNwg~n{ z8NktL<6&)hD?U>G3q`e$$#xw=U;p$$FLNcrKJxSB03~MmAr_BZTFaJbS#Zv&xe#hE zLdVtec@qg4tRFNc5> zA0(S`#fMJla&*I~cEj*xZYT~~JVH11Ea8h~*PtzegKN*OLZQo8&V8jFH)fwH*X42v zr}wq-KF%hhbBt$QHSp|;CKckUvI&=a4&Z#}23*$hgibH3fxvqrf*I#VKxaiFT8}=1 z!+|d;eX#N79Mi=FeZ&Ly8@ z^9;GQ&AMFN+(byP>;w6O%U}jSr%@cgfv6-JVMow9wn_ORUD@ivel%7?RChfjpW2Lf zZQ5Xt*&@LezN2$y>l~JC^%=rPPQWwG&5*ai6!%qUflTdrv`wAQ|IwcXS&%!kQNcnx98714276FyP63h{R4_;Z>vhFHhrXiF8EsXw1dr-Wig)OkGX z5(4HrJiA=n2V8r+@v+kz^20C#DhBFt^6yJjkbji+j;bYI7eA4gr(1+)&SlbeuMjAF zTg&$quYh>TY1p+-1|3?YI3G`cG9kGDZfL55XXgamy@p{iw+jq)g1~BU8fsLHrT)cf zJj1XVeru`V=}~?(vHKh>RPrOWJFGF={sb+_(%=@F1i(zcWngqigUBT0!R7CV;b5FK zh<-J|SNC|oWu1`Z^&we$oU1kk@qh*Z^t_Z52!n%7Q4VkEnEV487pR=YiA4v7M8oSY6a}DAM4) zA{MXkRK5{$zG(uVwwS?B&iYj*zUtBj zL7EiPv{c1~6T8SKymupb+Bh&f_{%0ud=NTgf|&fr5m-C#Abx5*PQE(a#0z(IAo`pW z?6vg7Y{eve{<5BoSz8IyziD!3)1+|Y-3z?e{u*5o>w=}PzhL;uV|d|Z1Gp*ayo2lNXL-aFj%tpFD6XzL!0zaoFcDH4my_6#@7|_uRI#EBYC#Zv2a-Y z{wdv*5J*demxx{SVQ7=N_Gf zX0a$(oEnJV`n0I>m={#_nGXzmFG1-z#N|{KT;^VeEgBRr@r;*{oeSyZso%+Roieic zR4T5_@<*TUWpvhg2T1?h2@Ot1*|DF^0_@6Re{FfU=#dC$*(S-vOLq!S{QD?y@=Ji> zb=OE5ZuJJ43Kw{bsJ{UmsEFxhQZ~H^ZDgJe^}b; zUmeOjZa;q|(gELKkE|C+@R_}>A|bdhQWa#a%()4_WjXIThq%#WUD33yf{fYw1Ps=e?~ris%d#ZK3f@cN}?Elg=1_hfdP! zp@WMq(2sn_EjH8>GE_krueb!QkL-rt)s`4gl1f&6PsaFiS-x9g&Kk8&(wFfoXk*R` z)c*NSkaQyzp05;T1*Vd;IZqyC|HPC z{={4@5XyR!NUh{Q{J*10^msHD`8Hy&K?Nv!AIB1@>72n$HC$OHz_@uKkeAg<{^myu z^?$^Y^6yuLl7a@@l*s4Gm<#)_UW7ZEV2im9W+JsGJ%^gg%z+`OU>l zirO*OIF9?7T@4|^JdCtg0UfQ$r2l3GuH%_YCp@2%U8?iYF4PPZor44)Hbp?<=2#5% zOol^-Nx1p>Sv36=22TvW^Iow5vL#%JJ)5Y-6@CoBv5tR9W0e=ruan{$_J0s=+_)Yk zld@rjygH}PNpT|8Il?N#7I-<_OZ>M#qBZ+0;o7c3Fg=ou^Y@CutVap(=b1Fw?<<9? z7e0e+Qsc>+!W2;P_$XL$LIKQYo&?n+GHAE{65M?L39C)tft8mu+z*b1*9z{Cp*0CR zBbLIWL;OAOr6IH7-Ro_qF5~`txu9cREqMIkFOh3XffYRSJ*(jw##YI|V*CA^$$>ds zk((OSE*>W^SBr-|U7}>viX*uATo%f&ETA!xo_I6ms<3l+_g$fMhrb#O{;r~Z65-e= zwIAp4jK!r5YTWwcli7oC{++uq2@e?^hhqLLd&X%s{1?+e3OsJ(vh#Dm)p#Cf_`Dj= zcSnOt;!a3WFb3g(4SLRAKvt`y+We^EvoEh6lNZm_xKSI<;bzx*V)eXB5a|1X%n)rL z8-vAcPPC}AOKtfeR49hoJ-xI;bTfNKyl|yN4K+CagEoiC+a%77h0cU1EH?N>IQ};g z4c08q`5B!QyP4-7$a4kFOL1z%Xr|de7lz({7QS9R5*|CdqsR6lmUPM&FKcpb zj8pNy%A=@L5<(jUwlw2Tn#9`VGd0H%Y z3DfrkQ7%1#v`wFYxOOxe$V7vwNIo39@ss{OSqEQlRX}5081IrE1It1>iC^MX!SP@d zusLW5uYI3ElRv|Y+Ui_=dlt3bCW|Yj@^Dke2+$H{V|Kb4Yd)Dy??kL2_g8+#WaVb~ z9-0bEcdQgH8aATqryIlJ9V@V*O^juFK0%UM!1w!q!m)5~_TIsdeXB`goW3=mldphK z?**)-Vik9_@-G%VJByXhYe+%WA-J{BigiS;CW9wB(c`8JcJAf9qrCzWU^redkYonW z$G!m34-dijngLz^`UCtoX*YFk3dcir_rUnzO|bZ;!n13Z!6BO@5UiYx59L%?c0sG~ z$%P!=p*#)yP2P~;+FoJx>=*P+iyzt^4FcuK3G5f&C%Z6W7aL}`Kt1m=U_lg)8JGx@ zmv_MDTgUL2U<@P~5jN`g5>8=^GMhWbkV`qg3O)APVsHZgJ%6sw6n-b7;XzUSSFw=| ze^~(PF%oRznwy}aq)nr~j>5u+Vi3&lQ!c8j3rz}b(J%QMebv`Z)DAYnnvxPYAel_` zyDs6hEk|+BKMznHwxA1_ro$?`E%<@PGtx37#i4|nB|n6e(LBd6 z^a@U%yayBZ&Y(@cU-`^@8ZH*Q0k_&cvDF|GZ0278PA(fZ#x4fqaNurlxd@uG+#$a` z6^k%|`oDMqS=UChJLU&r#=J+=?n?rBaHyK?-%(c~nsJB~DQR%xGPNLMuoPUqya|KPD{u+6i@1|^X|Vt6G=UG#=1qGMFLYiVhR>}p z(AhuTQ1|#qqLMKmTcu8eNNhU!#xtu+if=+n)Fs+$>IF};hroC69=SA19fAiZ@cqRk z^8SuEm;U%ZDqVXCk902MsN%=umbD^#K6O5BoTtXkIlQ=X&yCaA-#NPS_lXT$^u>Nq zUX#eOWD+=smp{qgm9v5KOva!GPcW!yBbvr)v#}O-FzRdrzTY1XKEXGr&NNNB+Efa% zZMDE+@(%du*aJT;ZMf|Zy7A*RK7aYBnqcfQSh&uZx|*NieMMK`;9-I>^E+{h(41+S zGFa@BM4PWIz(XC+Xjj;OuntaP{d-mFH=g4f`$ULZE^qVHR%Pt&GMMv!a$GFASW5a6#Grt zzBe)~QKtyp?=?Z0TWCeWzz(i=;eBWx#eZ|}-V=N^_5mNwT2SbC1hyPO1;Z}vo6rAV zKa3L0)M~&JI@;uYR0!Bz_JS9>9z@4uh`cG^O&3)alC4czcp#t<_KemeU-kb8f(8xY z$ATZs!srA33kqRFbq^u3>LS$3)glRYp3s3COzkd z-u(#dUD77ltNIUhUVNtl-p97oT9h;1=)=yeJBi1)^yA(8&d}mj%b!1r(RFJwkfq_c zBqj>9GdH7+QWeR-@ob{$b-`GgL1QKvQJLrhP>akX@#o9w=Z|ri(yNUxPCpjL8;#)p zPB(;<+TA?oa1Uupe-887?_q2f0p++;VCrr|Vwe6Rnx~^|dS8!*U&g0VbwMixIf!#r z%~o(k_ay$?d;)H7l7fEiZZPjtuDE%w0%Sw>qv36Sf4)BnNp?E?D}Dr-R`qn`$1V8z zSOmO0m3V?viBDffZq+g2Di;vS~eMWN(Xf}JECiu)vB z^{M+9e^;5y70$&A;*OA{c7fb~HVs1T-}3XrI5hUIB9&q9spa;1n(f>I%j^q5_`!h4 zReZvw`b)WwQ46VUdn{+R&X$!Hn$YBT1N7;KXxf}J3RVux!194m2w%7xja7mK?_yV= zh+z{QF)$CN{4l_E{q3~L(MMQ5A%^c1Uqj|~ACC4f1@}c&7+$1}Tg7AWWLho+D_uv! z-MO$|Qy%B`$MM|smC$)OAKm_?!=kZWSUG(Rgw z0k~n_c`B!Gj010TA#KiHT)nm$otLK5`qxVAm%TmyH}*Q2xy2ivZ$hZJk%#rUCfL3? z0gC=ckkor`C*Nr#Oq-8uy;Q9knSixuTf@WST_!9wwRm(`-!yb0zZwUP7cb(bE zOy_PEA43n9;~2c~C=BJ+lKS1jVBx2OJ6@0Gl=R2JmRd3H=ZF|o*?ts6`OLkrN1p9p zF$RuTYQb;KGFVzK&Ao_yMiz!n!geE3aB8*?`uX;O)T?4N{^g4k43|L1F>CsyP6#F$ z1z0a}5O3tx;hF8}L>I^7AqN53-uD0!io~HkqYKtvTZPWt6#8w+5fU)wIO-lfP8Lc? zu(^Z$Zf2<;#7&VP|ILVo=5IAr`A{;*{*mOJZdG_(KLBdy`M`bkaZvK%cSU)|Xzt?C zPr~rCH$g^kDp()lIVx6#+u((cO8_P`rawXWMdfrk)_(HOhFgwVTcsRcEye zT_H(11Q*}!hwDN5Y$@OI%Fs3CyNpAS>CSh;>s2sg{w!1o$-vmk5;Rrc2>;NR**kR+ ztK_-tV4gjeg56T^N106Faf3G2N{3ej<^&;%k&J#pVk9QZtOuW&fMcRMa3$C7-2&Us>pn7&5 zB)E9s!_0P@9}U@H_^bjur|ZC+Ctn5c4~%E0&bO0sGDBDqWe*B&v#1Iw!J~6ukgJR2 zVeI<`aw7)OxYfDh`4%T?c{-Y^Y|$s@8o$BB{>N~^`69X0T1MnToO!>v1QWQwBmYeM z$XF{B-1^!;XS}%!3eVoqIr2BL^wuGwJH466mX=`e+uKMkbO;-?oc` z)rWM!?ltvfd!!||VpvG2G;luQtMJ!gDmd3>;>plz{4Lai!R}bFHH*ig;^|DJ_cxk+ zzr+gK{)5qFokTotE3R~x=C|XzHlLoB;as&FD7pMPTFZ7JZRHE6qI zJy-ihhAS#^ide`hD4PmANz4}Occw{}ifAE7|Q~7~5 z(?alJ?K2o(r-Ey&KEl8}Yo^wy#ue=d$Fwt*^ymHWR6+j%{`((A=i$%Q_s4Ow?3t02 zmB^kApZh+SqM}8VR2qtuw5OJ>kP#s}WTb3~&pqczTD~nRrKKWCLsF?Ue)snuczk?5 z_nz~9zh2L$S)JgpTmvNCk03*%3E=T$DLFY?1FW0(;JZa5#=0IibRTPkDCcq=T@-R}?*MR>%GMWmxs0KQs(gFc)Tq;undgWY=b8%)Wn(gD;Fg z-+u|X%6bWybOnOb?<{2zq zV7?cUHv#wm9R*HnDaLMT%$gAk{475KWH%Orht*|9&nyMnB9{x@*dN$DVGryIZswLO z)J8!PLhO>53PybQ`^pp>96G-g+qc%k7q`m-Nt@@ebet|$7C*-vZu`P$e?XwNXeNY> z$dm6ItguBafA(;=&xMwr#mn+E$%=d1U?(<$<42EhhJilZllKSV39N@xCpTeH)>3%3 zSd#ePbHWoQtK!)O?x4`z#59G(f*tJUj_^B!$uWDN!B!nCtK-4GQxv64P{4Utd>|T< zxvVS;xUsvAN$NF&1K11aA1dHN;`y$RwJ1_~{}VivFT%A5OK_bkfVp26W76M(+vCnd z#w$IXuya27F|SOhbTNSZXK0AL#74QnYIQR7$ryaxc^-;{2F~a|A{ixeZK5{Qx#$E+wEfD7$HakdQabY>cL$^VoS&gYRdd0O!FayvdG7CN zRiS^mGkOxJKx~w{n5OTP$x3j99qoT{Q|FLSZ6FOC;0m+PU4cx}UWqi;0g(~T0N3|F z8HFXTxNCVc=TqzlBhlG_#qvPzwF9}aH&W2za}E~<4Re#W@z0ko3vP4BQaCcE6z+D< zfQqim@X1^cCD0h=(H?i6g(1Xy%8v=l2Hf!To0=qYR|$g>f6tg+tOaYEFK}JQpEBz@ zRLKFUR>1|m7`S2d0?$;)!f&67qFV#X%vk<>#M_wg51Uxno=^!6+&SJ|SOU7%WAU3s z`|4RjKA7HvOlA-mVC+NHrBPLcUc%>V{l{dVg{(CFQVYYI2x1^AWsTGjKccE9Q=#$*L z?cA1vNJi2zjho~0o-2;j!9ULyFvH_rvDTt2?8xsV9%LkdtzRtOHtzyMOp`(F)*9~I z<5WE5OR}KApq1&mdl6i^UULa)Rh;h|XME+<7*b?;6UWIf=WhHggX>n|Xd{+Hi%lKz z&GU9-+YeI+{&EVRw%!k2>@7T@%^t=4s3(g3j{IHfI5~3H3{{3IqOp?)ab=c0y3{@! z!WAaqq%YyPakCUkfk9~WQ-QB4zXf_V?GPEg9J-SdambLCL!jJoPHw^#?8o=!9@bsr zjveiRNvr_w4~OABn?soTdslgMQ7)8~hl5L^0vV`|L>ofgZlzQ;iCU?Zmp;bm!J3q zPOjD@>Q~yK)Rx6jm)|q}L#eo~B_G>;;JY9fo?#1nJ3MVx4`a;8LG{Gr`03<$ytLO0 zmo`Up%TJFoCTS6P=8YpTGSJNo{_4VYOa1Vn5q)%ImIzs3ddCy#!(#Ba?%)>fc zEx2%(4RCPaJ{GCng1LSjGSRq`XLe0O9lCP3S8O`ARIVpMl?a z5Azv?C++RTQZXB3gS>KeHDb_p?RU5rwTzry0>QrIlIo>_R~6r7L`$Eh|o!cD6j zvFYMJOv!}zOdrqU9-Qd`wa-Nmc-_T6uxic|MpZk3`?}VUXEJ7U0~HyZ*ZFqtN2n4yuDlcb$j^n|*kf>1`69DQ zc#+X76Gf?MgfW>giktJ&IY(UKuq&vUc|C9h@F5DyuavP{{88{s1<(%`BirVl0vDbE zTHdHHu#BZpBc~3Ne;$LgU(aKo-$%LDO^+Pr*eh|4!WY5$7kv?&aS(GCft0dpi{R%Q_jG-JQ_3 ze+WmYDsn#uCo*P65jfQN5~SYXcXJ^#IRy_x80pJ`k!gC|;%FIi`DD5b|cKMYT%~r@xb#PCGiQl z?~M7UD4fOj#^%da;TVHL_^R-d@jNhgOFb6C z4euL_LIKZ~d-R2&SqE^^umxVLy%Jw-Rfn|A$GPj)!C0>G1!pOJLqIny1(+>|E?mV> zGN1qc7*D`DL(1T{>^P|N4Ad#Olrv1*55KQ`%p1Q-frwg&jyGVR&f+8F&aDbuyXqfI3#Z8-Z5$GAdGjKDWGumRpWm_EJ zdU7Sv=OZs5DKU%L^ru!Z=Y<3JL2Vr)c6JD#;Mv^88={%3RW>kcc9`c2@ZOBvFr46V z5&q6lBy}l&@wbUq@af8B;kVNd8R5L!AhIJ4E?4Zq>h<41A##)_LbCk#8Rl|j;VkNJ1xBj$1XHQwD|CP?`pg-oL+!<3)WxHLMC`)}=K?5&W) zKWN5+Qhpt$AD99=4~c?|VlH#7bP}x4I)QDA9>A8~a&Gj)13*9DF>~G&!tOtfc&pSl z;p~EoFz)pO&RyXQ46E31^?6eGm7xJXdr=zInmxgea{74MmTIiGKM1x+D8UVsAlOyW zhE;nL_`Cz}y4)N=tJFz#&(SEwxDE?5b`-!PBoLt4OEV^xm7Z2%bT!80yP zlC>_)d?!5v7lo(`XLgDs&Q*;`50-^@y3;WH*UNcTG;_$c1n-F{0_h<>J9%U~@Aq9m zvgBe>^4JD4){{jB>^b~-VlS3YdyA1qD>r*~G?%R9gl&r@$VmKKaPOK(w8X<9Wo9P6 z`ZJvyXhFCjPz;Imxk7r{EPU9hf?2+CH7A(T!EoCaV6kcPFjoH__L8^;LDBbM<;!kt zaWe^=)+|B?B)4$BAJ(J)nyxd_hg?B_P#K*xxx>tJ4u-Tn+wkEoo(Jfp!+Q=|>GeZQDjPc!hiCo^G6=R*AMQ#7+U zzzwTAx8XN0=QB5QjIe|4SmB2&d9cA;7K!2h14@ex#g%=Uc*IkVDbz854awoy&|@kzoXKgLV9&x-%_Mlb zGN1bw;EuGvgh5{UeQ0=lurckDFC_Us#oZo?LKBlHaR1l|v3#%A;D;z|ld0nO2;(fk~+G8#25uI!ol5~xtk0LJ>!KYjZwiV zn(Mf=v2&S3=Ue#Yq_OCB5TCV_W0>n>cjD_$tC%1DQp~`&^_Gvz#wzI*Fwu0D4^ zj&Yknl)R+Kz-}3`-Zl^~+_o1#crQ!LeJzD2s2SOE%L?4D6mu?fOqe{LhiLdbo|7om zX5L$k<(wC5qd0pp6!tuV^RVt>zBV7lD^}bEnFY1jV(QR^vW$Xm}a%=&Z(ZTZ*v4oxg&EXBL8~;tU)x ztPTN+-Ppf-0)B9=2={%ICXQp;@X(9j!e1dpP;w|9lp8bfXu&gBB+X|DgjqOY{A9+^ zwGQ6JoyD_-qs)P(TAY=c4eG;Rpd!x!{&_1iUkcJ7{R(kUP)dh~7Tz^Cq7Ab>0Y89?HRI&ZXdzxtl?G#xdc`U$u~v z7tGYK>tN@***HgCo%haK;E?}RgezTEbC*u|;312*oZWg8GO}Di*yF|gZse;_y?sAU zoV5bDvn!!|{At`98U@6>5Qk0th$9#JHwES&V%%Vku&ZDOPV^4t)j6%!x zj>FtRD|Bj9mHbKIoyp=W;6r2?emPzNWW>h6w>ytP_x2eyi(4PWtbZ1@#-nUr? za;64huF0MIw@(>A6mG-?Wojt4Ac6Q^HX<~!mYXB74koMe?(Bx+Or)bUGEmGBZn$|> zc;vDfzP2kFdlp~8?u)YVy~;FByCzET=u`!cyD-QzicLZJY$_~!833{N_wmtDx;G);6C?vdw z3EC*cGI`6f$izP8kos!u;pYl}19Z?&wSVNkQVl2atd6Lwdn4cW@mxe*2uYfo3m$s2 zLD|;`{AHqrho7#&LBV!paY+d_GG2mRblx*o>4$g+SQThmreLw|WUSj;$4p#v5n81Q zW9h_zT%Z_s_e}t`C+>K{U<_{fCuFQ_<8Y;E5%0U-$Bp~ki9f!Pflae_L)dO@obTud z$~FpUi`Px;ovn?x${)kq=_YQ)S~I4byTu7l1wdo>Sni_12|-AYJZR_51xafqq>|CW zJb88l&(Q0ot~Me12o`_i#kN&hV-9-~~yqFfy2SqzVsoW#=cvW=Vu0}>0$ z;q{(iMrT#qOex+=@IxSiXNTTk%Ktmhdr?2)Q@69h%`p}Jctta184Vy2dK`}_+>W)c z8{q4Hw>XuO=gh0kwfINJ9IQ~9hqtvZfb`eLLBn@EJa?{!^4Hl8=$A2Mcg;j@OBAW* zSR?YWH=E4pU5t+Ji32g+H6&<5JDfND09$##T+sm)T!t&q6HXlI9FRrR^)mTfb`C7b z+s%!P`;VKe8zGERvV|J|tsl6SSjY#R;C{J4bs z`JU{OL0QNeU(5A>`HG9$3h{^TM6!|p4e#Q;Jh9P9_}A?kyz0*`sJ<|jSs7mB(3@Bd z#yKnDxenh|U*5r(>a7IZW9P76j0aTN$6za$O!#%=5^m2!ShwI06T$kCb!p>J?Z+>i zwN3)oQ|fX+r7v*m^x05hIRO8eU&HGxYaQN6Boe0c8?PmD!fWFq@g^@xY}%&^Zaw_p zs`LP}#%s}NcLwSi^Al>bmihbJ~@U~*w9R`abEXxlDCW3qLb zo9@r>O(pg*BIr@e#>L2$5^UYyUBr4a@+P z9m(e{4e->br#YP)k&rm$7^d&bxyqYk(ZH{n_~bMO{4H&8#&X4vSkn9S<6;r@l_F#`*=ai<3699yDM`@%9V zc9$-a^XcFcLRWK#ArxvKD{(giFESTrF2V+4_PkI10D1R(1Adng&9l&CP{~6vWEW~k zewU0#32qnh&a^0060rv7kCWoK-7j(ASs7TLnZi{%#A2g25Af%lJVtC+3sYe>3rEB% z!a1)6FtKhX3WF0^^YJ#$)K(FCE{}(I%~5=pyB3f6Er(AzcSFlsbJC)D4tu7WJR4oiXQfLHvp@A^3;RRQH;0n~P;`d%-R^X4) zKLs=0V(|OJ5pa0310$-bk8f@|3ZLA1K>TYnY{;*`&)n^?{LU2kbDm>Pj;8uHuz_N!$ld0{2v|G4dM_mUD}M+b*S$pT_6n0>hc_@nS@Fp(t+n;D|@r zDO|vORpiw-8ISP^W>kz~Afi!%+1?w)z5j9*-Zz;*yf>fEx>m^T-q?mm98B>`hf!R- ztr`k*5tOe<n5mk_rnR2cbU||XYlRqMe;%* zL*(>+V8vzM;k7P-Ig4K6*$vat39$xH4~@hw(!O|Ok2sq9JQFzOYG|L;jg@-OFxoZt zjB>?mEPZD=PLP&kCd`Y1t;x@z;QkXlG%SNlem-EdT|Kd>nLCu8;Q2;`@6XsF>>C~| z2%l9Z%y=<@ocsbL%{7+MnJo(?V$Pi6WCSPOzvD{w68Cs*tYCYxD+&JA#9T<&OqN$0 zqx)UGu+lmY*Ym8E3-w#Lf-jeamx@n7c=cBtuvv%H3|W$b(|TOttpa#)m1og>vxe)o z*0?vKjmgqdLTAQ1ke>ceoWea%a^>h(c)^pOQvE%_MS zbF@J2+xv*n_Bq$AoJXGeOho0M3*c*nIk~=b80-s$;C)dIJLj%~4a#byUnW~nboYX= zwS)IS={5-uFG|P$OU`rmLcH;$qbj)O*$Zxv|DJlMJY}wY*a0Ga8hDc;pOaROhN4w9 zAo*er-W@g$cGXuy`o=R{%!yCfJPMJdmIEMlDw{bYE(#InEEkWG(7(8d>^9O~R}U?|l`-I31(_q_?MS&le6IX7hK_ZC0QyT@dE^Zf}2 zS7rQP*l^w7OOh!LmQh$n*02F4S{*dHaZ~R|uT9Du+tLRm9A? zm&x!I!CA}$JnQm^aB}r=wEM+-h(5a+!Ph<<`LPf_^zOoY-(AD@Dm!6Iq%E`S&`wb0 z&mrp@XF)#y-t5tm#jCzI;sr6&;E;a`?()8lrw#C(@IUQ>NqUpXBYs}?O1?+9KS~m+ zD(?WD-HO+hxPY71LtNW>4z3rvFdw|4$P7DMIJrNRq# z)XIYQD-J6qWy6mHR=_?Q4+dgK@NQdEI2K?8gFl>M+xbAC&clqJ%P|<@`-8srC7i^E zZ0H{>gg(b2LA53C5a9VY|LkQ^;hY=rz}b!8gE)}UF^0&j&w@yQ7-oWE|8cHjk8nxN zSb?nabTY+e9X3edKldI{u4K0qs&IdTr$#%kvfA?_uN7exSWX`p>F2tDu zHbiueA=x;i44+^9NAN-X0^FPee5$C03$Fnj)c%f38&~HrR_7B$tB+#aol(rV-~l`| z`3tUVcmh5FSDlCJKhLB)4T4X1hVY_PGvo-LK+ughSb1LxYpzoGl$9NN zqif+8qYwxu>$ngMv+y;e;9$;Lo6-K7yjLv0<{Yk;zRd#F~)TlLFGRkJTp-h z$ei(Hsly{UJS<6$bWDZVs%qXpbsK-k_{u5c@%VLe5RCWg#5;$dKwqILbRem1P%}oeWBJT5UVXK*+K{Qs1JE~Fw2~D#g?&L71vqyvZy*L$I<6|&) zZW)%5xCt3Y+;LY(5T0EsjssWb;BOjp@U|1j$U$olqOwAZQxPlU*-RSv&QpH>+ir)_ z#@xmQk@|Swr_I>X`{ z4zf0ID=294T>G6e%+vKFa7Hc%XLnTKRf5>2dEY<5glDfotVNMA-!qrXpPUDGe~o}- zM-v{Se*^c)T!7$fE!e453M{Ywz_D9m;CWXiCoVaS>3Z~=S@v=a?kIT-Z+TYM-{E~& z(PI{BZ_I&^D*4Qdx~#8Ok-`ShlPk!Cgce~u!uYNA}~hIn!>yplQVT!|eeuQMC2b;5S! z4~4@ku&#_a8Ss@v?B==fseJ@)lyLZL(GdPKehGxm65y-n9&%5ohr#N?DEz09cMu;E zLzbib`Q+nUe9#~h4n{;`zw!;-OqG7JqWV0#FFlX6Crzg7KiSbM*T>N!&+Di);3GNG znn&WKE~5E4x@1=qpVxkr<9Q zoS9EZjTW8L_6MdPe?}!*C$fu6vhaxdDzrvp1~K+sP5S5Q(8pI>giBgdyMFgZ$>0H`6ashx{(U);?M)jdirno4J5Nfn>>%&O6F)M zF%Pr_B<}iH^y*9=1gw>(sYM2K#SIDC^GK52>KKYNU*?mfX%~@#x)SZW|C&6wz87oy zEu~qL)mi!GJ#?x>1DX_`L=FbLLj9FiXza8OD&5yahBnk7@l$EkWl|D*=F}yc^4)>W zE8I?(*@>_}WLHxklQ>FiDOu(tNe$$xXe*im8w^WnOwm%d>(ey4SW_C^p7t2o4+5QW z_a-`EEYEZpOrUe)@6n_g<7n1sBRaJ2I^Qe(Nn+e&$-g^#^iJm{d$aGTR#%CGL!_vS@iwqe45iWjrg_b(Rm&A=&;@~GEJW+ zck%An)j~0Pd8;XHzG%V@j&q>pB?aX4peS8gR)XF$7g6tb8MJn44)T6jMx(l`$${~X zBx$soT3p}C-dj>d<7V5ir!V{<*ZrheTl02u!z_!bd=?J5pWCoz^K6>_G@aCxt)d+- zOxdP#NjA{oBN=G9g+?1Y@E-3N;oqXk==jG)bZ@F26`LGDsdthGYr;)N)#hVqL8%&@C3}M26U`yxGasWTe>v(M@RI$u{5~}o1hBJ2 zlxX*!jp*ciPfE8x!dmY3r2nxBe!a|zZrga4e$=fd--cRI#Z5zWKyM-4;w{1oT?F{Q ziJnBjx&pOHrtkO5vQ<|T>F?v6hOq@p>p>NI-!7&g(&ocw(@l}(R{rN!ChWKq^V(l0pyb-F09SNw02 z8Fin~x2Kbk_?lx##6ASOfFJ#_S~Sx>}y?_nbkCj4z=vqTjHG(rH{9^95%nYjI=l7K22D3_Cx22Ms9sfm%8&sDED# z3U@e-F1?5#adr75afdXTeyo|eu)mOgW-8tMql#`5&A_>xq4=`hZ{|q01&w+>lReUu zPHt+*5mO&k)VwH}dTz95(^BH;li~;HUUM<=6463Ko#mu0+l(xh^+0x~yvgYVXPTG) zjihT?(WB?@p}{3~ME9{c)qUZMF8BPvfj5T1YOw>Fsl1KO+Mvgpe7i;kR>AD9m19}A z4;e(BrMTy|F%7t(#6G;?kHxf?&;yPMG^@^?w$8F=g{C#oe8>a;`J>2I8lEO_HXa9t z@$=$K3u%AaCZc|xPc&QRp!a;2-T&nmlCba%B%Z0G&b9GWX7Xbs(U(K3A8%xn>V4_; zlDCK~SVBi%7_wPwN>Gtx1KJyJOz+NLha71h{dVLdb-pVOROn*O_Ikb?wx+4kML{_2SpHu0@>?Q1gZUU7`nZ};A zEaRCzp=2W8i&&a50ql*(q1>^ZsOg6Xy`@!*Z%z@VSzpeej4k`n{?92SOXWMtxGPS( zyQ9d?kmua(%CF?dlk3RF-j<$R`3%*l_A#cO5+rV?5)tf^rXzEYQ_X#?s6{HAdOJ%r zH@tNs_a?O?TcgvcLE;=a8GDD_%zxkCCW=E zPPA>?ahg{q#|F36QgyZt&3cqbi`xluZFHnPmn~>Y#zuYzzK;C8=1(V#6G!rKQPlgK zJX`c#5upd_=?0Rtl87Nwf$i>I zC6{l-lSt+p)ZSW7V;|a(PXYVru-O_EeW#si*jz~d9&d$Bt5n#jL8~D6=U?VXS0I(k z9LFkL*hCG3#aLtIRc5hTRWz;lqzR;1@ri!!bxuwYS zwK#R$Q;y!;yo!c0@1ro(O8gIm(K*_Itmgf6D!td9HFLX4-hO{h&RUm{)ssqyt>-eR zZ+uEJ0@u<>5ALyF_0ni+xhCuDB29hf9|YH9s(IhxkxRH4_EnskS-9H}(Sq4h|f-Tq}6 z@_gqqrO5F8oM>UVgv@Mr-M+>Iv+RTgOnqRdM>Q?*oRi3KF^eH~F)bL4HM> z=;~g|I{nF^CUpj^TQeBqidpRQaqidoDH* z9o_haINeA`Ehl8jM~7~5-)<{+UZR1n`0xvTw)3PaC-Pz8I!*FywJXXvs)2Re&f=v@ zACbRrM38j80k!NMV#mJyLSMenWRGdqA(O*Ns7m%Kp=Cp)S=k6`crH=F7E4-!#Ho?C z7FBKifi55(4RG|2xS0eF?HI9z##N zRX63GxknZRYP0)8tcdfcrL;h|0qt@-L&s?7v*BNtkjIDr;g!v=_?fCH`I$NZ$^V(t zXRX`mps0|2)p3nZX)s~!0_AAh&L-sa^*a&IX(D^`q=|8QF=7RXva^{c`lgd* z;~Wc!ZBQjS5tYllmbN7!3!=$`ndQv&acR_fUmW{zi23&^c;+I0BbX7F^W zfJ>)}xWy-CqPCfJ)F>)|ii~xkF`hM0?)3_?4qha#dNbLL4ISgA;O(ayPAljtl zg;ou&rS3IKtjM+7cwG5pH17OtG&G<_i7f9INS;ityojb-r#18Q(53~!bXRQyDv)g^@6rySmZ1m$e+M$4_yeNT zb5W_%6nf^(VOl?T8;!2CWgC{6vW{<_lUFyx(A|TRQL*ne@SkN&CyYeU75p+VJrUvW$x(oi?A*p5kC!dV-WE<$Qv zxv0@|Eb1JoqJ_tn5^H?}Y92C*BKKTFQ3p~;>g+e@zv=+|dwv-~A9K+m18>T{GN$uX zgJ|5ZMkJ!Q5i!2%MEU(6RR8S?;Ui0AEa!^0tv*Ht@2t?rEn(F0h$JhpGa|QdH8av` zhUlQdRj8ajmOQ?+0`=x^q3HX1nzFA7qCKWM0#_GForZ2*cSnFB5D|fdJ z`D(X-v<&Eh_rOX#(`^pp(2`0AqcmvF=zhBF^9!`hG#}m3>Lcf-D6or8jsuU3Pgu@p zH9p@MOSOHH$loVZ=+@5{(LjG5$bKp%rk75j;F1C+OsX5VHY$RkF_{KVwI?J0*3eI0 z7m-uc8FWYPE{Q!gh8?{hOD5PaA{V>&pyDQ5y2vhxPF2^TXQ>h!zu_yae9(+D)ef=8 zZJ)z(hkm?^h_GSLmeYejo}$d(^QrW~Kgev3461lEk9_5wG9Q0#Mo!aIsFyadwa#Ib z>=tK#>oIik&S%J^%NqSYB#LwRUBk8q2~5RWYkJ${F1q_Nj+}FMp|%#ubaj;-TK6HE zbr0n5bwv?YPU#{UfDT;!;WxI>OQebSzk>6PXgcSE3ENv50Wx2W$j;fD9TY4MlKYc- ziB3fn>RFvcg-4ZGrahX@J#re=9Nj@WrFBShrx99Ml}^=pmevETLPpJ%=*edf*!oG` zbX=wro1x`HRkfVi39U)=yzmFv8k|NPmrA2@pH=k9gc^ZN|6;0iUkWV>x`yMqpRj4n zLFV3&IQ@~OO`p9LAuqz+=!N9T?DskH^kjY_GMqnwD!d!U_;U#;PJWGq?i%#Ytax_i zeJd(rc7(dVQl~$?_-ya;I@U2OfZAH|Tpkw`i1DVyE85Yt z--{uywgam#tUwmL%WUM;2=O{3&*r?@Lc6az(Dgyj$vBBJ$bz>D%XwXzI8`$Wpl~0L(;5!swUk>kCV>}01o+-)0&z(=E|{E^h=gE z`)9BhFKt%C)k0(R(K(3O|M@GCW7VO?PJ^1eda@UkV)%Q&YXqAa;uM+*K9%N3t2Bdr zTN4fAw+%p6Xf%Ci+e&@sQ{w8Bg=RZflB^lU#AI(cdoH+=tZ|)-O;=4rFWpYj;h`y% zRo9?<8^X}dCwwn@niN@8I*sj+9LwrUOeCkvglJV}3|*dDhGef;(tOzwv?#2AxublC z{3!NDeTm}qtA#A_$XbbaX-%b$d_D+-yy)}nCu1g_f?UmWPvElTPmI@8% z&PJ=vHq(&Di_yJJiS$SM5PF{cg+cn;QU8i8$h$d3@J|GhrW*_jqxH0>UyNO<)6J~r=vlozDFO-7*tit} z+*`ovmN@x3EgN00-cR3GoS}K6FNtqU7^u|ozdq=#~+hVuil^v&jGTbJ&VYp#Yphu3fggWAFY{cz_!F6rW4nlMUAIk zAysXDN3K1YPCqt{NWa~U4*lgIVbW6SmHCeh9!jHNZ^_Ek{XkDP&8Jc>e}tC|f|0(9 z0@;5Fv1Zp_(AR5oSTB!I>VJ#3T*l-g55K>JzIlbG3YJja$8qTMlxsvT>>eFiqtDKJ zlR{q@-$Ax^f5>>#DsBPulej+dC!idOie)lMXGt&h`m{=0WM|V-oTQQXNZ5EY8 zgbh5xP?2*#iDsS{(%$1j<5kBtJ2&p5FRR+YXSNt>SJS570t{I+@_^1?Nl3F@0kYM* zM&HQZVIB8ZP`Nd8*)>-Y)m6WZjGdm5t3K)^-gFu}p1(V~-`r09y|kKdl#Zd?lnJa| z@NU+FKcnj|uSMZsN-209!_%+E5?OaU`ddUD*_58APqr;&!_U9KYFS_LuQl^X;KM_t zJM0c>@D(Q_&U@(F;7gDrmrEy&&S0%uB*?V9edVlv{rtV`paiSgbrn7CXeM)hsk5i7^T>s7+fW?8 ziz*#-p<67DumO4{G;*m2+c!UloV#@kmY!cjKB6w{6&8+S&O6d{E{ukJOJtAOan%2^ zC;KAzIld&e8aD2@NVX-urJb~rM34E2igF@pl%@l_&^?pdx6NfE94FFSn|hGm5^<8L z(hf(boKQ}eA0>E+0Y)ZlO;ndbBx%6G(3 z_nSBI&#WG@sw)#jt<)iWx`6DVJMhhXKU(`e15F!9Ay>V#=sAhEtd8Nr?+*pg zrSoo+r&n5NU!@)u-!DO{{Vt=`lF`&P_aF0k5Yfp~C{(Y=Bk_^EYp1Rn^|h2>(Z^-n z_nv0dbY~?$rZpsQSFNC{(xlnr*|KckSy8(5LNxlC8A*39UQ3Qhlr!qDqiCIUBHMJ} zI2940XfqO_*C$3GYmKL*pZ!64zxxtXVG8-W$(JS{d5J=|Inf!0^6Wq@L*@EB>w>69`|NWOK(>#UVEuBSil^ku8pFzV}6}IQ;boS7;dh+YZHFPU=HQ8Pl z%8LDSA=RIE&_EM@1}70q?+N@_zqcpRl+I|{aOV{^zG%fR1a)D{f6WO0I!paZyy@S^ z_H?)8eWYmi4pqvUQ8z7yJ<9hW6MjDAEarEj#=vXT#lD|DDI3NW)myK&94w^zvktHe_7~BTwG-Hv z4`Rs6U#9qO$S&fNA%h~V+k__n%Fvi}Zz?BV%YFz-q4)B4BU#n)#A&B5EYy5U27b(> z)1Lgob0yXwI;clGB)#ZaB1KEC_rbROuh9DZA5nf;gQCu5;((JBpG~-j7T=Gf*FSCI zlDeX(NuUswUN(Xhvl!wtY6=qvc!x)P5%$}`vp#e7(TlwqXqjw2ZTfFK+xHC#1iJAs zZZijM8lK!uWI}p(n8NFG&UEWFan^XVHT@(l&OX$VCFd8)Htn9b6aV$vijHS~$NzLi z*brt1{k$fGKA#y!zGaLqyc{sX0h3Banu0Z&B~8!0AqXL4yBAkmhSyXioif`sT<)q?$FAuDNi9|L(Q{dOe=>Pc54{ zq1cWjkN?f>Q4x^L(AnY@u2v4b>y)&0dbH z{8vY=+}leB2Aqh>tAlWF!V1*ZyOhRfo+P&?*i-kk4rIL~9hTqnCi9)lk#5BSrs|ax z+I8w6j{BKNPo<}m&3ef+^TbWQyZ#sEoZC+9b{pfypDk2a`GEEhYa!Bcf@Wrfvs#sx zsPgFsRM?h=!*8rXe+!R+;u-@wCd-)4m>`Lg_D!dIez>uBQ^M#P*AXO_Ur*+YQ^B^= zJBh8WEM21!K>`<)ptaI*)MC;KT6wsNEHjBf^F}7X-i&Na+}+u|mhtrYwmPC%Ac;H_ zJLsdEli9NCmGn`OJ*)WJfx4_-gI+(hBkVqF^l;7t)akQfA+?paXLxV z@sk+KeK%v(J!?tRkGPp-qBD@pv_KSAbDb#g=jZjw7Oa1GE}eIDBKtrznRszmh_!PV z3D>WrkKdGGb;ghEJr_+6q^UdJ@PA5|%AaNJ+JdRpzh&(GRtq}dlR^Ssx}o#Gyl{bW zCY9NInm(Sshn7Suu?bx^gemw$I$A%WL(g^DXZ4S;frB2qSn({?6i89yt8TRF>J=nC z)fGuzlcU4Y8mzg7GAnvroSpgLDcXN<3k{j_m9%YH@IQ*KJDke*joV~IQYk_rTS$}l zey9*-R8&TTlC-rXWGgd?q7tb{WRz5#_r8@%;TxKi_AXjVgX;JG{y6`g>pJIL=X&1f zzCRPAlV#X(^kGq_6{z#zM{v8G3Niof=dDs6LY>ZBvRR@BYfnVd933-OI5!SHPPos{ z*E|5;-w%QIz-KN3F5#H#E)-F00I6QZ)TXW|R^>Rd=ut-Huff!1Ajztg zr!dKt^D#Lq!ZvfkJAB>Qh}R!Sa@h=pqVR;F*M?8dVrGqrp&yC4kDkQxJBiZ1>N4q^rzgXmlMC?R26wcXI;6fQ z%@!|qrbAe70NuD5$D(tyXz`k1tj;Bla<4`+uj~Y3XF5qv$mKDL(qzl;o*=Hlp53(&_ET;e((_` zTGCXE3!7!=Y=0-0z5g;VcQcNDn(x53yLQmi=MCUBYYy)zIfZL+7HYG~JSpJQVtzo2bS<5na)@2CIZdZ}f5Ka#m)B{113H?RQoy}^ zoI7_1TEpgZwYSI9xHrWx@-#=c6ud!u#t5i6{El}xdl7%{9LgRy%)-)2SN3X~Cw;js zWT^}UldA7vCOM4Qgwm@x<;p5i+JRl7QEy`~K{K0MDc}o>n(tDV>rmo@hSn`##`u<9 z##HZ{!YhgU`Y}S0X%ARYM0*cKZO+BRbuxHlw=tV-C?%S9D~OeSKE>g8e|Y#X z7D|J%$dXHBiu;>rviu1M{tn!+%YSVPZVMLWuPrDpJsW@Ao67I7HX%FtJ!m<8HGO>k z4@T$ILP69B;*KKBJGKkUN_L~hw%5G8TLE^7{lO_QgXn%{A?y#Ug*WPNY>#OYL_}9| zZ&t0sL>n3QWYRHuwpRgZO)TwmuLu3=&rsWvjrZ&N!FtFaJZeh#(0(*q%b`-IG!R;KGajhkVZg3AQY_Ajk0k}_SzzsWTqBdgu8*)bc;rzzJp z9h}0>Gz4O4E8#>%3HHalkW8iZ=;5}V)K)LX#Lw5mljuggvBQ^@GjIO#b4j17oNE|udP!44RAj`@PS1ytlu}8>DcR&$NF?w zrTPuWWL*?8otB7(^)kZeBS<5}iI%v>fX^Tm2;VRr^K_3ue%vQ`xFUvo>pYdYPH~|0 z^kGzSSBN5A!WEG-?7q@lxSgZtmuNI)&rpW zx(#(c=8CGkn=s|VS)9@`h-;2aprrh-?E0qLB>8aw_*=>}GHgB=ubN4tqXB0;YQkZT zov^~efcU>B1+RlAjjJgE6X9$s`5onzZr*_qqw#e3av^Rn$rb%>HX)Vx_pnbrfpVV; zIOii-e4)KkgyFGxv`&Gvb7DCe(RR3Iyop90%bqsszZ_avH-gO@lnkd`4x{3V=`gTR zx_)Xcax?(0kW1J0~{kIMpbBl4sz8e^}x0>tv{tLG_r{U8OEy|C*4r0YeIGyGv z`~r(B@ay#n6gl?eX0uudeO^GnFP-H>1{~?1*)^b`Cgko(qUI+8ZT|o`B{sfpX@wFS zePkb{x4V#5pb2SwxBxZ33&7y`EQ)zs4Ivh)`0)Nv__Q-nRK9IC-JPoe|HbbicUg6| zIcf@ws4c|J(ZTpKGFKGmI2Z=P+qp?T)?~hWHWjzuL;Ww7@I2uo7xnxVMjn0#o2@tD z{Jt(u!FCc|&rPEr+vLIF+W~SvtHf?^KF?1LNx_azth&$>jsK>PK5n}9)5hl9`gAt1(|M16gJzAjjx@JO@D9T z6VJ1_;M)Z1JTVh@Lm+PG9!BR6KE_4+?djZ#Jn*mg#_sSc{$ih?)tRP6*;Sp`wQ)6! z*pg4nXCQ65_8z5v4Pvp{KAiU!6$4EmG}*pg!{u|2#voyjnX8q!qQK}Ff8f^|8~__w)ku; zPLrFA4kiJ%ZpA6ozAKZiynBwm%Z%X@uYlUiL-Cc$eDykLsc_r?8X+~zrTJ*Ca0XFel$hXOYjn<2&3g>a`qQ0qZXVD+- z+7)xo;)M+Que&4~rnM2X9|-u+oG;vnDS=eoa2+0PO~b{>$I-LmF5Wsfft>1JeF)z0KM8uo$f*aY0^dYo6OJZIa^ucZ5aX;c{%P1_&c z2HV_Jkc<3<>zkF>>}!+wiiE@5tm~no_RpgzFI19#FSVwzzo)VhdwRfA@*J9XN`kJK zJgy6_#>JImS%0uPeOW1uVv{;BZO14mSCwPsaT`#%hPc~uec0v>d+_WtKb&859<35akt&}8`E62|xl@L=RGj0E+>9mXrg1F(>`*k^lnSle zUSnzCHSTv=m*`>pP@RVS-L`c@ zR;{Dqot6|MJj(mT9>9a*1#sZd4-{?K2~8ji!`+wh6MW{g{-Fu<*W)xr$z`Lxs!FY< zR5EIQEaazl<*{*--Ei9AV9t7y0lfITm@Mi>aB+`9s4*)J&h1+VoN%XIF*ZW=yGKFt z$bVQYolTa{(S1oc;Nj@x?bs`&_|vD)y{UWXdpOPgN3TlS-oy}MwmmjbpVGjo7ndwdi-J8S_Smt0S?$rG3Tb*6()R9L6xVbRr}fiBVi}Xs3vRdgwm_N)HCghfGzy0t8+KOZ@-T4 zzc$xE_H$vrI=_}a9r}yTTU3CvI>DbGQ;PQb2JG`~2@(%bf>jv@sjzJ}4LA{dvgkg^ z8FQ?uB3{UY91dwE4m7;F6!-sW=F{T7!rwOmWLMM!ZL8I3-WM+jQL}IO=lm;9 z#k)F$Ie^I;E^t~qiF?#*Mb_8t`7gB_XqtZ&aIW6G`vi0T zjnoUy;L2du7&sOiNDBhD%hAjkd$B>n8mDcy14(mfme*B?ohk*eR8I{>d;0hbw|YT! z&}AyAence}GUU1Tm@RKSgzs2=2jzoYSnQ}?^l&cX9Aw3CZ}TE@n>7v>Tg)Zp6;90O zY`^H#GXqNVufd#urZoD>EGo#U=M~g^>AWcD z+8dZ?_`pVOr38(R7>h3ohtr9e3>a)4CZzR@M)%nWZAbNZkxLy2n=Eg!d?jU^b)@>R z&uBNt4!IPh6BR$e=+;i z9Z8Q%)acv0VB2-~hS0%%E_8F93)AblK!a-y*zv&6`1)BYtkhqC!ND5%FGU>BRFp$k z(n9L)kSD!D6RMPwWD&3W;QTdHQqr;Hq_sjg!?(k6>~K}~(=d^2bl-xL#y&b`D9^Ij zPhiiU_~XIH!7%UYZBg8|c6ib=TIeZAC(p~(b-nZJ=|XrmSZ!{GNma^Z{JPxMDo7f( zvfJ+r| zoWzF7snXnX3+lLW5FSZ*(!vQlSvee|v6cw4t(9nfTLFB&Dna;3=xE;GVf#~bkX1P~(qjuXo`0$Bo?YZWTIbl}Mj#N0Ri9Yh2gB zS6IIz2pclBnJn+cIov;lCnqliX9Y7-Ew_eqfld^4F&a3g&&>rz@nH=dXS_j5N*&ZT4S+0?pHz3rkyj z@p*WjjiSeDjLD9J3x7iCTd0t|l;A}=r~Tm6Ycu$rcMOv}%b;FUhc=Ci#Xk4r9G}h6 z_H0S)Eixu$yBt^)?T@DZ;y6Dm7CgEl9w$@B;8Pm_6<7X>XGHnS-jyOQ^h}0oZ;kh`lCHt}AQdiJUB?*QUey zW&1(9;T;ZXtEFL5W@Ov0%(qp#u!#CEe2kz;d1h%!Yb10~T*(f{qV+UkgBzX7God+0K0uzOxQ4fGCSK2lZq^OH2> zl@(ynzDk@uWGG$A48YG`nFJTZ*zG9cj??)D)3pUGq9?CbboV+pVqpfPf3-o;PzhRk zJDJ`)jbg72T_{a6o?Y5l4EHujP`ST1lsFZ`tj-ba-k*>B;6xkJTv~}TpZigHj5JHi z=;t~l+^MJkFgLYDto}pZaI)EF&MGz?67YpmCZ=?T^0%q7ACkKCB;1&Nh*F`0h5y0W zp8N2m>=Q&%6B*vWPGUWRr|sT%D7_yBjt()x8C=XF1+3BSpBzR1jO4ZS56~T%H?Sx7 z5=q($nEbJ^aDL=cJox3PZH$UA*Qh&jJJ!_+owX^nbNFmhS)og2+rHYGg`LMj(`tM- zx0$P$ugq-E=&+la`=DpL0d4C10ahCYzm=6M6CbR>w&d<6(Z~l_dT0`VIY-Dl+ULi4 zU5%yFYoakn(~{~HOxOs8YQFf%Jq$nl464Vh!UIlPaOjyh7wnaU%5w?l!f)I;_8J6d zh||%RtN7J^^>9khp6>aMWnI-eWF7GpB@XJdugeb8mwj8<9Nj2%&dB9UVyiGdp#fK} zwW&4fJ&q~9%W418$!xqv8D)|_+xux09(~`z%eDxf=7wtAfA625L4FF|yAmn>pFbsU zeU9NPOraG{bAb`*`2Mvgi`%2hp0Z$p0}taY*W1t@1wVG$I+-E`-C55XgcGys`Etz0 z9bd3pB3~b5B-v}Cm9cZMF2Iwsf!QG#3!?45y@cvpWZgx-Sm;W0J1KW~? z86BBM&pn#{a~*qQQI6jfYvGVVHHNu9;(G1(ay`!T;EMNI+8-7{OlAk|J9Qdt4IV;b z`#3sgsm$^v_w!kIhT~Jek^F?a;#4FW%WPIRqvRK9xFeT*X) zQh_&r>E{kgw3|f>R{e+T`AVp5eaNlSe~6OegP2;_AeuTd9fMw4+J1D%qNfKN*uuvZ zbhC2?lWaPM+vi(>v1DHd|HAS%HSSS*f#^?UCc0Sj zIMPjwwLREM%loR}q0A!NS$(5~Jdr5=^}`7`twf(HPKm*FVFq{`uS+JE9caV(7KpH& z17FOhqRHZ`u=UYrtau)So&p~DI>wQdV$Q-(VFte8(*lo$6x+{U9jy~*Vi_wvH{>(A;M$L>6BPFniZbD zL~L_16Q6k&OwNa)M4W(|RLPUiJ5QF8B}*?-ooU{ZL;Qr9<@9ixFO!s02hpa?ML??h@eMMAif(v1;w%&`Qb8KXr6aId)1dn**ezD=tveS-@n7B4U?w4 zH!D$beiZllMhiFb(g=F2R9yG?TNXv%b!V54|Ar%agUM{w;kwq&={SAN7TnZ-9OMF) zQSkyncQSn&)w-XD1E&Q}IwK7?_5FkFp-y z6;_p_;Q6540Kf zh9Rmu;^I6H2wyaf^m3fIu4lFat}O!9Rf~X&JBBT<|8VD9_EOonr`XjZ#%2YaqLaqL z+?x|kCs&_>aLEUp*OEHScqW5iCNcV)avh%?mV)ek8%Zj!1t*`2q&h*5Ybp44(h{Sw zbG$U;*RB!b8Aj5p^MhfWt>r@a1?Da=K7BTe42jY}05qc@#L zK{L}3rHglB{#KaaHQ-^Ud3xCD9qW# z>zA6bP4^GuJu_bl3E$6K&e%uOwk~DnZhjD6up)(@4QajKh=s2lk|ep#$Wu! zc}pSVTowgvD8jXJWuop=2Pik8g?)QvNXxW!m**2e1p?f{IkxNE7_uiC%!uIzd9%Im(Rwb zg5E@?H^mjH$AD;*B)yrjfzG_tVcOQMd~3{K)OZ>rIuWA69&22IwpS656S|#NwGPGX zXn`kjw_$m9;_zJ1?@8OQgoOrsA^m7Ro_%!_+)Wozvja!xW+~I;$hFY4vIuTveZfmF zbl8}C&e-gH4vSYEnA9FNo-cU5#Y0B?&c83q6(rI0hT>Z5YOPcxhji6KY zVF`Bv>85!AD_I(2BPK3KzYEIQy~eX7YA>S^<>lxv)P}`=Jr3!u7aKl)9K0)9 z#FbB!VaKFONZLD?EfaGmY1bSmZo0r-vXI8lS(^O#zYd(&$1!v!;V?Yj&_GYaW$n`5 z_mJCmF;)~QO_{}J@X$_y?7v*brL(@_xG@A0Hl7q@UyZ4MYq8ZN0p|WP6z4;FMav)pJ*#$;A6=!7E`HMv!xWuQN64UW6&BlL>+a&KNe zr%*F1J8x4F`7d{6HKu2%Msp_X`!n9IAY{f>N^udZeFz***u@yQIJ8C2Ti7HX$y$DAHkQHdpNo51!^5x%?^6zq2-9p zHVSuJxFJ8L(Gi&kbZM(9aT2eg_Ll;yD_TT_hvZoDFnj7d+Aieqb@HEb9B6cuHQC6< zQtnoHxLuaaKYWrQl6Cx2x8#dB>HR*65sT#5wTY4ROWTpI6sVKU!7Q$IdkiMWd12dF zMP}|>f(|$4bIaLKtTk9bW)n{1?!IyyDe#gKtM}of^<%Kx$dVmt?Sz*jXNWTDJ78w< zGMZUGn(jEPpt@f-pz=W=Yu%ttTGqLsUKofse!axc-ev5b$|DjV7fLVFmw@?|{oMIo zrP#Ll98O=K!Q&q;p7ri6{;8KBONtscU8wzcuG=eB|9kvBQX zNW+kS%TU+Lf|6cZ;@G-9GK zxW;BtgFd}C=z{)VaWK*1Hu7%{;ha=`s&zCaamkb5AFf6@Cj;S2*Cu*4Z8)10ZOtZ~ z5$>>^d!XXa9xhn&sHpWsDoTY0(Tm4>nAW?~^!KtX^9gIfj-F0#i+lolCzI&frICF2 z=mM}mQ%rJ+N$~Sa0jXxsWYR;_;r_;Ulz(T>z09+wt$!6nzJdAN6}=cz%uC~p^YiKa zf(|gcXMuLlG;vKuE`Lb~ejH+OjdvC+;sS*IT>JSwT=sM!{oCCLGKH}aK4%b(QXUH# zodcprmES<-*i8QCej~EE=!44yzVn)I9IXBKjhmQch4FQU{Ksk`ck$I9?vl1Yj1e!R z-f4f)vCWwbK7D|Ok=4N0-p2YPFG1Jw7_K=uf}TgNhT^|*^euWJK39B?E`pd_d1o{K zVX_)0mt)1E_9Wu(^CC2{s)IhMJv5@_Ey;EODQFi#i_vuG3o@p@y4B1)eG&!FtAxR7 zRp{Efm}IAJVD9Ek)UNKvGM_4Ac(@Z^ZRJ6pdR-X(xeo8Hn!?NT=>{b!X$kZhB@GLC(q{38TGM=|LUO~^u@Xj@3#uu0Us(u1rDjzMdGC}sS(4W`^9ZkMSC zj+t77zSi@w^MDo8yp_Z&avSJ=tT`nOHl*j{RN32(D=;YL9j^TQ5b|0bnNM&tyqpjR z@22L{ohm_F|71FyjEe?;^FU_5C6+qA8?%(!2b@{{9?V_r17T+_kUW*L6E*W__*_4h z5o`gQ1Pn1dOBb8#lrcY81;$PCaN9b#n60?u8fXjlfLaqG>S`P2$ z9Hy{GVYnl?m<-w$uvhkim$6er&?o7kTd+83o>!&3;0xT=jXmeWa=y@um1tA zO>efHQB{TqPKnXoif$PFdllu_JJqW;2^k`(2kI8uOG4A}0BX4PFI>KSFT9R= zfa4<_NnL&mJA0~t#$;)-pYIhYS-}w3objdqA}^3#ydj0Rl|x(7Zo1*ugmqTRl)L&m zIA5BFS4Wk?`i7CLRm~D6Kd^=V2N8V{yP}}g-bN) zr;ZCfxd-rWQY@`q>y5w77gLLV1oS8#;B`C0c=;8BSmkd!95f;se=AO zXOpApa5&KDiqV0UaIia{YhN@Ed#n%gF1Kv)q^GB_`}=WyjXtCtxQ8MUNA^I&zA%!~0&{>%Eb%%-DfSDq7H9_&w7fU56vf?(;>hAGk`JVc^!SMvIla zaY3!%bC<0qXXk~y`X5!wZP^4N8#C~ZuQpcQbcRVrMA+ zX}&!bwCzT%t-5&1DS(QWZKOF@!f1!(UQSL{9fn3Va!p%n;mcWsYY)^YHeP~7J{m`2 z`>wOX)i=r2^|DBB%^0S8dNKF;vLi_dm~7klemLaoLPuUZ(4PJ@w*T-u(x_U%rhK-B zol)rmo?}ZdFG%C7Baf#&{BM9;G%1|Y(#Nt_(`QrZ-LJ4#cMZhU>Ed41k=(t-I#5tK zlnZ;Lfq8pYk#u$&BpBt8-)ki%vO9&r(KYj7u_Gsw$Q6P(1OX}(t(^a{Ix@yw~bmVqQT1?}cH%vG>WvH!^JRF0#& zVyR4AVHaKS&}N$Sf_HuygCUm_aHaGzjG6F`GrcgA9}<;K0}BT+o03x$_fMXwdn@C& z8S-d0dl21r>%od}HU4c-BuxDoMAzzO-y zE0I_CsPi1T9B}7f8^_bm`l&2#%>n4?7AH~2NYvC@Oz$`T!^N>82u)8Tljyz7BwIL7 zxnr1RYAoi8&w_`w7g6JoIJ|1%SbKT__j2wA+T0LJcX}3*6{pG0#SURQTA>d$Uq`Cvo1RmAurOC^Z#db zxi&j|b9k9UyWyqc30NBT2*VnFVt`o+eDBPn(0GP?WO7Rnat1qAoYGwVNIVENd8n8U+SkpVdr0PJvw8!z;jojV0s3POjBZIV`HiG zvo?GB!5H!_#?u4MD=2$RSMYU|qD|gr(d(K$q|zOTj}p^qOY0NJexu1%86@)Y>r5eN znGu_KO$#sW(qqA2wo;$qL6@z{#n#NHq9IS-fpw)iRli7Jwl-y-ON#J$hIu%`P2d?qhATV zxr@-{{CNI?elo3=S_cO2Gti{bgqo6$!^5f~TH`Il(pzfrV*Uy|{Bj(Ke0Sd+@SuDVmz*DSW~p%Nu+9Le_v{(v#Yc{JpB zB?~b;L1J(QM)z;Sh8asB-p`*7Bt8WV_cS=A)XGVz3g_E3lLbiU(d+vCY_hHklk=-5 z=Za3$(Kv;F({s_!S(?ecJs{}hCyVf83Z>L$!TLche8{y@&gq&7FF#}=Nt(3b^)rPc zmBv-n>Ute*zWUMSmg{g_yc$j0?{c%3JF>yEC=fOuKj_eQRxo zvboiq%q~GAJztpDumSHbeuYMz+t4UGjZ$wla~Zq!Y5A!y&~YOT%>z==?!;*JWt$~m zF_iGE?pVmb;YhmRtp(11$xc|J3|4P2XJ7Fhjap^~~ z%NC?`a|---CkHy_MWR!Xyl7o}42cGG*loFyG}b4S+8PyDaOQdXuw0p`sn%iS4`;6K zxi|jOZo(mzDfl?fh?PG*N!R4}W75-fx_sdSS7DKB0Nohk~=9V}=7CeX^RGT?#+ zL|&6Eak0KCOU!j7%Nilu<>q)6dTTG0KWSwpg|X!F`89+GOT&1pZSYKWFi9_6f;;k; z;13^F&cj`owodrUH9Kk1{TKO=r!@h~m!)!z$oRmEhafsgN%W%ExNiDEJ(7@r4Zmw{ z(3pmWEIn@ota)|``_=@Z!Bi=-pZ5Z1CQm1W^+mMq(oDPQj>GHq*M~CQ^3`Ng9l&nL zaTHyrOXmXSlyPtblkQKzZTFTz#1~mI+!aE((_Imavax%jzzb&aY~A{cH23*)xOgXl zYUL`xp!yS@F1(1(B7frKTYGV>hZLD7^ux&Ear9^AAQq)8`2H3P{n@H2&^b>DXM8TJ zyE?knW@3jQEqvh5C2H)V;Wxj4*8N-zo_K(JEC^3#$5-Gu+j4yFE5+`o?x6M4l-U)( zh4lIxV_u&!0hdk0WFK2t)LRIZ#i#LB|2ZaBd4+~O?8f1%V{mMgAzpqJ&*FypqtZYQ zQ_demGYungiIX;LjE<%Sv+v?`K_?iw-HT~NPQ>UM1?cJVV5`Mm+J3hIaG&YI)3s0d zYVBoMueO7%43t^w;eC*xRf0p}Pva4ZJ6P4L$zK+79e?iKMyUtP*yivgI$$Bo-uuc^ z042fRyu)?&L*3}V#}eFY&0E~n-ePj7*j(rf+)Nd`IIopU z??1;?{M<})PAmaitq>{>AH{epdDP#q760S1Z4_dk;D2Sa&^yotZ0_pO_xUqfqs>Md z6Qs#5DGM0t?RUkWnTS7kDjppU- zO!sjdFES8latnd8I*;)mWm#v^IQXGGj^1;Ty?A}C6xlWmqHi7#VViz1U2MOJ_6Eunxbr*LmplgwA9)Bqw=g(R zm4z;!f;fqLgW=`ALxLWI;GTXYWl42H_Xi0a^-39^s#-#x?`IrdX-eD1rNW)6c#3d( zMkgiyp{wLB=shUQ<_s-C?TZr3%>EBI%w{>WO^w4QKAPr!9mMwAAEow$)y(l-Kfj~* zH8zV8mYy)g&>ycnf-l8vr5ON~mR^4-DMi^Q+J8MuXCeqFEmfl5Wj-+M_iI zYL-NilAymBl%z_=p@NUg@{Z`?;siK(whXSa1bp*5p0u|nfYgswRQOhhsm)0uT@r+evl=Zjxprz zV?@7wzJlTH)qGp019;SB!a@gQ5}vZQJ*~NP(C;W|l<(z@<&x<5=xnxE=$y{f-)j4D zyA#`&^b*^r4aN&jQe0u_Z1O%h1plPSkl3gM;E%1~vW@NVmh(P->%>&iotAm1uwxOJ z&k_9nQYmygJRVD(V&SKH8|U7bfRDB;VRqtMalyQETuR>&2vSHU{Vk~&Qoo0EUYaqT z*c6bJUqbp9Oz=)}6G_DU<1`G?DUOn8_^+9EyN9aOFD=^3zFz!A+a&ziOXFkIbuJ4! z<|N_qgtctU{S;E_%b}RcJy>m%2pv9CS?8P_3KR`xO%6}+K<|H8^7Av?e7~Ji{2bU{ zu9Q~m--3~o*JG|r4%`~&fu`4mjGjgN=)KK5kXTVkp`G$}e!~k$CucesB`l$ZX9a1@{>AKmG?K#Tv#ck% z5x0h>Vg2IEI9&ZH8aeI-=x)Nf8A|jjWeA1zR+7(VU8a0CmHR#U7T<3&0R{vutJ&)x zxZ*qtdDGkIsgQBE*+hceuk^!585>yQ@5Px6gs{mIe;!2Qhn*8( z>7U!Yrc)GtK6)Q^T=k+Ssw&j9p$lhRHG^xzwbALPGB!jEfJ&7#Ev*>GExY6guS&Bh zX2>M4Dhs31x=tv3zlVlVc2auupJR++cbWkXq;3JuY30k zJbmfUkNT)dmre@)?&G)V{l93IaH0<`Xtd*F*H}`Fo-Sxm2Z8?0PW&=4nUunpGhE$B zBhP<_h_!CyY7q^hwkP;-g&c3_7GQgD<4kmy`-69K-g+9Rkknz+TE$~KXb1CWMH*mh4fgP9k*j{qI&CiJtavAl0+a_)S+t5Hw z3VmnD?cT732D`?wuQw_|^m`(Ww?2-It%z#I(V~&tN5K~Fn^;h_9-|QGcCIf>XMmBl&iTenQ`M`e?CR1NO0 zlVJa(c$&YXlbui${OThlnfJq`bl>Tq$nuK^*%+xp*Ytzj)a!rwPj`3I->5(E@4uPk zFZmbLpSwYmZyhR+^art3GdPuF*9F|u92L|{sJKD!sB}A!@gQS1=2I8{Bk4CT*K}gf z7WblcpAIDycEI81y7VV*Ih!>4619dIGW!pESe^VB63TqA!rYjGS1Vyv&VRh#?4MM`*%H)gxKrRZXhTjK;-^y~y(gl-WO>MDKGcL7|-cWipIXGRC6R!-Wtl{s*&0 zci~N)QeJApB`j~%gu49QbUmySrrJ$~yiH}?@OP1rTeci?wI-tf0}b@m+f9~HryVnnfk} z;g$nW`2 z1ufSmL(PwH+B;L4-q@`pt+o_6>~{cvFESSVL>(aQb(o9Gc*^U%F@!&3chgS$wG?8w zkofuQp;f>Q>UXHnQ?EH}y`>{{4?T#tZ@Yr)m*rHdd`~o%Qz6ZhZ@@QXJ#uzOxowLb zU_+@rmfV?!HQ}|QWHE74?=Rwx3H(fWloeC-D}~SrN;pVwKDJo;P*L0*>=YjbgVrph z|Bl_m;FGiIP_`m-m~70A@2KH!3p3u(6eTFBKEzFRMc#k?TFMdAWBo5z(+NKn*38d_ zoU<=+!)$F7B|SxM=snyi^l;}~(4x@plR{RekoOhV1`Z2q;pEW>jDG9F-R`=M8^!No ze}j1K&kI5Hur>g1{R^bHZ3ax|pP=nt(ZUDaih}%dg2%%7@HEJPH^w8W^G6FhzrKo- z%ztrnH`YOV2vB|GY&_wA6lbLfcw~P8ggeKPgUx-ipY{#6#ixTy>@o=WT!=f&7PGB` z3USfh^;i`Dg1_=Mi6VTrlk$8GLC-S)!4VdqG`A4%|6Ib{?+V}L-z^j`I0&KFeCXf( z!4#P^lp0-b+J@8@;D>w|jiq=A&LgH(lCcfM*`2Tj(CPfdJH)RxS4qZsoOnh18-xxY@HWCld zy$;@<^>pBmESX6N{$iIca9(vcd5>zsfZID^`=>SB-~L0~ms~~k$=pa+ygT@n)2ivr zuyM?gxj@3RU<|C`LEGRCt+Sg(BmNuBR6bXbdd_a9zGxS@JGt6!(Fi87fIC87m=PJN zi+Gt&4{_!`1sIVTNnMMa*~{l0lwCWFRd-(hA4z8#kW>4;?MjnM8mKfWr3j%Y)xFmx zMTS&{6cG}Mgvt<#G?$Vng-S_j5TTUry;ektR77Tx3>h;;Jn`SZ_w}W(KHU2n)^(o8 z!Py_vgu@@jI4&gsZ`|i`Mea~2Q)xlxKs|c;z8@F441qPpdtlFZQ!aYl1GupHH1{#! zD>m9)h2C9}6sFtC&S+K8EcMs$dBt4*)~&k`G9?|)`c#YBa&%?}89eu2LhF@YR| z`*Gpb9Jn@K=&H}UfwzM~VfS{1?{yPxzlV>7X}+szwX`cG=EYOjm%CtTWXeU>$&q!2 zGYCF(`f^|`E}wjjlXDEBEB}Joomp3C0I$XLOe4|PbQvU1xPx7}s;D|Z35GAr;8)D+ zL-pEbI3VQV?sZgvdz?CV=fOih;e0Y0zgA`MWTtbspG!b*=Wa@mi)B+?uhEG;+t|+o z3)!0LLR_)v1218m$S-_86OSC-2Bm)lu2gF;U%GlBjajP0q-*0jP&|Yk4b`x-v<*L- zJmZ^{!?{t@EvcR#4_$BekWr;N8z}z|I^P(Ql?vg;f8)hp$_L|#;{b16MU-Uv49nw9 zs7hK`tG>*Jf1dmJFzG9h?MmdkKo)z_MlgfgLgL*=a}$pV>kAvq+V>5|R>=vt{On{L zU3FcUf0e?zq_?<6ghfJT`o3Q;URYX<7mSoCHz5zcX&s@J z-@^HelT2v4nl-Z!J3{1(^SHiHhxyy(p~zw-dfyi2C)xJ&@R|p^pr1m|U-m$vZY{sS z7{r?nzeQa|9eQV301?YK@E#Jv-7L$4E*~37E#4YzZq9gIubhD2;|Z#s-a<*6n;1S@ zmaQD0Lqn?5Sg&d}UB7i5Za3-hi|#b=Tc0YC!%$Ov^5z6Kk1c>#djcrR8TmcOXHj}b zEf|Fh`N^qo@KcI5pIlxE32I(gtMAQ>wV~8pXi=RYIucVp8E-yH7^fGSDK8X`^b|UvC5R{Fx zLDwgO;$Kam!9I*yn?2bBDHm?wmc>+2Wxy3BE=Q5WG5(MAHC`>Ch$aZ{?_+xw(@9q| zHo;d3Ubf4S&Y>TIQ$p}d94W*z#yEQU zytT4}gFACz<)%d1aW@aiF@z#oCE22)9uR_;G^~6Dc$`fJ-g<}H&_IPFSFKETt7>c?2KYssg{=lC!1uv26jtrDo}GQVc{g=MI_ zZ7h$27C=K>F=I z+~f7qE^wVoW9eRnFMKaJj3w4jaedS&jF~+J%!PC0y_kGd*ibK_WC_*7aC&(cmi@Pcet9u|#R4^Edw40%_W6p7P3(A$W>peogW~ZUm7wcl z4EcU}!CqZkM@zhhFokow(77QTjLluhGVK+<+Fc3G54P2q4~VAhhZ1C>R!AGS%wRE( z57^0j6yY6JL%t>bExtJ*O^Q?ZVYlQ`8rJ=c^-~^w&iVq&SC-*M&sJ`AzYf*uT*rfJ zwhDO)5$be!P}b5z@cm~C<*7Kb`Co6NXJ{NWj?EJKp9=Kv=p1_5JqJn$d6L$DpZTF$ z>uA6vBPdAe7wO7<5f93!Rd_|{77nDd(=2f@;5vc{( zlR~rt>#1_1x37-F`TeK)UD|cUJw@6-d0S5n*1(WRg)N{0s9v(PEVK>*Xqa#kSpJP<$WrmRHz4ij9 z;6@6lsbr_|2`Q@;zzXdVWO`PGU)4LAc8c0~Zh|9o`lC-1+cm&#VUPIO`pLq5XA30@ z`NM}%1KH`u&9JZUGFmm7L+HCM{;-xN3l5Ft4|V3!y{KAQc$aL>_2yh^B-8!A^e)9qgobO@gh%zjUSPCPmce1`Vd2W%b z1-*Ro2Zy@5(%#Rd;P;VZmik6?>{AJ54(mj@OMZOw2|}F_6X;dU0J=Q5fV!H!ne={B zI6Jfj0|vUl_%j2^wLKUVwQk@jkvoOo)WEe_v80=-%I@|2#_wN6SU>j$x9qj9KOLn}V{@2$yTEDK_^KYHxS= zq0smpdOJ4rheyA|i`_#oH?fPm-w;V^Pc^x_16PurCKPrH8r`dVVgB zpSksfSg&m$P4Aq?Cco}M-yc&z@|FR~d<&uh-d6bjYB|kcehH=*@1SY_TEM`i9m0^>^ariCIe=EcH&G9(0FdxQGuZ1%@5x9QJUV7!H ziyPIK(c76a>}saJ_^FE%`30oGh1$7jaf*?XoHN+&bRfk?y}VJ%2^{$9Bzy=<#K&Wr zM1@wPSo`Zw__Mqpm0AbDg_GN<_;?B5lzB{W!I;2bx$U5%r;fv|7DIEU2CmS&i?1vu zv9ZGaKti|&)$VoTC8zn=E`CtSpV={%_q#BhT?nkgKDqte;l)}ManhXlkmpP^y@}+< zt227&gc`4n#pS;?3%SrpsGD>L!iVffWjT5Jb$ld~9wqGSQNx+T>ocOMmBv_H=#39X z?xPo~!)SNsCEm*I2+dmN1s)H)X{x~QvRT=O0mhR-=4qgaRit36LmaQN?J)#eEv338 zYq>u{9{Gds4hUW|rsicCj}MEZc}>BSl&)<;l38cqiP)M9!VW@tObQ){Q-&e4fipP} z1?TFP!;ETIdM2>Sf>var#Xl)}WcdM~sd$k?voNpB3_@>fGt{h-fqg-1@t1`)Ps1H~ zOXYf;zgLk47CO?%lkxCg@S{g=>*p6LJp}V6p8s%vB&_ksfpsaKbo5RFntf8C@RoZp zQtCGsCy_4j_5N}D51Lc=Fllb7|0p;q?5pP|eB#`*_S5}vSypBlDgKmHh|9HXaAtub zr)u>Q{}%1Thi{N-lp>g-pO~z_Nw60`?qcJwV%R=N9&UOa$Mu&Rc{$D)a|E9Axk+z? z{dhjj^B=~tRs`~KX>R;Q8o&Zw4`9r~n_xZXFm|cAQ2FUksC{4sS>2XlK92I#CeexJ zng!qiDR^n(GhU;3FtcnsL0Z}>RKDMjUdU|$PhVYBKYjokHp#Q;Z;S9!<$u^KaF?4* z-05_IGrw`sIJ)5_%{(P)PhNX#Dqk^V9CYnVSj*KI8wAF9DhUf$&&O}4~cX(_Py%U{$? zzlLQA_FUrmJbJpa7d}R{(pB3jtZ#jx-JR_@DD}=%Kwp)@M}r*Py72{Ui{D8*)uLeD z^KyD_?#a#`^kNV1l;F>goglSlGIa$hkj~a+EU+PuRBUx?A1AJ-@2f>9USbU?mW4QC zN*rr?p+#rJ|KSpq;lK$!5&d{e;dN{#^)z=tiOPOZ>`>y52ULKY#WU>a+sai>(kJ8W zK#Kj?2OG9!(@tX}mR&N9<{!!jc$o?lKXLT@z)$h&WT69pZa&%kF=ti^`6Sun!0Nxe z!Xyt%Fn{aFyR7E$S)~eI`C%@~j?|(@N6OKy>MM!{ZGib{iTn!ZT=cb^4`L=kzxKvs zmBC0>^w@`PEz}xb0E_ zoC%+ZUU{|x<3j^=7B~z0A4kRpJ7}@*beO5A0a7{w%WAI+y;}dH#;R6?w*!~rHgP&d z2B=J(cK#Y|Qz`&BYD*Fu_Jc>%L8{A?o$B6r0e^1z#SRUBMQ*dz;N#lo!VLZtJ{fnJ zsRTOFhk3&P{dy%Iu0CBX?%n~8{@(O8e;>1OT}$N-5^T!I8181%0Zw6Q2Y$s?8;Rh7 za9ETAKVr>E;*KfZs`!ZmAD)00V-LaAbGg{&{0}yy#lRJ(CMdDS9mAJvuHOA`{Oa(4ue%pQxzW6)Jzj z!Ug)&{H}&y()qEA%T>H!G zo`~XZOj!m;%C5qWg$^fwgr!?1vLx{Ya+p|WXa2Ant9T`}`KyM;)={)U zNrqyKCX>q}A8?7TMx&H3Vwb$ZOg8-jTq>0Xv+7oE_dzG(H-|&}pB;2ncwdIsW5w(0xoNLz;BsgM=wN0Z0#X0YFg3{m)u9f(Enob$xK<^QGN*iUGL7n zv$f$=rY)drrVHrus1A&Xp9TZ(RYJ{JP1^PJCzz$nQP#$%xIgwdZZSzCgPE&Xo;a2E z=rN0Suo$lLD$lk^k3VKE)hAvcQluhD0N^q=5{ zDgDCt+00cnT5wPz@Iv)=;Jr9^(rTAvMz$;YfB*U5yMslr@k>9qY5h!ox?3G2JM&~) z5=my?G{|F%GT6rX!9oRX^5c?Ot>pyDw5-5QpZ3A7*hG?D6+`Q4-(u!-E&j#nlY)=@ zHrLeCpORM{#QR zVElT09Zi#pVQKqwDSzQa#-;S*@3K2E#;FI@Cyk`wbHqz!NMNq>D5`j9!t!L!lF}4s zR`x)~Zb7Lhl$Zo#@z)SuYWo0;^h|*x^%68!Za!`6x{dq2hi zKI-sr zV!{BLCKcX?ty`37n_(Gz8}|iUvqhL6coMg$g>vJX9qF<#OVe?(q?)h4pgwUdKj_JC zzGPhvtk0K+(k13x>8;JU+9a5UOMPXd*VfRVuLBA;yUsZO2m|Ce6f(PKmHTQGL%F}~=03@MzFfpCFirg3=^TO}1mxsOz7 zO}XG9EEokkp|_wn?InJ!AIc1JpX0375WaubVUUIZ`cLZ=7F#W(bCuWO+PHI^bEO1t z@Z~fN7;pxwg52Sdzb|TTSw}a=sZnlFJk9uH%BBsw#l1_*!v)`tL$K@!s3@!!+@`)v zDJ6}rF43VW<7bgW!W?+NU6wsNP$$}=YryWhY@&qXfvjQMPV(87M69D)5vv9!_30`v6ZG8T1CY{JDB{F=ALk$;bhaMo!J_V?=qlv+)MF07 zFk!AdcWxAYD>S9f=y6bP>A}~OTj8%xH8$yC2u|3%55nA>uxnpD{poxsK2{Y+hFS8= zM=Bl)Z7k{PpI-iDpd%|9ei)ZOmSM4Dw$hB7t?W(4JxaN2!S2qmWG-Wh@PO|ydbVGL zMx!Uv_DxxEFH7(QesN_LI%~;K$fG}g=*-Mo&!J&YkvRX_S3J!mxw|J@Kxf??3X5>( z45r4=k>7(^-PxnufpxdwX46W3<_I$?uo}%y4cmm3va6`dYcp9bkD`j3uI!EW5E3M% zqSV$@SS3@6>lSE3TFNc)xROHJd|i^{24zxvp0Hns$-=~1js~udg8daPwDi9dxb)2~ zz%!FbcFRZ-LO&#b@i@%XSb}SERdAZDI~3os0Lf!#MaOq3Gs)L`XxZFUOnWzoY)>49 zs&`7v=*(RlAk2Zkts4m%+Qax~cMm~WVGJEI!;hdQfyMbOM1h>{9f5;c$^yEtgiq1=B=oDFfUJ8vj1k_qv>u+P&*SpZ zX3}yxEuqeuhc^P#+Ct7*6Hs+^9{!zv#ctc>CSE5fAdoE^3mtRCLt z#}!3$Qr1P}uyFvDJXy^r)UTsOkFSgLtg~p}APqL^Ksk14@sJr>2UVX0Kgql2e2=>k zZ#r}tEma%CDjw`6XPpMfKYY)2dR_$nJ=w=o_Xj?r(pec>c}^ycqEm9h#%qUYnzII8D9wNX-+BdpaEKOte|a zEjfZqSDDwbK8#VE3>u2vVC|4e)+_vJs@`?HQ*ayx>-u8jrz}xR-Mo2 z-G*B05?PenB7AsCo4a#9R(K21pi29@c2>UYC}D^dGYSq77|=uLgs71pT`_`g`<+A| z&L7T)rBcG}2X;XcMPwWi313Z2=v3!|n##KGkQ3C&Y1=E{)_db|cc_R8nyT3vnJO|F zZo(F(T;RgB$3x<58!EnQ%-4_i#y5*%aiVk;`HXX8{Z7}Y@H1mBn-nOVJH_8qs20l% zIxQaSmkQ?_4Kc`L40*Oc7Q8wlvbov`U%l#JO?o{htd-|mzh$y}x{Yvpm?oRzDR}t4 zs!^jp&+Q4Uh2GVwEMS)l?Wm4tmzru&EU*TG)sw_!W`oJ@TL#>s?}Ddj09%yukk<`9 z#!p|d21I4Ty(jf3rWKXjo)nl9(#qrD^|dkd4pcxjZZQn__nSZcv4j7Z&=21y59Rz{ zw?JO-B04l&nr*T;MVbd%1kY2p&=GZ@6Q|QL@BLGJq4*M?%{c{qu>tgKh%K2d6#H^=dg^gemngh{4&tpqYDfjz%C^iLE;YrsS_{oE#xsK*c zI{h%Me_9B#t6Ibx*8LW{TCd_qR?kB5e?Exx`ghOL*+aCTd)HoWp>j|BgRmOA410X10oh^;ArQAc(?9)?$ z2{7RSpL#r-`%(J|&&J*6bKVc7pMS^0*LmN#)cPa5&)IY+)6>SB<*V#IO;6_b$h=0S zvKjF8XakOS$^`Wab9jGXHI7QX&K+>Qf>%8hnC9=_=$kL_v%3z`grvFD^>+g6ZJ8>% zr|m^jTiU>FK|MbOT2fJS=}KdgeHCF}t=gi|~3bvUoAet=NQ8$q_Vh*fSh0nL)W> zYgpjtkuX#6=X^e~iyuEQUG(RJ6rHfwhJUZa$U-%VhQH@Qv?R0nDe;}UG2a8Ku(LH_(n(v-TQyXPa+EIi91&@QJ zc_-iVFM*OhC7H3*U>dkinXCgikhHl5dv1Qfw9?yP|9%=}&fUbey6q+DX-i@B;*qQz z)amuuHR8UuSE$u{M6@AdJJ+8PLX9upV04a=@TO@8x&5tt;Mud-wEF^#G@VZJ<1X`~ zR@uM|xd7VGnT-?8wg_|ATOeZ`iwSKH`HS+VT&;ON)EbrBZChQ$Wduai%1Be@8BtEQ z7XQFLFcu!H{e)3t9L29h$QV7kszlXn@&Jc1L$MyYF(FR}i|jlNUGgnzOB` zNo6fpoFgLloifbT?m8E~=p^>vlY@T>N-#Y)9-qn-z~dFkG*xpi=vQo|@*VQ*++v=4 zW_SUWu72SBWWS=?;+wdxJp=+bZ=uyMzu+d%|D6}Ln9Z3bU|A%_f|Zi2Kt9o$EyPfxO>8gEh$(`0Yc!x`6QDC9p+i+T-oNzy}}4%!6qzPFueLa7uUf9F88 zvYs`|GU`Q-gsf7@?a`oa_m{UU6y~`5KZu%ybMfk1W~@!?DA~Ob_OY>%f?p^S_sz3M zQ@v8`&p*SRd6URFEnPu%J$|@dVH>3u7_gkG%TP3a8a6)`W|C=T;(-BYAi%hl`_val zqkeYbt4M1yKmQHR`)9)CcOp7(w->sH{zBV$19FafR#R{)f&}L&yCzXh9xMv{=JjLO zf0}k%<@TZKi;Fn3(UyN0FA^!w8bZlIhv15_D_Lu|z=E}lKrST}m4*k3dL`Ph?5in` zReJ_S&%;S($v9kKFG2pvmxcW<8)ZYr;@cp32#m?$T1?-dO;{&9G)bkSDeI-H;60-L>57yTmq~A)f9GMV0yC7|jQ>eSQQ-GFxbS2>T?(AYdNKsQ?V$Z= zd8!*jwWP?S=n&qG7IusAlQ84$F_?5{2#JggpfBkmfBxA9IAc+aErn)z<~6eIQ1!obkTGk;OPwOjxICYxDjnpO2SvjqT7kZ^|Kkp3Zx!ax znW(j|TXZK(o9aCkS=hT!8eaVzHb%<9t#AKvooa1pykQl$H2x6&9W{vAoL@w8Ijr{j zWGCRBX2Iz5i&%ZwKAL0ukWK2Di=`8bF)H^k+(?R}->;gmdz~xE{*_?!E~?no4sJuG zzkY06CMHM$@U3GsrR zF0Rx#dTadnW1?S+^hXcZbS$doTf70VW2s!PD^EJ~b_&^!kJ*$+KT(V{P z!xP}=w2>r#Zy#lUPs4+G0w449By{(`jMMku=Dp`zQSvA=Hoo~ggv8#)bGC{iSFdKu zwToaG>e9U4>m98Yv^in0=2H&UZ?qQQJKZaw2ST~LkdDKhNN;-k2} z`Wqe<97ZNvk|1JK5!TovX-5pDm*JDib6F0Qc?xscf@+lRAH^n*tHwEwXR+gji@5$% z2(jabaQpr+%57C(Q%*VY-CH7g_fdu{P&jujs9MTvFCNYeZf+77@v}tkMh?^nZ6GV% zP?I6Q3;!O}giI5Ah)|h~({kUzz0Zf}#gqhkbEO&kr7nQ8eJtEqJD7T^0+~~lI&WWN z2}^Dq2c5b(^s`g&9(Z_>{#p}IbX)-6%Oz-t@(wQc-!Xnqh#yx~euw{Ar!I7Q&8b%p z1Rhl-{GMF~d8d|Oi=~j`J!%1cmAf(2Mi~-SlJLjqqrBank>ueW2JXtsnfsD2Xb=MM zWcfHclito}_~`RETt{#PGLi^gL66mY;mXLfw)Se0b`|p?n2D5nt=`IAnA-Ri=cP@d z^#uuR@685EpSYf#OD>@4tDnPiu?-!$*er?}EKO2zZIGMcN*QmaG27oK>5owtEOK>W zYs=&zS34PZ{QxSNs*K~!(!p~28mf{P8298%g#ohcfc6*OKY~zIQWE=w+~c;b^YK!1 zj;Q(dI67vqfHzs}P3B=jHcN3kWapUR8o`5_bZ!K5Jv#uTLbaI3wP-SFKFkJ>7W$WA z)=Z}<0zwQt>G2z36Y-xwv+Wkbwkf5UW0692k!vV1HZ$8k=rB1XYtb z^5|Bk$uE*&jKB-{HE;~89-2y}$)&(rzhPwRMzE7oCA+_4Y1R%8%u#+01v}%Ywm}cm z4gaD{up?N$oz4xbc+S7sS_(Tn6_|2~8XIUF%XvI4rhD2SxlK{Aq|z~-`39E5XIxBQ z_NMX@29em~63DeIF%`YKZ$;(@55u(4cC^pqHF$p7EBaJ$ho3q6h1lcgKkmx5ljt-q zUSzlUFonB}Vk&EVY3;;rSXmZ;W|BR;McGo=mpugi(~EK0g+Jmq)njSK^;=Nre1dGd z-h(3rAaZ7ss%ir zD`Z74aZqT~I!XEv6d{o%~IH(!KfTf9j$C><^J2UCu{ zI?I;62}eY$1vh%Ez{8$G6A#GIrDs!F{)rS)qZs_vG?z3U3}s&G*>HBQF3!%I&x+Hk zNtxeFo6XHJZL`qzHJrxY9TRe%Z}r*OJ|i~r+c+N0ZwM?Tb38xcJZEjX1mEd7lFq|) z{_s*O(s#HA1DfRV4Lgam|ICFE1J8+dzbC-_X$zq-eHp!6F3e0%CJSBw3pT8wfXl(TY>>M4->B@{D!)QY|8L*Uocn)P# zJm$fZC7N`{P$)2+dcvO-^88O%%d(u;_i4+I1Ze6!LSEtRuxWG<+%JvA>>$An75EKr z9({~Q3Vy;U3lVL;oeuW=HH;0|1h6^=C-raTD*mN%>s93W&(>CWWPk=OY|s*z#3NXY z-(mWFw;QG{JdUqynnX{scHv~dWJstx2%rDJ-62h%dj``(;cOnfAOhwW zETo5`LhRTPNl&V@*vy?$EPnZE%(ct~_so-gOZi8xDD*Ur>oFw^lV@Mtw~%tHG?V!$ zuzb(%LDe+GyZl%@Fq;FVv!?j|&pP_&rNl~y5tW^AXX~;Y8JvF2-@77#>i(J{J+~Y_ za)JZ1t-DFFrseQSE1hl$9?IPjOIh^N5g`$zDEw2XsA zAz`S$jA3tZA1D7}F2ybMp>NH1u`(_S)<)ifXx;tjA)~{5EPUyHv_0j0)n!jtU!pyZ-uwZQcgJy0gf;bk^;x=;nhziHSJG4= zhZpg>8m^b_!9c@A7zjo*?5w)T!BLx^zSNd(*xulFF5XM_RxYew@*;nW-lFDR;diW< zhbPaywfmir#CB-a(6`q|Vc)|2}as;Uxzjm*tb$ zu|RlocRXoa{{=^$1shdTssG4c)b%l;BLlv|@{EFy;MJ(=;zlNEvBAi*A0B6jq_@R@`=&gM#SZ+wB z&0XqjS!E{7ymu8xFEge#Q5BzdNsrH7;fTE}0_ne_lH__Zh=zO<{L&Y-(Kghqw;-`9tu;u093(TBE2_{T#R$4`Anwa`5-Do&3|v)!fx|Iq{}t>$yQG z()8`E8^uPYpjOu%4x8UY#n?6sN*8>zr_;E!GootSFP)cvJVTX-WGRD1{i{5&ek z4H&{2f<1(Lg*SV>%7kU;%h8X6w{X0`rk-|_c%(|N~Jh585TnY=Fjlz zc@KChya80}Mc~0s0~Q+ekyCXWf%^;dFlpju($jPkoFT^r=F&w7Z@i8+SG93$pb|?l ze1OaACkt+ZN1$fuM9+gF$javw8jdW6-D<(Wzx;`p>Q&jL7gF?O(Q^Kpu0OV|cOi>z zXVzPGkd_4xVV^%P$MuWSP(S?vpAi*B*Sk(|?*m?N**`MKMj;WeCi~H}B;j2uCj{FE zwxY|KJ)&rpYkW#ZJA~?7;_q}y)5~KW^uqNCYA7bbquLwXpGu+E7Zu7T?RCI!+m_?- zgZA*rB!(u$M{t)T=Fr=Q2B=a=phC^mcZkM3pL| z?_%P^k=QMKGmEd^rj5-!GrJy5ZMGdS-t{^jmhI$H1G3P%*%Hm{refm{UpRH~JHCAw z%b9j+(M3@eXyxd_;M+6#;EEC4`tV42aeo&&cFHno*&}pRU>UvD{ewr-3jun|AZcEP z(0f&5^?Mf4#?(BlI+O)&ixX*+C>pzl{KM|SkGOSu%W!fJ~M*`RR9)lkOe>{1M8ms$r zh#X#-u~(f7F?jzuzV7%n9B{^-y3Hn1tiL{6(RQC4`!`db_b3|p>VIqZQU1-~`kK6z zDeT&l2<|=`4+B+`F`(}(oocv?#X>H9u#jbcsb7r?6o$~#J>9T)&KdYPtp{~)Ho%sz zCA22Wh^4zEQvIh_;H56d;tj9h`ycDUZyRHfI2MX_e-Pdsi^x`(4F_yEMgi@&;LwvU zEPY#puZ7cr`Zh79t<2(74I}wI7OB*w)r4Qptf%DXJ6Qbleo^h2O8m0nAD`Ng%FPhG z!f_Gu`7SQk+MPSmqgS^$o(JlAc^rl7<-8!;i z?b;?T_+B5J9hi>odtG4%ltZxDB(VTu;ap=OyEN% zBr4*Qav=vI`yR#>ts&R(l`vqR6ai|1^uuV_bX4e!);>gq{|?loUJWOmeXIGrib(P} z)eRM>w_6HnrI9YJN|MLuS(a?~eLdt#&Dppo zhd?7+@Dp5Yy|UdZLQZ!8ZR|Y?vG5UgwF_*^4Zq-h+ZbkylX2aqTv%i|n>3AA zpn1nM~LJIIoWaDI!UW!e{+~1DUhIDDDVO zO>t#6uL)957LZ;ieD> zxSj(&%RBf98&1-mWiIr5xf6xNOEH&sH(;KG2QB|1$rhXWLp8S%JZ?;dhe^ePTCCsj~OR616FTT7J!H=xkm1aI9`pu>jgaOz$tDH^UsT5%ix zI$ox}o`Vn*5WgG~XrChaXntv@D74Yr8Ph(g3(wBXo|x7@)NOe$GRBsoncy zd*R?KYXX^1IN|huRGFRw`>lewM>aXwzfPX5?D@di_=`wxR5L7V_9BBU!6mxKi_%ty z!}P};;MQV_s(}O9$$;Gy^tuvX&m6+0&G4q2#$2)gJ~`6Zu>sSL_Fmdr6(X|p)yF$p z6Hq{D@K@HPg73;1B$+dx`j?EN!*~q#ekg$zwLkGi${ScU<_#)&c+lRJSl*|}PS<(yEz6Zy%PyFsx>8ak!?ve+$nT_g@<*j`l zL&cgbGHH|I9DG9gMX$UeTE2?Rlug+SofHaFGG!~@9>Yw(=XkAVILP_k!0`P8C|9Ed zCJnQs|3udK&MuNvZvcyHh=R&1&#+ze48n5dn8J=_9GfrxGXsY<~pd{2>k$tVz>rZ*!8Jd%#x6I%V4U@h8hJLFLmVQnMYv=1+~I z+fkpv{f9Kzh0CJjt$aSi%#$A66Z*=+taX;`NwOQN%S6Jw%P_?Ry?cE`(}#ERDnd8^ z#WcdR(o-mUo)jxMvztPN3|riodOS8Q2;?7M0mt=^(cQ+CZGHL)%HnLWG2C3>KS$G~ z>IB@BCUoY9E&(Txi(E#h;EKPy7E-Og*~R3{pp_EdZ1V0}@>d;N`{KPOvk^Co?nGST zWs;_mf?_|rJ5qy96&2wH>CwzP(~SZqZp0Vbrqt5@3+4 z*0&oJ?Qcy7>op5B|FXSwRr9uD0Ax{3xVQTk2Ae?hG*{Ugn@Z5)T?!o9IyvRUc zVfi@W$ocCieTFBSpdzpyEzRhe>||)D+f8hiD()8Y(m9sNbfa7!)Fd}kU3&p2mOn>T zlir$P@_P{4jNn*dGJNK)LPlRGecIhY4yo%D5;R+@kh7M#XT;Vu0(C&%n3C6Tw4J-9_hQmguS zh-{1Ee%qYn>-64>7OL&Xv1<&l*w>lOy%U+_1UR~F7|JyywVvXCPmWw)0#$4+BK-)w2^+Qazo>U5U(_$qj-k7l*1$LZ&V zKhQZ(Sa(b3GEweuw)(>)^7^2MTF%YLg#1#j{3WyvjwHX*Q}K> z0w;cYQE90>HdPu?z}(v~R&xBdAC4lBt`?IG-Gl40fRov8Ab5}PEv z1^K>75r;gKA+xT51|jB1-Ow?(Q|j zg;g6_!d-yfag*4(y_Ye`-_X`BAOJ#YLr`gw8*rU3xEn96aq}%;f4t;j^AF+UzV-kc zXY}!B(~98Zq)_ZUKLUe}wA=YbXVrX86vSE+Gw@3COm^_*V=NAk!nYy5;8H(DG}&f0 z*Owv(7nRa+dvY+-6fXrIKW%0&sz-(8(frddKG2hJ5#M&YfmP^F-f+z+zFubylf8OR z_|X|NsoYBRAID&@faG75cm#Ln zv+qSR@y7)Cz1^PmdECLtPuKIJqMPvi;whZE|-2u22sd2h(vt z$w5dx{Y7kcJA+F!uwY}g_Q1%AmTUpF;uq~P{O9|za6x7??vS_T^gYG=$3+G>^@%f6 zP1}Y(V?x;I)PI=z&KSR>9fZ7+8g9hV<(G2iIq_n@$>NS}3)!NXd3*}aX4$hZ;ycI5 z0yyI&h;(Mv*kC@GRok_oCx4fJe-I>Z+o*rQ+HwT4sTXo`W4L=#Ne*bI9T}Loao(`K#=&iOLVPf zBu36Uz#11tavMS;*`_n{)S379(h#*Auq1s{(bx+XPJP_^M@Bg2i#I!};s;OD?bz~V z`DnCDn>)9}0G`GBqy5rh@FsGnNPFb#no0{NHdL$$6?((isSRTMeNKw|YZ?ZIH`k+T zq%9bRr*Wa4);LRP1?#KthPg_^SzFXv0Z10feI9)Z0;(^dbzBB_D&UjY+IK1cau~4w z10H~0z)E#*;A{b~KUiA~SCW?_H%yOP@kollz3DjbZ)?Za4qc0R87k~e{%xei$N2Js zJczb%wlguh#~F+j3U|7l{LcGRS%vLtkO?2la`%X__mQxMXzzd}!=~aR?Rai!)Jd+c zB@(YSxU&ax*Eoms`Yio*68?EO0vkK`!|T(Ycr;J}%z74c**&Ic)4Q1Af7b<&jjSN| zI)d?Sr@8dySL1Y2}^*v5A` zi$(}BEJed`6+dd42-~i1VkQfdpw&H|n~yJ(OuID(XT&=|ahe$hjyy(EwM;2c-Plx)=9>)uMY|*`NGX&oH2lm$+=+!hEn(&pw$?ODrD+&wK3Qw`{n;Yof zuf;f5R|Rj4)WvIg$0>8gCZT&zEco4jPv(&?*i#lDu%cq7PhcCY@US|`YthNIUkeMsaDht)^e9D> z7z0hps=9b_)&uG;nGgMLPvFY0Jb3fgshDi41P8LLvFcE3G~>~0ucYY2z- z_&t*I=N|E&^QPd@B_@CyJTZ6V4La)-#~NNv6=Tpe>0$PHD4Xcw_UPP2{wX9JzeT%2 zZ*)cxy+IB}ci8@_I0zf+K!eYwz^o?+nevPv@`?{dr!`+-uemkeIk%Pet_@}@mJfre ztM5?3lSoJ#Z3vD>Jm@7%#M)Z`^X&)YkG0w4y61ufQt!TIXMVeJ*W?s-=(P>*@H))pR}RC;)31GhbGRocPPyC%4hGbHm_fs=y5=N2tNsiOSGWn?2O0|}!R zz%EguXFo=xdJgubP1EP1UPvie^l`>&ljD?fR29O-qWtj06slYLmtDBJ6|Q!Rfx0_` zaZ}$ANwdEyuIQOhuTM{B%EwxS*eR9dIr%Y6wZ1HdW^o?dG6Lr%=fc+C9vCj~OIjww z;qHrLY-5fXEFb3sz0IQ7*sa#2@N+pDuB(LE)0}akO+D=!w8(8y_;E07Uq%adCb3KR z%sG8mqYI&d=yA1-S$i0x@s$qxv|h=*`Dq^Pa(&KSx_n{uvIMqvawGM>G!L!D&&TKU zp2PRyapdTJkUF$_;iF4mDYUB>{OxpyyOZ50M|(DYHoV2o{~U&I%Zh3BWMihEqz^Mr zWzp$;6Bt@&1WH#e=x#e;y1X((H9296b|EQ`mM7~QM({gTG!2b#0sYU$%v

->mJ5 z={~EdWnMVGsklZ*jca*8^jJ8w!2;e{UT2zPFY!&=Zt;}QD{zIn4wk6tVAr30bm-X@ zo_4$hg66%X+EZJhC#OYFw0XznnK#B(jfKxwhT^uTRb+Zm0eTicU~dhBNmF$vi%UMh z?|2k&-xK4}K{XLBEgpnh((>t9pOIYQ>LGaM>PZ6uQ)=kbQ3vSt?Thev zg$`@4>t?0O<&rJq(s^L<2xPnGvk?+882;*Qn!BnGuanJz?RLnk-yaoLH=8h}-|KnU zM1QPZ^Fktw7R{%N?$NNJG9+b}2siIO#jhWzP z`ImW5nNR(1O~o_)?!yf+M0`_zCH*uS!zP7?TmbkO5O37>!WG6X%gpt!e*lFXngzI(A3sV!cFXWFfyHE1~cbY3U(1-V{5Dbnk9@rT-M>TN%|fsLo`UYag+?%VWd_G6=s*^~L5N z3V2TYIIVtVL~SAYkX!SDTpxIVa`|*lmbW;Cn4;H_OZ2W~GR9avB{i2$zWH%Ds3wnx zkcVyTk;Mf`;(i;Zt~UxLFKoem)kq9BZKri@dqjv&EWB_DCM^qd7&HC5z`}ia_-YTl z`r{LuxX~D0P0mnwp|0SxDFAX;i0{ks&akwC31EIB)(N zTI8ZYGH*wL>2o6({V5kd7^U$UFFeS0V<;}QbV8xBKb~21ltzr#q+`dg8*~iFQ=bAGPovK1Xn*h&IUidQk|dvnqRE#hkJ{W&r6^~rpOgRCfV>UV+-W+Tosn#vfpq9-pY3-BDyXb`Pls>T0Q>I|MR|Dy8 zlwhQjrk&3sXzJF~etK(a4yBd@3%iZ0$NV1IHb9>IsC?YD~G{IVCkYlqS^t24s< zo}H3G1{O5vwGno_`pegiWH@qgA(@1z5i`(*j$X~9 zyAmhJUZ5vh-Te7ib@-=>`MAc+?2dER)A?+V7?*Mftq?l@2Z+PdoQ1OAsF?BNkc#5Ubr{)BI(#4WO@lva82wfPb~3(7^voByr7z&Q*o1dt4L$Z}~7$)RhXqDn+rK ze-?S$eij_eGy$H@q?gOOX>nJi7~u7fImY|ovU9qqI(`U#T=J9lc1hKA$mwIBWYwAv zcWqdg(EzS?$$*=i4MDA#m%@}}2OQ8{PM5YN^5ZEZU_l0#T+V2cNTq+}#li3RnYLl5 z7N5pjxdU#zdyGCcJ(e_kXM*i`IX?3cz_sDJeEvpzn!Vpu6bH4D^uy`+_19x^y!VC= zu8xD?ohR6UQWuDOTF2!J9cZzC2<9oihL8qDEKlKd%T=3{Uet>spiN}3co?({IL(rT z`&71W3}!7Ehc7&&FmBBT3O&1?BKlUqrPY6_Lb{S^`mJQ=W++kDJ1y+oeV%G7Mxlp& zJY9PBnzwwJ#5_ZuvX9}~wCn3z-grcf!de3Ha+oF_8K#QuPfKXgbyGU9t_{Xy93uUs zXqN1i!lQJL^J^-$_;hm=1gRL|rwzq4&)tCerL6!H$JIPVP6}3kInK2!G)U&tEbM%D z01oLIU7avRe188E!)V?t&4!ZHNOIe(%!`g{RHgn% zy^gqGlvfQw$;4nLRXaJrvxO!-!w8&L6$Hu^Q zU@C^T%7muU(u0545hqJ1(_BsC#9{rRO|6ohzbe=(60om$ZBu4g<0l2#n)&;#((Z0) zywo9IlT1Uv3TxSnE8*nQ;EDcLxojn~LaQT5)V_HgpSLU+rcJrVU)0Zo9Yy)VmE3mT z6(?X`LnfP$V}ZjRchH^7DeUrlX?V0ohvv&G!qQLE+2avgnC=}LyswqW`eoZa*8J>R5xxR(kvvan1g-@Z+~4UOBsws(1e4Qx$8$Xg`v!yEUAD zYc90L>eHca0kyBxz*Z)L_h!SVO#)6X-M<)2qGTg%?v^vcETs$i-9)7TC3f2764z#<+(hvuG`q z+z5gB<;kqS&Lp0ecb`|*k0Peb=ql|BHE(WVsYZg1t3U(-&vRxv)*F4h`om$($eDoD) z{G3e7m2%ni_}y@-Pa!!utYKO^53>okb?BY)2#i@ShXwK)7&v|lDgMmofxkAw6Y+oM zAsREKF7$=3m;7jf5P_}RN0Ry-2P{iHO_zsXlMKj2C^?!ak&oB~P0_I+J4rkze$K%7 z39CUqZwMaJ+D8|9WNDH@18WwS{x^!BfTi*eIKQii6zfNeeUT=tJt~KdKdmWqt~S^l zDd)>(^{u(k-yD}bOM->+ZSEnLL(uqgEjZsAiKB*#i2f$=_q;OV_d1{JPzI=21`lZjdO3bm`!$ zs=3rsUd%S^kB8~O2J|BDFEgIx%JjA6DW+)%<~&j*lMzKi? z*2CiY5|%aR5eM zJcY;Y`uIJ52YK9WQU*l2d0v-No?6s>QEnnt@j|N?1FE?uA`TT{ne11{&OaFPGv-L2y$TnwYt0(a7 zMsoB*)*nN2N#e0htWzhJ(cRvK{0ZhmM0=%VgIAmTnwDfPT{M{|?wE`+9XFxDPe(kb zchOq?My?lK0&Rjg!))1!-5k0)|X*%q6v*f2-kAtqqEjDgMHZ58t_9?eg}aqvx6!w5A45D-3zs>22-86o&`!96Wq>J_Wd3MyO zi@AjvbN3If(5t0Czmv3|dygEA zOS!6z3%>Yci0j19)s8wuTDC8FgkmL(Usgy8Ylp)6HS#R~iyr+<8j6QjO(osYW6^5< zDO!Hko7WlW!~FrpY|u7Ya33Ed8KB|Hr6UI7czGTA{m=y6_NUOI{u@|j;S1*fUDhq? z!6Ineq$&8_Zsey+5nV0D0^4JU(Mxtx*50R*hgHkqNS6)`m1sy>cU)zu6*(jyV~SDn zCxk{BRZNJ^qED3<`Qv-*;K27*-l4mm9Xvg+o# zvRSZhX(DZU+{ApcoHn8&JE9CN~CP?co410Ne^4 z{~jU9_$oe0b0q}6_oF=D2g1?zkM5&n-KcxfEL?Qy4{U#`jmw(WP^6YO{ixj!%cZ`M z=AX%I=k@o(yGz?>*SARAE{YkJs`kPNzk_5y(1#Rd+M#spSqja_0db`(u?tG1)xW(_ zeN_maKB0(9SEW+dl_~T?b~oIMtD~TiMxa%+iXGQ~BkB5QgGs4_z*wmp`t-{t%h(6i zbNb4I;o&6&cRusSHBP)Stb=dpa>hq$i6EG?f^JzX9kYt!-bVXDUIb^j1R8+Sla<2W zH8Qk01Cd=V1U%jc=N>piVP?Jfg48WAFeHFZ|9-;B_a?ucvx(b?rb!b^H8hb?5JPje ziu2E3{OYl5FesyzDo*)Ih6l*P%HaL9v^)}`ZBkrM&GjwB9ib^xvEEK!=k|X1cm?fBRQ{E!+*QKmSJ)Q(e*b)_JF%L$rzs6^MbBfxjKV-P`~rDsgn}Ua7>%%K?@g3Zjhzyy4Y@dF=Yb z`+TvUKL-15pqzW2*u3l(t?$^)yB~N$%Bq8co$Gx`o3)8VbWDeK%Kb=In+T< zd6k;|dQ&mXql8+9{NTUw11nnnACy3jAk<1?W+A*y!x-jc!Zzh$cMXd=U{8-wZ z&%0!fR^RuLyr9S5CmKTq`yiP)ubDL4vL#`7oXH;xM)%v!SQS1T%?HWU6koVbau@#q zgz4418J7TgW4qm>^ycy(V~x=8U^H~C(8JV!c{IOxHIFP_3y=32(HG5IEJk*#MDKYP zk9{{3A67?$(pOompC_Ttm?6CASRwc>wWDaOI;Ny$$aEvFaFa&@zMt752vc-%=BUk7 zVEmBF$E87Bm=5LWq|<LZZrS<1{ z_uSq5vKSU`Aq1l4v8_BnJg+7lJ4yfEm$CTc>p|AQfX1b)htZ3L>Ys(;Og{lI+o+yT zdg6vpt*_G=t3n|)Hw=~!-N`lu_NNDzhd{H_2)cY{JU$H#fohFbD0>z_4zW2D|MDL! zar(0bIn%1E)P_^9izD&R(+ky!xn}67Q%)LZ3#vyM_Z6YmcX;@gL^gHXdcIhB zEcXx5#IWZz1ZLvgLiQH5dKdAR3ztFWPh$vtF#z_M?Pm`jDUi|-AB?;2F19{n^PbHxoO^h8obj6eSDeT9~ubrm{OCxi4iXUWzLP)c7-xqO-3_?3YRdEgH>MY^oPr`dwi~W3G_$5`UDd*TS^fw_&7S z3dye#%^>ssf|<+-3O_egtn&{D3HzN$cY7S#elLNk=!j|UH6)vQi0@mK2L8E46uV5H zNk?388~o6b@2O(Aa>RV@Wp0YinI+VZkCn9D3WCn4FWgEDR#I@P5*g=b_?pS)w%RtNW8znG9^x9S)`W#eC1&O0Y@QfcS1XntmOz?IB~MvYc&A2zH0(DJ;44Ae+0~o)&mGXD8a;Zl3{3Bhf>Ca>sJkg0Z{81eFI+huj~m>hLk|-8 z*Ify4!aA6q#~x%2tzIlfTY(?@9g2gL)p_+*XZ*MNAjysY!*nkvf&1eS{$8BfEzMEn zcep*7Hh5zhzYh}?pTIJg_2f`Bf|BfBfZwtb+P`~8m3kUgE2unnzZ>s~$BYzE_KGIX z`qxU)hL-f}&;dw~e??QJ0~SM)GIHI_#EGO~ec>pnQjFPgN)W{fk`DGL^%>i$mzQcZ>{R(k9Nrwx?b-q;Xz>g@z4$!@i~E32?FqE9^FAN>`WC3ZO{6Lx z1CSE3B>OTuIF5A1F8xSIN>szHhhj+U>8EUj%V>BYhKxj3?em;i)P*hR<5|H_&BAihVpO4BjNcYV>h$1Xz(*|1`W#R z@A{6wFVZ^&$B{N@BAlYhU*g%o`O&a=rakq`8O%>Qm%^)v20FiI z8ibbQ!QaHC^!~3022L}8mW4{_xoa)WlsA`5P#X-p*B>L>)6c7KZ*6gV{neJH4YEZW zt7R~7r=a;9M-MLrWbSDd1P=2Y~C(H zu^i+fY(YiU&lfXz&JI^}YV?GnPHS9}nMJ4ONASO)@o=EeU}`dqV-@qYp>@R++ILp0 zm)LOdB59=UljyH}GM`!-05!`aNd44daJb#ZI-69gv+fEQF<~YAbu&UU#ax=4><`aR zyMUK@2j3JL2bB*RS-SBwx3as45BxO2XwzW4A99e6%-PD?)|)xy5ZO zooMJAaVT)bq?e%(4NjyPIH&!yi=clB1=T81K#Sn*t*08lT12KMZ zC8bzu3Qx0jz{0wUukmgWaw?knzRY*Rjb3UvxR(hPzE{P!s(Cat#eqHX^oDdd1^37+ zIsA545KSI^nmZeZqprd^&|Kw-7V*WDF3x;kP3!{YwF78x_gyw^Zz_A5o<_3WV=#NR zDTazVnF~uZX?8DTifV3w?+a^a?!RDopRtqG#{@F7U^zVau!)~fe+`*sE9qq9D!6cY zFj&<}@z@3r;iJ)9Zr-CsQ=gB;rQg&b`=ueiY~4Z6V(xGiuRWkCiamQ<7`Xf9s>-5FEKI}g-y59$(a|_+Mua16R zTWGW3P3A7UBpd$zs&0B_4_ydEf!Ag-v}dpW$4X{ zR1xC6m`_vAVkP3vz9BXlHobK~`>zM-;ib(&T(%+@_Uq(v$)i|EU@u;HSCJ-Ig`rHk zCv=E!-?o9(^tx{e*SwPr3aUftr`};mpY_c>^+5y6yVnn+BOf#6Iz3e1SVO;Z^&t7& zTUJ@KjW^w20~s|(px^8?dYBW6K__j+u)6{H)!&z9Outt>cIsN@{CYc8P3~dYy+YZg zBdOFhbtHxku*Q>f<#AI(9?5QTq>Z)J(DM5nT^K44;l4xMvQKN!iCP!*FRz6uYGQEe z?R3(;q0O2Hhd^pfF)gg@W`E8MqFX>8Y8p_!p7f%dxXMQ=Va% zSt?w27>Ke#X>@i@9?!g72dh?p=CbQ;bJ>(2J=!zG4r{;l29MIdm|(GqQgw^@_UX6wAPW#;T z+v_F!xhc*y6ktK86fW}4q;YPC*w89Fu)3j2_a=tHvp7NM-6KPmk9=`YeHgf{vBRlb zn<>K7jt}{p0JVu8^v<%DU)g9u&!vy>(rrHI?f3;I?R+IdvX4_*;Wa+G|9#L{eTz2h zX+h<3M?R;17JuU4fRDoznDsnWyfD3hDvc8)ha-o;vp-A&_j?BVNUDNqWCq?ETKxzQOj9v`S6?u%@2dYd5}82b{cRQ<@}t2t|x zcZTK;BU&4 P+N!OzEH2wv%I%-bn}7Q-)4raXzBADu<~^aH@H0knDOP|7IZEUYlg z5QfV;Va1F_nDg0E)GoD<>DN`{>w6nCe8eEY&=|0JbCC@e-gDcak+@+%B3wJBhr@$% z=*GVzY`98+205>En->q>E4udR0r>DFJs?7y@c?aNM}rJVCJMJ?1#4w4Lb0b zeSdyfl0SYphX6y&6Bff#MOjP};kzxXUrX}5w}6s@HBEdp8Uh9sOIBzU@u}Jtc>LuS zI3J>n(mQkMc3dhuziu;lTG-LZ+h^IgV>8@O%gK;kIN;ok#qd^26^(sMY1Q_teA?($ zF!EVGmA@zj>9vadmqiYHJ-siU^|{OZomEinXeMplI~z=5dx>+6D#_Awz7XcNLr^o9 zqxti!k*(;9VNp6*o03Tjr}v?hj%~2_Um3+doCBjiDuP~=3Ol`16Yu#~Gv~VAXziX$ z!_CwoWY$P1S*K4|s-#6@yZH0^#_$DVpTgfNN{W@uFj%*OR(W;{?y^zvO#-t>k&)Y6YL$BH}>N`vZ*^X<%(=!)fo1OzXC{E_tRL;EP z`;q?5)M~FVN0!{Xj=vaVj3)Z|(53bZYGV@V)3{E4t93Q>xxIw)C+!l>d+4*QZ;o`n zb}-tMhSORVhJG)J2Bp2@IfvAsYjm>^8Ty`^S{SnPYzU8Wx4_!2J#e>EG~d^i(^pZ` zkT~-Mm}C~yXV)K$@+i1i&9tWAm*j)*Lb$K7OR|69ch*&J z2Q!|HC2RYE_^sbH7PO}mSV16NgaCwUzz44puZQNJ>d14-v}V>-x5C2$U2k{9 zUuVvOy6gp5p*4{%ol56_lPck)`Yu}H5-hBbxXQ<<-{2;q*=_OaNRWxB2b)ta^jrI+ zP!~NJUMyy$&=A3AO7(~|>h!E=gB6R;uJ^ijsVP?kKJhe|3+qiNf z^PM?@`;=#i$<9sl+-IgJtwn|ce#E~++L|y6A z{VZ67*sg4kr90_C)eXywpz&k|jp_Wyl4WIKadiy+$sUCzOO#>lq+ZxMXfbJEwcBSC zWpKc9QdD`)Li)xC*==*Uv$F|)DP2Qb#J#uNaZX)3_wyY~m0|4l^{h>`H%RiQ3lrYg z@h*wIXm~e*aX$SJKZy`HD~qZoA6LkWm_|cAzq4z96PW&zA#^9WKSEbJ#pXETmcctn zvbTWu6+`frmpZYE&zGU}cN_aKN*4yM?u{0!cEPWy1Mo;e3iV1n%I+SufaEv}8gO(L zQ$Lz0#F>f^o4YP3lbZt}OdG?T$BVtwN68zRIii1IAPr1%V=IP+vWS1X_!L{j>3iBC z(e*n>_U@y+O?I?m8i%i{pQzD4mpPle@`a;@(vJn!XgH%4;#GR!dRhXVb*STsjTfP! z*Fn1N9?v3`SJCm4%H;i4+_$)R!U@+9oRzkPJWp!!_W`!qOQTj#2334*=4VqJVT#@v>aNRT9yiar{c@oS){Z6&{3Dg~88S8~O7mv~mtV9fazLG?Q3=z1uJyk@6J_WS#Q*1k-(z@&k_ zc9|?uJ77zHRsFE&n>xxb_ylWpcTm`?XZ&O38E9-gMxPtXV8Qa8?5vUk+ZU&cM~~&e z<$6=mw0Vxy*ZHv{mA_d`$zmEcbp;!g+RB5*@8fa78tAkec&EH7_A=f>qNvKRb4hcc840Wi%Wo4*;zAZ$qxPfh9M%G06{0TX`}T8bf#S(eBeB z;^S@B;1y4$N0y-RyH-dTJ{%ja*3$8uNp$7G9q3w=M2$1wu_g<7itJOxCaNf5>+me< zx#);lJxA!LY{|LfR{?xxn?u0?gbTWcFyw(2mGm2l_Vvba`?w7bzfeT45AS6uAM>DY ztR1brDi2#X{ixPd%HrCsgE6wMjt}(fi(3@(Y0b5{=Wd)I4Nu~w+*P!Cj{kj=crdH>wJRLVH_6RhtC1Iw9Z$6V|Yw5^`!xQoj(Vs&L72`XS?FB9hGDf7!~26Idi*9nB-0OJ;wH(Vf4x!h zpEytKmtL**WePkB4xwMVG4Sfyb{0HsGT*5)7&Q&f!vfKW8)sWVPsg}1ldx$pKYI?n z>}|-j%8#&t9S-6ZFh{j(p^)q=jWcT2lcrq=I}{lM<;%S2zxRc(G5!imi_4Nk_ zvw9d?po?)zlSy{Pbjjwa^6=q#KZ<`|%O3sG;6t|`=5sFl;QV%9_@-@(9XV-KH84W> zU>OV(vzJrEn{lxJgBAO=)UtY^C;(rmVBns8Ru*r4-$8DtMQwue2r zc;m_i3j6m!@*_(Ve$Sgt9))V4=yH~KO3q5&s{3I@Wgg`Jr-nL@atW^vV{_aO!$#Y5 z3TpcgCNBIYnJ|+iZmlNxylXHxo_q&W4YTNEgCjdXYy|xEXywTnR`7k8BKxw^noRwz zuxv#S90*jz#2YJVY^Nbz>t6_hUjfB-D8ZZoCj>sUj7NF;VDUzMocvZ7wNZqQDXH<+ z$0UZ&RnS>c6S~bMpWpMC$$y5ppu(-aa9KwQeY{SPpuC4C>Yak04f%9pn-TwdwVwOD zZ{RC-yWrHxH(_I>IOosIpbH~Pc=*wCU=Y29uC-49i6ydIj;Hy=cQa7?O$_|jcf@Yj z653Vq>s-(kCwN(yN;CHMg({^w@S2iMQRILH#Zy?m2&8bGhje{MFuULG&nB+DM&6$X z!bF$T9Ha_)`&=_T6}bk6C@SHcwY6mZNsdQ&NWs171F4lcLd)q5!ui%wJUz_@I~6k_ zu2=zgCoiGm5nK51f&|!pCxnz+=T)z1bdvDMG4Afq9Z+*%1FTjWfaAVhqp40`xnAT> zkde!xXKV`W{p-MHPITmszbw%yAOd!L>xVbzZJ`^sMRb8XzS0lw8fg*dkzmmI%eb0Jt130?=C)mx|K=@w}JF`d!8tt^`(@rzk zw&#pQugsqh{XPt(P#t#u(?S2@MWiuB3{SCihcsIiYKjygji0UypGIHjUQ*`RYmXHu zkI}&3$O<|ivRo*P7z5i6h=9L(CFWt*je7 z8pg=7VlBJ0U)-+@Tf^tf*1$Jvezf7C4sIEpM$NSaEXmptT&L->h#AQ=RMZT6#;xU# zCcC2f1Oq%D&<}n8J55>v36vkCgiA+#p}fyJP_VtlZBDs_oAoosQ^z#n{4xc+`!<_o zyxSz))gC^IAmRG=p6v9BpKR9PX*6W5EoP`NdSyQp*RF}D#uN=&9@`HTW8>MGoB`mW zCLk*Vq#cHo5zRJ5(6dfmfdnrP#`|7RncA!;XEKfY(z z9KXVnmj~!(umK42IjnG7gCzcWAXM2*gsqCAE-PRRHuu$l&npIEpV9NE!gwI-zc_I^;Sc8z2cr^#h)z6o$Gd(amx*K{~L}`D>=m}H3=o|;jr!ISANjn z7siWi`5C!QyhzLwH23IYClsV{-RC+giu7S7X~Q9IT{KOfD=pCs`zYypbeTWd6Nu+` zr@CA1Ho?Cm4pYOH18nAr1X%ksgvwO5vBXP1nf9{}Jok$y8n|p`CkBf?hyB}VeeG2q zZsY^DiUVoP;Z3kl^ii~aKP+@;7~@`TYe`9@HQt-CkD6t&*~qbqaQ~@4yD!!eDyypn z7Ld$0zBj;I1D^0ppEdC8=@Ybi$Tx{=)Ie~rNMe#XGhkAqzA&=iCU$nA5qkRRf_;uG z&YM_BN3*S0I_}M;u&;CFzXp1^& z@Bg4gJX34$ms87(Uessmaq#{gL+#f#g0*Fn@Wt#NfAYj1M-*R#S2GRpX7X8j*b~Yv zTvDOe_hU5uFoNmCQg+2m9;$wQge8^j5(POayxNgLE2iW#x6PKI_amN9JSF;JbnjM2 zm-M518U0Wpu!+p#G>|5oCWQy=nX`)sSpE_p+Y`gY` z2S=QjbS;Ug9{b@E|4}y%yNsmJuR;?qx=Co9$yfd$q{k)8%Z+ef#$DFQwQ%vV-SqLQ z4L?(#2KoAPxLcGjw1pQ4Rc003aFrg`i8{zKlV1>>C+^R8$g;q5NifIWgxVH4!yM~a ziQ~4L{IP{6K1~w)=gR|7`_XPH7{8rOFB~E62WHa@hyL*N`EX(Ao?F##gkLbbErY+C zdmnhpPI@_g7&vQuV@IRMR;!h1!*R77mUX#I5@FUCO$o?Ep&xdJX47%CvCMhh2c}oL zOOR4K$&Q_yA$*&X!A-{Z#yQ%(;BnhSm~|kI>UUQQ178ae6JbV4l5kM;F%jAy%;Os$ z0gjblD0oK<#TA~Xsdx<&diI+`nSv?LOSS;{aXHnMp~qR8cRN@+Cepb^P5f&jLVK29 zVa`tuuts*3RY{tKA&n0O$8<|_4pPC9`ET8)jFrQRC&#FtPZ}S(a+Ihm_{ob_&4+9M z^_JL)0T`=GZO{k$V*2{8(DQdC9SS$%#hTk-^~)SO@~N90`KZX(M<@%$U$s$x++~>l z-!b^8HksaQ_J)2IYegOWY)Z2p3LTwt?krl79TCIHPq2Zs?^A!QRlP@JMjc}Zj;KSZ z&nh;`@eK>ysKYOwSEtt>Oz_c>1AJDx2pP9IK<4v$@fZ0f)ZbiEQXc?68V#WQxwtM~>W4nIy;w~DAy{rvNY>vQB^R$5!L}jtw4!n! zNEEGL(Vr-OG1VF8$}NV)MgwtOLI7z-Y-BFWWnud}ffk8?wQ2K{q4}LCIq2_;QT?~F z@Apk{V?qL5Kj*?CyZ5nTA)iW(20_%oDi%;6?tp?_@NZNCoS80<>3NAXZs7!&+3o}v zgdoam*~QcbyYdD_f!~b!3Huji)8Ly9*s-yIe4JErPkP4!vDG1mj)=LUzbI*zz=sdSyQ6)6{ce zPNEMTEL<-_Q%?y2r(5~Vb3?@dkxaPRErV8;Yw3QQ4GSA@0ww!KP)^Py=4Db|wXb+5 zZ~E6CO_X#X`oTY_lcbVD)B>I--UoVHO=;hUUf}jCO*mIHmFvGT#?^~NPt90MG#Yc9 z;x`!b5B8c6FL#gqyAuMxS10kKjS_aZSpk!@=L?gK24Rrv6>54`%+#_TvV*@CN+wvj zvcUWR?upUXeTq0Z-UUHd;2dr7@x5RG24@rIea7>)` zi#fLp#z{x7)5Ym?d3{#|{LHqc1GX#RwQ&m5mD))&mY87V2vywC@Ez25WKvJ91vPKX zfg_*y(pHmkP(J#bB&gb55@ctDYyWESklPw4Rg*&}`YvUw13h8r(v>{3=N}8Q%Vl#u zjHYGMh{tD~WEDAv82)h`IV?01jB@1QlT{~Q_OXT8j=3(VewC-`a|BEnnF4LodtuqL zYos%Di3BW?p#6Fs11J5YJoeyOi<;^aq9K-e~QjKE~od6;~Ju( z9qpl^L}_R}=e}+lO1?&kC?g}YLTT7-?UIJH6G<6at#e<=NOs81$_SZ-2>G4gpZ-xV zp68tVzOK*b{r3X_J_C=s}jb z)|`sO&qLd}J8--&3gtGcu-B*efY{hQ=>GXX@as1xTA$~#dRHgvbJ`x_&l}Oc@(j!= zP2z_4tr8f{ZdiBXB{A7NflcY#%3iFJqQTkfV0yh*kY6O=ma?y0&by`1s5uQCKPqvW ztvy7)Uj>(?kD(hARX{g*82#1ciX%4mupp!L@V-n6?M#%QBylq7Yx~2#L@%Ya!_(mO za5HLGyb5DmE4kR51;CcN;`Iz^J}obo-<%ymQueFStgItUHB*It*Dk|vl~t@{`$~`q zD`Acw3mT2ZT^-Jz`y^yOr_q3(*RVQ9gZf=B!~SP4*|fR!5S0~!weJ_gf2C$zYtTPF zC1)j_Ia?pDMk-Uq;5wAh_a%{;Z^&bzlY8VuBliX`uvI+`%=NG}Rh>E<%a`dN)|GpJGdElGpUdVL(<++6^U5$A}7 zb_zdb+bRfimm$qtRPeSSY$7xJ(`fT)|NF(Qx*L8uZkBXU}5CQ3sp|etVul;k5$b!1a z0IOaFur4Bmh=t4)uEtc>%R-|xK zjq3Y_LyMO*y=Ga75<#s@EG`4K?6}VEMBgR0&sUP+rSbSN%|>{CltR(Yr;usB4s#b5 zvFR(Kp#EhvD(_jt+5;U(Rk%+TwuI=#9A!3rLY^w_DrBu2NoR@I;?QqFEVO4bOm8a3&AZx2%E21aq}s-m%nALx zNKx30s?(FYC79lRn}71#6=rlUL0dH+P~B5V_Q@DC%d@&P@VoG=snqrgyb-^cMC_wrySkt4t`8(DuSAi% zk;Bp1Xe1Rkbc6PQ7HB*>8YdM*vvZpQ;8UwUS}*@hlHFa%6&Xn!>1#z5FKmOi^CjrN zZClXb-fmJ{PKDj;E;O-9CtZV8P3DvLu)`}>(5|hkVVJTbEpR!6f6~JF?r}>6`Fg4# zC6XaOdy3i330P?)tX{%qV?=!1E9~RK-p3SL_o^ zd$dJp6Fy;ou5JXunuN8+mq^l~ucGw^=h&!06Ux{-)?cVd4UMueeC-(W<*_Q%DO!<7 z`>M$%krYM--DiGBCeeu!_7E{#o-RId1SQPv`El{{K~nrJ`(bPgX`kiEu~|*5H$g;i zKiUs3r%2KlEk)=wcY%;GTMmIv1iy7G1apTgT#`-?+a|K1?a7Cr|E>;wG&&Rey$k5$M85=o;sC$ zvHZdulc!QKIL9&J`_S;Mzh0}ZA9tX5W?>MW_yVVZH!fdhVcVX7QX`jE;MEOrzV1;(4+Ss zeUW(fYmv(-KUnteC3LmNVle48rB5Ez;QRB!A<1GV{EeN7sSk4C+Xi3WYSUlQgne_U z(nuqcU!_IoHx6K_r4)H5?*;RyGS1MDhS4tTNW1>q+-joPsku^{HraEc)zv&pO5)hf)5LcsBAeytjTy{EXuTp3-P48Fq;itDHg; zZ#QE=`4afOq>&tHnNR$V=ELWtWKOPO7kl{1fp+{l4rRi*m#$93Wop~V{JVkh?C~rd z|H>GWUVh~yB5K)g7ZKh1^CLH$8%LAZ`C##lVj`Za2)=tt*wQ{Rke8BVZ}V=6{?t0s z7MV1-cy$PM+Ai!DLWV$YW&&9HCt*Q+I`}Jik$_!$$chj-I(x}A2q@@>Op`neD|P2O z6qm!-Nmh97!6=w_yNWzHLc}7){BJ$Jl&n9GEs0V$5>Tay-EN#mOZ9 z_!@R_{7f2p!k%e7pG9A%wIKC0AO>_itcX9!3P&pfH_?PtY?_0`LQmwsJcvmVvv=DS zlP>Gi$xo`Wxj>(K+DGByJ^NX^t`Qs=D#mXessJ7hC%DoT-}%9Hljz|YD`EP9(X?0l zHm+u^+cp`I}fYYn>UY&95k{a;F*hn7MwIkI&h*dJbsodP&D z_xXjU*UImBu|Rn`>_jwC7c#*c^&&AROOli*jDo_ZC2Yfka3~gJaX&`d;zxrybZ)gI z8KP!NZ$~XfwSXXg>VIRQr*$KieK3Z4xhUebrimFpG^JJ6Qs^*6B;*gPP_I~)pF3v` z9NQ1%-S_FFaG4k>53XW1pJxhP;vZ0dO@n#_)ZnUrAK27=5zx2q3#yndgURnYx%j%p zyg{1<{UTAyHdO0V?~(PW@KYPQ@4O^upYRNO%Fx-*i4;aUbJN>r(LMJk(#P@UbnwJo zfy;LcGx|P3-&w6@pTP~__EiS5{0_3<`%~y>&()yoWJN&mw9o-x-=4Jz={CS91{3OV!s>^I{gE>xBai_X2Jk<2Pf$u~2VS4LYHf|sd zw%n+}XTzp24Gno{=|+5?>OrLwiXplD1^lB?7*sI~9o}4lgcIwqHd|n4EM7u1d&}8@ zX>v5yNFCo97}3=xp(r7_jXYp+%vH`d^< zl}|{H{!X~92RJ<556&xH;ue&(vTzv}s{7(7V3`cv^*0+2T$@DH=K&n)-;M!VNz7jI zQHbv+=)<|-luE~H<5lkun%{`59WPnAIYyaLEm@@?&9TH zEb72kHb$8LIXsjCKI9n$1lZ%azpX5;kb{4d^>N_UZ)iSL#7+mB!P40ysJy!getTv~ zBkClY12UIFu9zj!!DezOa|qC*J4tn9JpPz8jXr^N_;5iu7k|pY{buKx*qSmBSKf)4 zI;jw~ArqE``(R1Lf3(i|7I|!}P4DNX;q|s0Qc!S%v>KITi<&UTy_Fo^ zXN%jkJ?RCj<4}HFkB;t+#l}M|ywcN6;QjM7dR7#YJHrH$|_)L6R`&4$=f86gLC%4ZhKIiLypKVFkW z?E=!_lu!P9n1C6DbLssL7omBr7X7?q7bd`6=ARM^^4{r~ctnzT%qju0ECxRfk)!$> z9+Tpe*Wg8)7pjbTz?N0JLGF-B|adD_9*bH8$xxy9>GIT{&Kx1 z#=;!6B<%jJ4Oey^=P&IvX0ykd(O*WJL424p{UPiF?46XD-^VzZSr&o)(-*;wTeif( z{xXXc?qv_ZML=}Yc$#rc;1?U6bPTf;!6HQ&jG4BJPgPLEn-l9<-&di}KIRS`7I?I8`74!pE}FFWexN^LcD zL4LbDow4N*>Yg?vYj_l=!&Lq4+%DC(8`CqUSA7LGo4^8f@Hz z6Pm>FPsl-GF1i%IE*=h%`zMj#PKJ1X?_~NtpdPk#$kA2nVsZYJolscW;f-GXI*@&Q5*vGQDCRayq|2|F z!-Y9x>4$X%SUtj+Z96sxtn{Aq^W##X&Uy}!t2D=O-iE%tDNDBv{syTmff5|>itT=u z4k;sxuybNMu{^hwXiCgLRT&%F>2(wG9;?u+2cz)H>ObuDv3=0FT@E?-7i5)@2GKrH z$r2w-68N_Z;DV4ZzTqP5)$TrKr)DODQoR{2X_-KN3}t+~j0oT4PNZR9GvGq`F#0Vl zMwq{&@N5bOhuKp2?(0?9ZY-^QAuvEotA5P9f^X#C1t)*rr{zMnAx z(wkjrW6u}#)EdshjQ2zOYaR4mBo1>v?&Q_i8XzYgPZc_g$h`V_^zqR?LH0hBEIEG^ zC0jXq{ejUr?qd%p}R9f3O=SZ9I%#XLM^oJwQ^&hee&TiI3>N*h`lA#vARkmfQ`SvrQR z7wv>K_cHP64t2OaG>ts(>SH}omNd?%03_}zP?rz+cza7a5s%#n<6jr!Z;f(t@9A1D zZJRVEDw)vlLjG(_xfFfzI1NuvDP!|xgP@G9Mb&jj2=}0fy*D1q504l}OQw61N&cp^ zSv48YZj~Xz2OD0Uj$z>vr%BcNIL6z_;@&{v-h0-i>8y~SGuVC>|3y@>KyD-C{c~a8 zhAsffXVGNKrRQv+<_x;zT`oKXad zcvA`IHSzjd129Z8hp;ERG2*{9^qZ9)R1Fx?{gZO>-?0bW*vNe_Pc~hU*^7hXr4p7K zH5^CE%%uls=aMNx&(Scq0Ds(`!_KRDKy{`rms}xwDv6)BWy4`#Uz|92jM%&p!QVyGF|KVgbt}r@oiFIo&#gP~_{?*xZp?KO@2Zby zE~OBYKx4M)M={G$aHq91*O3PgwJCSK9&g8<;fAC+f%1^2>|}pF2}{;x+F7-%x5|S4 z5Y7!79t@+rPa=MGS=6L!mJn&jvQvFJeU6cb&V{0XiS@SpTam%35mQN4rl+JVae7y;1bhB za?VagQI9QMI(sb6v2dr0TlV9zs?)3@GZWV3$FuJVvLIs@&iQzzvlqXX(BzO}M%IYv z;{Ge>W_O>gTC@y4FZs)Eei;k-GU=Sva|?Fb*quI+(#F)sgx-JGf|s+MNM!RE*bJsD zc=c_vBBQ>mGmEH#W7M*r;2MpGp# z?8$3@06~7&Ybq}Ep6_!9uPI_ev=6(TC4}H!{(-xf!ywsgVt_BDkLaPP* zyTMelAx)ZCepkV5ZhExfZWl>z8%0H{D{=ALo9y39fgk%^0gv@dz{wLeO}=+-u%Ef6 zRL%YzH*Ko$b5&!7U2YF4&Jp(AyQDC*eIJ>BbwtzIb=^#;i3%KjZ;1OdlB!oG;Y7PS zPNsbqY?B6@kTd}XFZOZ4xqDfdFz@LN(!uTddbIdUGZwa|GmD?&;j8X_z9}@4r=*$5 ztjgfcwFCjyxJ4jGe5m2+Qha3~!G;REpbfeitmy6?;@Y0btkp*|@|&X$r-XCaN*#Jn z$YnIt#*rH%_Cc8L7pCtwx5@O}RxXAa3D2>~)Q73jzM-o0gm9M2e>wxx#7;nq`9XZ% zqzPS8c0yk9JA1TZJe`-F2J8CYL-xX5IJzl=bW9Y%m&ck2U*%CDcpcas+JKcu!>LjE zOE8=G1iZR-U|mrM`q)d;L2?GQ*ZYH%+iqgB$pVk|&7=M4LeKNzWNN+UsK6tB&3xnVdGgxc9 zJe=Pv&F@ZJ$pnEWy;k{z934A>zREa=&C8Tn+4n`@B6OieCneuHHyWbn2!Ycrm|F=hUrDzm#nNh5&%8lAy%7?{U&8XXqOuVzEg@Ck0!DI95bM&d?~tgZvekvF6~?1N7DXB~$hjddG%r)}z-{RdJJW_i5jL6x%E}u*9g*FrwvhQ}E<+ z;%d5^^FCC9zmLzMng@(%i|YvbSg9I693F!X+Na^4SPouaAP(E^gz#Oh$}BQefu8gw za3^A@&^y?N&nI-S>o;TI?9^W@^FS?0d=}32i+^X~7Z=gx?;40$P-9LeUlMn))C$kY8W`U{V67o|`0^muEpiwCw*~Cu*mvPn;RNX(14Q@(=(6LcWa<@A~ zz6xs$Sdqk9H&3Et0)1ii4H-I5F%Act&XHv^>|u4V8!qk{4VM*W!_#d`aD21S-}*2c zcGZc~PQ#5jV;gYJ&)<=Sb9dw4m^CECHI*w!eaS3)#?srZA)tCuoGwa^$8ndJF;|le z_%&()X3oAv{w~@|R{K0>b=`!17kUJ-D>dkB?`(WL5Y7JlO@SS|Yw)Ei2OAzw=7%TU zV_Q53m1w)inP#ieuK{N;I#{2JtDgaKxB6IK#}WS8-bLhHkP153S<-v&cay!s-)9h< zjlWijW7&jYf%DqM*6fqv`)>G?@i~%sJl%t4?0-zctp%~6c@&QB7H4@jMX-@h#Mtvl z0)H70SZv2U*Uo|}f0Lsc{|@4!dxq$zl?Hz=wqVo@HAoj*$Z6zdvQKRe zbYxzfD8zRxeV%$0_e#Ct)~!^B#}W_t81L)ExmS%0)mwobA2!ly2k$^`lsWAPsKdG& z9jsV77jk>cu*5_I&b>(|+eVn-@mO6tK3V|`uk}J)>pq+kuPnM5BnLNC6HwB~0pDX7 zo7dLEFLE-b=ZL_hlN(7_kNAH+HXP+oz6Y72!&vsOjyUfsAh*5LaMGwLbhTe2d@>k9 zi<-2E@$=Aib`LQ>Ihq+3g|f-Vrqc}+;o%A4eydi97k2C>1D)ky@H-xz z_pX6=bDjvf%sD`rz$gP6kQ$G++xy7X#S3B8iO)=7=xFkA<~d%0S7S50DUH7^FiMX9fXCsnxOCt% z7pA)&_Fas_GqWCvUOrW1OBUT^{RfR{g^*ADFmedhVEb^^)FH_2D1fkZ6};td4MU~t z$?uh7STk%ooz-ee)*UpZPZu9R&23Wr6>Wc5^ve`IUyG6FjpF21w&`a7CvxeV45#2f6s{NO^JNDHSj)1>f+SEEihGS|c5fCc zwsdh<*F`{$nK#D#&?JfL*RmUmFWE(br{G%>4Q+KYR7O;YW1P)cRAnj*ZCQ-PZx!Kp z!V><5d7Qwh97P{3DG+T^)Sy1YFX8^`1SW@>P!Jo>Xz&<#xWbOz`#@Pn=45KnG#zRN zZK(3xOf-nS%db0~2g|1pvc8Q+$iP4#@lssQLfx$B70*K0F64KQjVVU+kPPOckqX}j zS73ro4Vi0srBOS^1`Y0bQuPywq)Eb_o?g?5cq)o%un$S=IRT^(dRpa3)n#Y!f_TznIwf6ELgNA8phEI8tBDZlyc2&T61Z(U(Y7 zuo`_Jn}B0gce2>&r(ju7HA^`1nYc+rbLyYVn4N|-#j)F52{wR{qBUZq@buM_*dM3m_7V_8G=UAz>6TKj2(WKvLLIqkCy8kvIG848!TZ%io zUUQsSUFj8#@ck%o*W766z)kYS*odD0ejO*w{~;>+m?NA4ozU`u9niuReDlSxP3`qg zv{sm(+}vkR8=suV5i&+x{)=ol{yLdSBy5K?ijLod6Ub*<;a)Dg11C8-)3<+HaX{@N zx585$4pb|_;P*+e@Q@-*^!dzY)~=*yn+jN77!^2%jY2;;g-eQ?4gaMI+@4T>=rh{M zWy#o>Sc(%Wk|FN89h7VE(7f z=-Q#_SmeE%i9MunD_}qW$>}+n@n;|REO{tq3Hb@xvX$UiWI+YGB<|?`k4?1}c0soQ zZ=C&0vby`Z1FuDRd)iw1=u9h@uj)YWHt@LkO*~T{vJ+|s^l+<_C6p(5uor6<3r@5- z^xSGgI3#$mPF}r+3Ez$QB=3`O{gXO2mCc8Lie}vG^j~cH30LX^r7+Z4g*F~Ohyhm~ zauas=LBYQgT-bY^+*>1L@k~S*JKmZm<_#0656aQ>)Fcc)W5^skmxEGA3U;kj0-qb4 zWA*e-_N3Q~R=nQ<4ZB1%`d2#6T$Lhft=bODx0wo`Qg;|t;6U8(ys;tV6-q|`F`ydS!tPfhnvd=bfqb1i zO#D{|IhnYLDRk{+J4@~9*2ohe^?nEqSXGXX#!0i5wtRROor+WD>cF_HK+yuNgY3Mu z6W#Dt1UCh5!tNcl*s{=$nN`gJZM4B#F~i_OraaB=RusLHq{HsMzJ9W zx%Bqckejp`?dyJ!TYj6lnZ>d=*L@cCPH|vg6y0d9%T2Uuab+MtWsgg5<}EmvmI(0YPeK+6aJjS zSlSXgNyvJSqlOa4ki?}Es9Otn^d7L#C{O5j+S|B55JSH;_oTeFJ~@74A|0q|z^<2C z}`6ekqPCtkHif7Oj77?IYB6v2$GtjFejIU7Q;9XS(X0~;Z=ds_L z1o#+QxJT2@E)hhWTtS_uwV=16DT5pN@WNOZ&yW2>T#kt`>5)~eI>v%Vo(UlD=8vW4 z_7|b)noqp@4HuZaFpf_h1PEN{Os=fRVI?^WsLP!zWY(Cmw7l#(I_z*|fo}r9?uZ&5 zo%EYOdSnXgc>bGZOn0JlRenH7j11l3oP<_OdG_zp8F;_20OwVFAe)!$fY+y1VB=gu z6P;Aae?kwJlm?^5fjp)+Ba=w3Nyjt0o{{ulFFA)1znDSB6uS5IN;1kqfexNJikmyW za~C{z!58OIn56QTbWdK*MCN;0ostVJ-L@G{X=_pEp&9sjo*gN#PJ))F^Dy~`EqIM- zBg($-*dGTII$@y)%s4s#9nVt{KP~4MU7H4L#tFOcU=2_!84vev?Zk+UUi6gk|5GRM zY^+MtaMrX}{G~6;!9uvpIZQtTH%C4t5nfsR9YYtoqT3Ck6Rqe)UBoMI6d)sUJLFpH z;kZ|NpmqOAlT@@X+aY5`ZyZx#Yl9qVUQ+}5_T1nrTI`@>?PT^{{36lZqe4D!bitZV zXS%;MlDX7~==Ha?=-Y9X`PN3m;p;xEQ}l$aw9jPphyz=>!-<+dzD;WHYS6jSXR!3? z6*lbOQP``ah*P)$Vs_>_CsD70{UyR)*W)9J3bm#;)#~w`m^qsi770I6Mx*TdXzq?) zjmTbE@YFPKp^__G$fcdrX!QHL_+CGTyc~W2zKxH?d-4Wg0|}f{QZEZIn?QdY)WF6C zcC>A0Ihq{o<8{(hAmzCS*VrWkcdps86)soV#%+!?%U%U0DUG67eH?F=O%jy`?t}S* zw^@M2XRkBnTN!TxO=L*?$O@tqAS)OATM3Rey`*TWi0nsZtEGYgO(VM>lh2jC{{ znRNdCUr<>+inhle#^Ju#SxZGWjG9)2CvDD?bHo1QDi&)aeeOXOBOk)th0?TpLpfSk zS~Ib6dtl4DYxt$h29#7!HCc_=z?O(26IOZep>K#(iL?@3}PBMm1Csa^>PaVsy znu?njKH^s`wV*GBJYbgOP^#L|h(DTk@V>%c?cylmcQO^`2PcY%WXlh>?1?80zWRfl zd}Jr&D5?a0Njq~mwHIo4NZ?cFD6m@FLbhZWW51)24-@7dI-j(u^v)P;v27$-Pc1?1 z-yVFsQx~@Q$3eVQ7A6+Wr2i^p1dgr>jrpC81%)B}rK{th+`bXN)(L)@V!_{W)qyR& zU`D5{He(}%++NPlN*vxkgEiI8gXJydqNUsXz+cF9f9ll2ja1-V-?<7YcZSffb5k%R z`7OJsQV41ja!^Yrf*2pp<^Dg{eX8a{@5nYo!%r33@%A*XY#5EM9cAF-J0I^PI>MV* zc6{4_91hNMq5BnA!)G%=RPC0BlZKRW_CY={@WdU*n%*E6imr<~?tN!vCFAJE>_Yyn zmkK?fP>rjr5Aq!{E}*tZ6Ng>gPmVur;|-_nXWbPusI!(ai8vwnB(fP+FCNOCM{j}9 z-?BKtznrwMxlHz&d|_`sh0~-GXQnPOi`u=vjwi;v6BP)&DkpJAd?_8ZiOcA(@m__O7hH6x3B^UCHfl)Y!V z62WxY`q40K^*AcFsSa15Ym?#_7ckv12b=o+!TX7_z)zINXpsT6^ipM)g?(B0`eOWi z`A(DNqH*xBK9*HK&m*aMK$L^OGWm*$^s`qeEMF^4f!)@{&y6tAHEnJ!_JWr z&R6*px3@9Z5rOoS%vh-HbEAWM^U-P($64?t;A#1T^=S@+=Efzwioft&$pz}ZVI&xb z*wd()#q zAs%;)Oa*u2<(!^j9;@H6j&^mdf@+0n^h7E{+4@)#<{JxllV;+;f)iv7JI`u#e=>9X zIkfF#B3S1s3x47vv_4V9Rm1~WYnI|J)AvL|@CSKMRl>IrN-d@qz_X+O(f`zsVfA!3 zrnWa4!s7jL=C8>R!o~JMl$q%)NI#np+5s2qauXhH=#bPfYDYdx72|AJj*-c-+F0(m0v&#zq){2DSzf)j2PXy^ZC zl?tyKrSd$Ps_;&ES+7px&qR}JUq;f?|K*@(K?=*x$$}-myV#&uH<@MQn{m`b`7mx@ z8qAtuH@sS(iwpisg|N;nqBG(vo7Xo@m?zI9_dc7@`3Z+{-LYCypY09zCr`oH#x4@* zG?(p}`<@wIymb+-t4nr|t5$VlPCzHAYWGmIrZFGjPBbFu9F z6?2-?oxvULwWZraT5*!bQ?}kF4748stK6srLVr&>~%r-f+P z(8Euds13y-x$MWsA!KKKEqRl#iuDO|sg?CRvTTwG)oVM5WmV?5=1DB{85*IL>_oWx zy+>4Dwo^DOi0FaY-DJo+De9?m5D#_Mli;Q6;7(=_TQElrtcJRB`{Whz--hY5aQtp) zUadg6E#)|Q^;}-9B^ErtZN{ma?-9>bPd?C|!;ee;qZcLiFa|b)cPot~ElwkjE2f95^@Mdur_y_h8@XT^N)`wez zKHp5j)}LVxFJ{mHS1DrRF8HuK5uYW;iz>xKp#F=q;CP$RXt7O8$p0m>E351&jI4#4 z=+U&kycA0shp}i+AmQxB>eb_ER>H9(fuF{VTj_x$i?HQ3bsJe|uo+ zF+f~aL)LxI<`Uveam-3D`ft`|n3tzV8{inOUAc*^uPTLybKLN?gwWHZ-?*8p{P3KG z9~~-_0pABE(k=haqfA95<03Oabyx^Ci2f0kw<)Ar<0X4~(^D`LPa-|q4%8*?I%X($ zGuyYzplC3i6`XESN2S7_v@EW~=?Xh$xqyDPb%y;q zf>-nIL%e5TL2TLtf9Ew*fr+*nOfS6Qyk&H?gh~3rIK6K&49-(!zVWx%rzg{B`r#nb zB(kDXjNx(rlMOjfg`UF&RqWrh2RatUiCX^@@JrhQsKXO?h<@Ng)&D%f?@D%Lx9v`- z)ZuWM|3dPcsIpKp4sWd#<^n@&p=YiVO&zrd&5VBX6W0ZSio+t5o+=4fyv;yI=*Or0 za-r5UB|#xhfw~L4xdWmwr#qTC5kQpH_sylE1@n!Cpm}kwLg*>2>^D!6W?WUIkfj zTb!=`n~x@jX{0?r6h4*fqkGYLGLSQs$!P9j_aB?ltMhmB^&R7AMi)chkO%zi{#aPj z9L@sHt_JF)Ng$_~?aA6gU#<@aqwUUA%C-abDsORxzF{yg*Bg&5Nnq_|BUtf=0;bhr zMS~vBKquwNbc07is}>jpF&Qa_vlFm^byCdW9s{juU7$R|65l;s3p$m7?a-gB6g58MkW&dNvY^_ zJAf(=dj_u@H7GZt1Wgs1SVcu0IKvs-p%O^E*Nx!shCN^(ogC@4h8$>LE=RqU4hnAD ziLBo%3k2&U_G#WD{GT#TcK0wmcFC8{;DqP;Eum$=aWh94wC-GM4^KZlijd&$jg4xXlu z#veo)!o_zI&FPl7ZPrp6VZ9Wpc9_!)gHqJ;QXn%�k%{T__u=1xbCBe0r>a53Cl_ zji$$;x7CmyUU&)f9kW^c=?JisDa4xJXW7$l_nB6j;Nn{&X{$-J9K%w=0TG6?3CYot%X1h9UjC{WwNGo5^3e9t|nJ zmSUmMRko5Tx)N=i)NDr#9O!K2 z1Md=fh^gDmrBaVg$!9%hI`{BPRG9dl2j`tIe8VqRu|*m7%i5CCd~Iw#YC#`q+M-m9 z4K+*2LH)dNzIvn#98t9A61wz=Yh4N-wnPihF7~E|(;8r=tdJKdsluX}T}*OJ8C3sE z#*en6;n~^8eD>M1Z1XKIx?<}bcrWfiEw;VD+(aps5>f_Tca2eT-*Ylsvcqj6O;37?QddUtDG&1nZ~SX~r+qQA#-Qt*WeIYeH(@CUD zjcH5mUc5X^gG|ivg2;m5n5F)OSiKuVY`b((T=1W+_ub65B^%RnqYe1r!g`U*tq}O} z{u;k%+bvS)5JBYEXyO&;#dO$9XOL+!rYn^WUj|T=b8UDKnhiVR>*&3lYKSz#xvv>)!OSBd^{~FA7wZIMk*@6dx zJ-Er&6~Wt6@CK}t0jVWcO|LebW6kp@O}W+%OH)SCW5HF}u%L(~2iHTlO9@WTvw=sv zAG|vkjqh`3(v<_0NDMWi7Sd7pYVdEsBOc>ha^NLn_FWzM+3(!`zUQ>TX@dq|$P8=l06 z%`q%#^GUdyb`p=iXeO^jxgz6YD=ZB2qg~ClFevQzjrQ-wjWw_N1&#-x{C^akcU+F| z7sr*T(6pi=id0HU^SQ5cjHZSnnQ4$jLsn(BlZ;eWDQS@rQKFvf$dI!n!}6_Hr5+a5e7llZ0B5waKY~|e^W!Ad$_iQkyhNyPH=>zCKC$n&+__9SgRcrP z!%?RsHef=3^sdYyT|YP0W&a|m*i*(Me*a~D|8}v%s!w_KTUWfBTp)f9V@$!L^yc$O z`994QI8|UwU0pOGNB4$&((xa>uaOIG7?~`c@EnD2LvGQ74>RRC1Lr}f{35R3w3W5Z zyCX$hE#^+mVve0K9^8if0~^0`QdueZQvPXh!#A9Q{=HU*KDQw7(bn+a|CF zMs_&P>k@7BoyLzzNwD(CT`u!5glm=#%+|89ew}$YY&|0!f}?+dvv?OU*CC(_DKIZ! z1Hbmg2lV@xGf7pGJQBn4+Fb|GvO$bnbcG`Nxv3Z$@<0Pu3|&|tKcQlU%|8xNr>2Ec z>b-H0_ClH4+z5v_qfB564N9W=P$iL_~qd{SSe6{eb zP5E}0?!GXtw;LM{LI3ITJL^kWm|}~(It+zmHh4801-zK|byZErMTIgPp zM2T5m{CGtV?pqnhx4m=0K2N{HvP%Zou2)0WEh^-)oM88!I*Rej5R9+bx_QsHa{H#K z*jCxjOujndy5zGo%>D}Nd3QEUZRH&lvxAWJI0^?Jeui|fK>9Q) zhwWV&0CL$pN-g;+Rn>&@T~aqv6nnQDB^@v)QXQ}V*-a)o8kF{OKU65)r^wwc%sl?B ztW?&A-VXM~RikEscZZ?)Z^}+m>aei>o=Gh1ygY&&vyQN3VH#}LtKPJ4sULq?YErII=1S_cPsu88P748{lgK$9~j`fkew7#-IKT5Z-gVq z9O=SWZ81lv5bvX>y!@m$w)cF<5@G?bwil5}yANL)FSs}pe)5jb6hJZ1TJE;bgfw%# zu-}|(OazcH>h*EDH{V-s`(hqk7S9EJ+s|x4NlTsI_ov+c$Vluo_!c{DV20{*kJ6IH zQhATiL`aU)A-n13kj)me4KJc-op(CwOr8s0j(UikSS9)SRmmslS3%a`6nawG16A4a7<0jJ%k6waTcS@SN{4qD} zHwGhV1=~1dFzQX)L2EiHvX(G0mm2tzr(4!RpSSDS6zLd~w%Os{%$cCm!3xi9-$V5G zGF#rJ4NoS0;f78Tyf*oHeM1*9qyLMzWb{i`_`W{|{n$&3es-e((OVrVJQq5b+gRC* z2Knda4rJPfxO3@2u!-n~|9TfuTxcQBsxOALhbg3-8U~#U1?zZ;GIe$g!QqJ_|MpW4 z`vnz~^6fz^x_l92)~q6r*Ms1WYA2SkzB~O6^G5SE%V11nFAOfqrQA_rva*l_2)((8 zTq6JqwDVZu(DAhMascN4Q9)eRADAE&dUe}lTyjP?qT~GXX zHx%9m2se`84ZpqADrKrgz!SluY&~?Gwd~vs1-CZ}HpN2pzTX8l>D%Be@qUZET)`C_ zgW%7qgLJspDpob;qU`#zAH4OIHI_#mW|#kp9$Mi#TCl4@e!6EIJgXl;`Ek!#@aNO@ zyDB=;nZ2`cm7N|mUa`i(+qO{Y!Nz*sN1MTXvjXv=$8czHwxp%o6S~VaaQv$U@N<+M z*4-!S^Njk0!uG*uD16#VdFrHnuy#Z?jj%W`wZB@%nkRIov#0$;Z!rb5 zgeToB`6Mm;d5#-R6aIy$nbgVBUB2INHp_bcj2q?!V|&v9hzJ#Yt9vJC{J(0RE}o}r z7jGupRfbR)yjfDZ(Z;j>PQVF2mNT1$o~S&rjxMd-BiV@l{Q62OK087QIP;W#^wXq5 zGe>-2z5ouW+G0^{75y?S;R@L?(6b}b{FBkF{oY~ur90Por)lA6^Fq;O5TxKaL7C6f4#>K+Mu9HdM${IrV z{HeEr{d{&mH+nR%*`*yKzjm;SzCWBK-LFo9#&_y;)gxK9x$7nQxve_XSUwruDuejS zPcr;(?Qu$N_)_1hv<|+vKNL>R_pC@{zdCpBO`F4lFmYKguy}8b?vZ;b{GX*@aIJ+Q z9zfUEu7{e#4ea@d8hMmB*LVMQ5dJl3V`W!w%FMehO;ea8&Zqu#OhE$WZhcsLYYzYK z+IYMz<_}la8{q?~mi+2+rL$L4Ve#Lwlw;Y8Yg}9+dCgiR$3i#!aJUWv9Yo%z?>V~I zuQNs22+#YPG8(Z#u>G_vV=)7lakrVlID3#jPZ#GC{b%QCrPqCVw+Iuc zDf+>6?`y$o9SykYI)naen1^PfvsscX&N)VhDB5EM58AdF;_hV91EUqtwpokCe(FqD z0^M=?NNwTdwMEr0)l@ZBho4#*2-br~(b`)I5YfF^`ltDsyKnWva}#>O#U>NXyt1Em z^z>&_bk+b9{eX}Sn)%NzN}mf1Nxf?*0&y+=8Qqp8#4qa zSs#=2w$gwszq%g2y3o^aIgQ_Vn@#eGkOyUVruNed@wvAyG>G}0@5{TiuDdm#wyXdi zxlE<}7Lorw9K^m~X5we{!%kCEKr%H(m)jN8Vbn>vTyF!I4^N_X`!gZ;-+flj8XdKN z$}mKh4zE*tqW|RybfzXn_Hm&+YBo2RjJ25NLl*0r`mln=EUCRaEEzN+WCl+`p=l~s_b68&XDiv1MPoz`VzA*p2 z)8MXB3LO|R9t)>W1UJ!B+WlZNoewXOebw`a@^#0^ZAJ_;UT($*grAku7BlQGg+j@E z!E;C{CS7A+?zA@%j-iaC)*I3h-IXlSY%FyS2*&R#FTmAZTIks`U-Z^{(LB2b==Q6M zmTJyqxFkScISA?5k`Npgm;+A&jIn-QC7td0OYWSO4F?ngXkfQgHdG;t&*@SvKXJqo z^HqmIZLvB&Ken5m+2--)C8B?6qeA`S9U<;olO#;#JnU8|23eRu;AK1XQK};A)%}?M zkXdl$?Lcaao6madC9^M!XV5Rl#kj^o8Itz;V8+4g6tJ;|_vw)g$JP!bjZQb%+D)sZ zB$cmx?aj$}BFq+o1|g~zU8Tf>aXcn92m0F?(W8xe5LKEl&F=q!uNdfo57u`Cl|jQW z^65dUS(hUZyF3T@@PTygV>nkhJ64($cb&H!n~TOX2=;Cng%blC>2k3x%_we!MfXKc zI#CHaHw~A}yarPIKEdhG?gzszi#$qf11S!t?z-!5H=@SmP|a2AZ_35C1Z4Ewn`Y()Je$urtk>{q{S~z5BZ3rCuFCb=xq! zG$x;Vcgd47-!n-3r$reMKdD*RP-{JRY2Y2Z2ESjyXcokvBQ=<$@VQ>ly{I38`c3dyA zUCL1U;+vF|yIG^Ml)H12{Dk6ssBS;aE6PlnZ=8h`_TmMPpSTD^ zM2@-NS(URb@>rY$7u-wJ_-PoESqrsYg}+bfG+p2HAJ1sp z4HH_I(aiY(PZHgsPwz?e>YpvH_tt~hj#}dLnM}_+2TP6JUbEh^T#6ZC3oV&GEM8BY zY?mX_+$!$6cqDe8bCL#j`YXTD*B8=;yK}o#Lzs}ER3G+JRj@V2Veq8_C}=gp>gXD= z)34^^^$)_sLvyL?$$u;_S=B4!&!vrfH{49KRpS0#(s5>hi|3 z{(4bg{=|AP-Rb0w(JlMob4Oi#FzGN|TKbbmCGLii-Ph6PSzV#Kowa5 z6d>kmZ?u)~CTQ*^tvQqemIFr6-m`Y_s#mBq8RbAe}ehDw#jIiUpF>(y9YPv%+-_L;U*`Ca9ikyw^77zMOaZ;my zCT|qELk**A5HY_W4yY_6b*+5f<3c`^SZ*N&laa8$pE!qo&?Y?LiOE-jpzoo9ICnq^ z#Wrcno>B0{tEYqxnW$@8tgDad$xP4y-boqUV5{|u+Us-Me!)_1dwm#}` zU+=qo?9v+krglDNzdp)#ANIqnoEP*hyjpHOE*c6ZDN^Ned2)y=Hu=Ei;BjKdJC^RO@yEx0x)682AF9#{dUa$0iyblq zuB$!|HF_)gTR_!`V zAH|-}J!L+0THKXxRX4C6KE2td@fOs1#}vGmq6@w&tc2jEfkKp?%K6@O7$Z1xI(=U- ze=j4xu%(r6SR8;xOV>i?FkS4IxR){%Go{G}+0bp&dV1NjnWd@aNDofw&@-n19Aou> z`F$IKBGN=lPY+=m-zP?tZnB@}&G6Hu)3jA&CsJ?v z!(bAwQWa15vfrD3KG2{4GIhb4E^YPwUHmXj`4nZ<$>ei>%>(1B=8nJ85R^W4g#rFC z)NOPq&O7~9nzq3S|DHcce^;;OVWQt@mtY}&R^g?WS+T=cb!hzW*?6KT7*08u;_Pb; zq~&#|KCeePqz2BVrzfqTdHV@Ia+9j`^NcAzQ1~IuX|OlkW?3t1`C~L)8}$M$l7;bDzZJqyKM8vP%A^2CXK+x zh6cK((~#{*(fD2cwvA6dRJ-Enz!}a-z^6Zy{Y6o z_8NOJJ62-ffAFYtu_)^@2u5^p!Lc!omXs9j@;YrYXVWUS^9;`?0X=18mNO@Y-9u1n2} zFYwgk?wGx03oO|r`mRQT5vg)scGWi-;9sK7jCcQ{Tl*PV z?m0$3)-1;%nmORT#R(^@zD3JCqj=4ZDj27_fZj@nS-F~#EMu{T=zvbd)9{{E3vZTY zHK(5zoA~HoIdFfFDP6EU&TX5|)-N?2!_7V2Fj@Z_4BxJUFTYX!@6kx z-*&pKszHTCSx}z6jfURd#)^k{vy6UT6tgT0FYPOVULWlQ@2->{KHMme+8GJo#P4~U zngNKC08?sIrkk2macPJtymdCis3F2HZdxV7yPKfR$(uSvzGIV@%#(I>dB9)BA+8yc z27SWyF(WyT?%5pY6CoYye$S*^E2Cig(KV8?haI;l9E(HtXN$R|BlhZAP8nnS%dbxn z&(ovhNJG&Drd4;5IrxcP_3}VevT}gTd!q&a;|NWd(SxhMNQSkxCN#m*k%d~EmAT|*;n3}CcFgY;&b2JJHq!?h8yZ0);oIB>)zdSI}yzF+hdI6u0H8^-Ts z;bS!U>j$6tTyHP*{CyH~M9-n>>vobWEvr{QkO@0B@1YI9bRf3DnEe^k&W$w?*Cv^< zM`VFvgLcxqfq|0UUNd-F(8Sx8=)xl#4_5n6nSx%0;LmXZY>ddu%(=noZ&{QyNFfsH zk7?4!K^4Ns{D4&`n$eleFtl8}PwMaBj^7L}(T~#J^nF4MyzXm6-&^*<-H)q;1G7=G z?cRsWrjV+GIJVd9Io0$G5ao*qEi3$gCD7$Tl zJCb+OG6Q|+LSw*KK8$|2n}XHr5cX~IKlzYWQ@n1zQ`#;3C=IQLD6C)$3;$pYFA}Em zeKDqBB6?(-<_@DEeQP{Ewh}fgt6{#9;N)+7!>7*Af~N=E$*pf4gNIY3D=P&<#V-J_ z*Xe=j4JUkIe3dMV&+@A;3&CWyHMu4Ff_uYL$?r=UKTs5lw{>&akTpK&;&6lf+d&=^ zBKCr>YkA6zp`fh&N4jd#jT+B|3;)_JX!^tc?{B83dEWeZbOGp3SxY(jPB8X-2wQJI zhEyjeV*8n329G!etKsjBG>W+0pGD5BkiWcUMn|sB#8byR!>>>W^n4=zT#FWStt$r0 zZj4-GA2H1{c~VvE2-?3U3G*&1L-T**(frnZn(&|#mwZb=wa-)j;c_vnG91+N}l41>D-;rBvKq3n+<`%`+FD_Bp)yz@V0<>DOkVZuF{ zt@2)OJ#8asdo}Y>&hOcq=B@Q&^1!FndSRcXUaU_ z$Ynb&ZiIn(qv*)obY}7Om$dh@DtX6^$DdI$;j0^n+4YBM^YC;0U1}=0Zg!_BUj;Y5 z;gr}5TI&K;?)$^*zShFc z^*PkzJ!jA7xUu`MH0WY^IMy0wvqjf^G5m?RPd{-L`=dlS9^HWgZXILy_TG?g=U?On z_aogJtwUG?Zk|5_Jd|6f~RVZ03IOgKrJ z?qz&uQqzK`^TZjLjt9XE z-6}Tqk2dY-6OaGre>(jeiO;8AqL_ZyB=Zm1pp+R)4($VB=LdJD-XG{g>mp3EY=oyR zHuxlJC%rQNDfM2K3a?uB&}yv#aBFX}qfbsV|8v(1os6rX_`v{dQ9DGNH!kJ3UlhRs zc|PSWzQ=y~=1Q(UU1{?$Z|roXl?^sB#>`m3iMcyL-gG_*qQ?)Q(nM>)Nck-d3q8XR zJzk6<)=rT3&Ie~5yg|Vi%;b}#OqdB1D1U_}T3K>Lg2MnON zQCl$VzVV>QsW{6;sXnrUE7py^NQ+l@cP#I`2K;_?r0>xqVAY>3^^2=B`L?HHasJ5f z%xJ7YD|Qm+PS-RRHC6cOPZe?;(hH3HmN2WRew48=5tW^9vg^;M;KVggNX=@W{B%_r ztT_=$sqsr-q$tikYP6+A`(to)=M?C=SB6dl4$=wJ-U@L?>}{Hw{an6$$42DT;zyD=}fh6H)(#o*a5nEMkl?8N1lWnMe^f)LZGq=19<2F{7z%>M(la(|XOIuY6VU z91P5?20Q&hXcZ;?-poN9mGj_3?FQ;}#0MM`t6AqxulPFAW4>H+iN(IRMl};o9=mJh z6Vo=qO%pBpnKB#ZRgY!fZxi{i*jX4~-5rWGB`o+N&e@NYS@*{>O!>0x z>?C7SI2?m7c~@wPa>DC_u2HN!O=e=B3_T}!QSbS^VBlk4mi2EGov;YTzjdt;{C)&} zk?Kh)M1^#(R)FLE-BcZ_11ERuv8mg-Pi@kwa=S@8GOa{0-pGGC` zJt5dHTpFwLoo6^sMVU_$blPKu(`pWr`-$sv%lJenD)FMcUj1QW%V-F>9ZH66p_tx( zC?t-w!VjA(Y16$8yftJsgr{yMt@XWNx=K_1Z`po+f3Ji?A6fDCUglVBQ$wbxBkL9s z3Y}Or?{Z@Zy?cn9+bS>6OR>O;8CxjFcc0w+%Urnrcs9K=8v};5)^g*^ zJGkLFZ@dUbaO0IL^7eD2JMM!#`AQ$E9$9FhU4bo;}x+`q3M7@Q;TWC#3lU1 z?A@@b&no&k-42ec%xBipP>P38+@R?#v!4v}u!*S^{kH3M0i2z2MG?G0gwA zI^CU`g8diS!-O9bu*C8L9oRNi9`R)_1fLBfo2o5LWppR$dVM*M2pWmA%rarijG;Jd zd>wWC+rmdA?gie=&VyiWZJU+K+PBn;lbOl$Jk9%14>G#XNR(_9((ehE6+tA#uJ6 zZv9z6=gc1QN`qo3_!UCm+a!p8pv>NAuH(TwX5o=@66*&Z_~GdlTDi)DC1|F>Th(j) zvC$5gB}-+Gj%UdeK0D#@jvGPwwgVcrR+FCF5lLAw1!|JIP+3=BIQo4ZGb>Z3(Jo$i ztV&eE+zfE}xJn8?pT-KT$HQ^QNLmol4?;UmWQX2<;hxe|?CUWU{0yydn3M3wi(a~} z;Cf#@GM7fh+e4Y^4e4*p7%JP8h?|D3gBPj(=w3!NHsL=Wd~!Fus!Af=^g?!FOhw)L z>o2+UUmx7{Y!Zt&05~$`EIqa7@=DEEs4Kd~eIxpS=KK4O4QZ9U{EQDO`uagt=YhDr z@DR;6Q)gOp7s8UO-eh)v0PN1{TG!obHowWF3Rhj|b*dv>MZ zaRzYsX0Yt^mu!CX_z3jf*+Et^8)SZ4E7=ixHJLE6_8;rG=w^O#? z9{%av5}0=TGQV)xl^L!6UjI}2#UFlhM%UkQQ0>wSfAu{=J96}RZA~Fqz6_#&ib^2s zx|RnU5Z5acb0Jy@W~U5LE_%^sehc{W+AKJ`-GI6ZetggbWp3|eKz70t^LqGYSX*O& zMyEHDyGElt@6uM-qLf3+j-@d_LnC=dUv*kmIRS5dS}*3aCYa)TfK1u+A znsCw)thBdF4d;%_J7rtps=Ra%hjFwL|Bi$=UFGj{CWGNRUn)2@lk*|?6=Dgg(J6!U_sZ>qV)pGblSrn9v)8w8Zoxm$~D)aBCMJMhJ!_AG459fq1n` zWO1VxSY21(PZV1Co%TSS7rF{6PB`Mk)*IAeqzTu{$bx5YW|6A7hSWSKo9h%CP`iQ$ z`pjJhTcHoG`o4^Ux7+iErhL%*l1TaO!cV7sLgw!{ipJ$l!BrKe@M9t3FU@OI+clSW zT%QYlM)=Y9MSUbm)`2Z(kC6AgCGuPcgCOa$1x7jVr|0`bKj2FiY<9Mz!FDF>(C=o4 z&L?cCO(7Its=L81$rfWgF46j1E7+->X|VOuG738#1ASxE1gCv4J=b1e3`V~c8cMISNby8OnD97z8+m0X5yk%zYr;4fyc;C8+seBt{cf4do~6*f?p z!^-rv&jZn$NT>Qp4Je;s#eD7wR;%bU>3c-OjK$)dU2v9i2c3}*IlC1yi(@HxPAsfj zFa!*L$Y{FU4_(IBga2aTZ+@Ob^Io5>mpX+)jCf}HK28w5(FZci@%8eR;<29`scQ;vwVB6tl~b&)KyYey?6mgH=@F^DcLXNvb2MX=xHRpXmW3;{tHH?8E>0 zo&0iB34F-xOC75uIB4ACXs-P)e(m#g3pT@!#x*p~S{b%wEoa*|8&Z$8(=qh79fUhu zqVDbj(kPYHugFdWhx`e2_=+Z&*fmM)Q5iq+GyoH~4uS38Owh1vHC1=JE069YKEEta z3M!X@+7Nfy%!Z@#W*CdHHfdm#ZGn%Lb8<5%mA_3~EBa1jNdv;+ zMh}_lLWX{M=VC~qr$m?HB+ZvT2{dlodq}s~8zD&dy!=JJ6ixxO~`w<#jKSF-CIs zZMG{$Nf!O8iBDNQ9nTvpvk*mB-0O9c#?{(#E69ge3k4%XZzA|;X|W3(`%=ND8TgKl z!h{hfsG@s{94c4x^v3NlyKNoq_xi_Lj2=ia_fGK{#y(ireHU-Ho`eHcuh2PnYhGCw z1}clfcwxYPb|T`WY~+Xo{GfY0dfi$K^Cf-0^e}ET#mcr6T!Ersa zfs`Ds$`?B?hYFiC>T)&%`mfbtp3g=|FAkdGEcs%1Der}!hp(oT>Uh>Eu@`&@9Zm*y zlUUd7byCIwLmJd`9Uc{ zi}FSPsCRxU_*7ZZ!J&WI-O^iZu8SgBcsS#0y;!)Q*aw$Ld&z0w3U=s35Hx9K(VJ6o ztgpd(mJy>yg9|3%s)^xX+8?KJP%^)R>x2avt!oBLfhls+f+ zBK;Y$xNfEm)Fk+zb>cJnI271l@jcafkU$?chq1X1rSd^)O5{H+9kZ6)VjI3s#j*MS zk)ldpe&zicNHEMLuU_|AZr&yqdiMvvYafI;UZqe`BExFaGqgk3j-R|&3M>59(7<8C zq3(DDvv_6257`BwwfTLvFV7J*Pn;IK+YM}CzeMQRGm4ZqMKG_@a3 zvUxZhO->ilX4{+mMZDk=u*q~N{x*9*D?l3Fxet9^H5rFbEP`EcZ1CEvTH4p?E}wBR zAENJVp<0{){=2_P-)1QAjKq<+L+}+mK8RfS(Q>TQ9ZU|>5Z>-;)`<&Z$OU9W`gJIeB$#~%Qe{^)OJ>TS0 z4wg5Qse6PgEPJKEGrzCoB{SV|R>Kya*V7lLhMuP82l?_%S|Z_$;Lo$<%?tzyPB316632|xPB0kebt{blxhnUh`ZuOgi;la6rGapP#c>f9oXfp&f#)rCXWL+mX1^ z_Y$GYXg>JI8u+4)v_aY-#aG+Q5^HOCn^!O{f4C7W((ExT>^do((V>4gj)3FkR0`;- z4HrA8$d)dB&qu{3;+b%D*i$ePC(n99_Q!tJH+uyV%;{yKh%odwM+9 zTucKo*h7oSf-QDJxJ*~2g4)hFdbw>6+_K#+U2F^B9Xij)ais|Qy(eJhqbq`={*JwS zwgDW6rqHh);vAu##bRoY^1#AL7=C^=O!{mpyo(i-`=yxguFM53OrU=+TbW)|Kz*a| z)WpA?hvWYpQ5kU zdY+baQDZ8TBSEH?%RSAfz>;LqF(osa@ih-K{~^qZOvaeUzv$uk&OG>35eyx?j^2D1 zeGi?*QXp^UmRWIFW)}!2uXtcR9H(aO3dtcf3wm1s>E!Ez!GZ}4hYhFj)L87+^o2dX z=Zd)U3U#s{#|SJ5Rl%Y@=wFW|96Woc`42X@7_7g#{Q@96^_NI5#7LXg9(08X&~#f zf8;|1*FeqDl2+{V1kF);tjX^Uzxy&6KP|9^pTe(d*`=Ny`p#z;RwYBgUoX+kjD`68 znJoU8CqJq_0;dcd105IX;`i<)^mdoKe4%0@j4c{Y(OWk#t9g-*9R!DJ#r*_4F!&Jk z8Xtgf54Doox_4YZ?K@>bFm-&6_~F8?X7F6s4A(RtAl1NY(#z1rkfS_|9!xibX`3S1*qch! z^w<|?cFz%e;Q{zy{~pTucR;%TGajbAT}NZy*}xZ>JA3Hyhui1)W7);kpgGk9|83kz z>H{-*{>x?1-r`3V6W6ke3#qbgrw5UHP$teB<^|gw0#Mff9(_BUA>ZOtFXrO*6r4X6 zlvCDAeg2&1I{SlhamO6^Gr$@3j$IV@mdmn2!E<>weHM8RPJ$&{Zc6RP*U0_U0nd)# z!D3H>@KzqD$>;RtdF!UZHF(SeK5D?Mgvs@@ON)5JPx=bpL?L1TgzwRe$kIybjci7ZD^panje`)N)ogxyHY_93kZ%$um8PJ zi_RI(M62?XaKywAy9J)0;;Bab!t5%zeYcRF31`ss1+Gjs>?q&cQQYr-T0!i52UJ~h zh&I%x%RZMoik$p7s;e;ppP5~x1NWP`x|n0CMhh;avo&ttaF%YIGv&8~5@78MMLH2} z4znv_*^|MRbS^Xw|4QSbXNHJi2e1mkiQP;M|}pxF?oW=SYSxbzs+FHV@=k3l`47U%tQs53OMN6;hKa~RM5J-{@|M= zkjd=n$cz!<^GT6XUk@O~U8y)}K_PrP?uUsA&uEUFoG0!+46lA?(>$O3%(Jw@@s?)? zI{erRpV|+Gw>n}jn=1I@&UxHjD+8)$_Mv2FeX!3iU?!$#c--IFsMYKW3uoG)*9W4X z^{3>8URkiR^DJt&(t=k_qh*S}x{$-8F#Pn_65QN8P~%BGP5iz|dOUI!q=w3D92f|VTdXK#I^2E zj8I+dttxh@^Vpv*aB*-N?bi(g9~T)e2io$>QnD=&`Ky%E zy!0Umo|X<(7$IpkO zWzIxM)v>}!N9(AEpCqr{R{&MN{b+sA6IM5ODl<1yr20O=sJxrAots>+=|MfsJ88{> z^b;Yrv@`XBtD-m6hcDPJavmySIJEy;@H{^VzlomVveSF{7k(7-BTv(<`b})9)Gn15 zI@2gQL;Hetf@L8*46pXmq-ROo%r^>N{X56^_4I-ly=tUa(NhiX-HNdg`KK*lDXS{?jLplJ`YHs&ri(Zr6ov*k1Eit zKa0`EKLYM89fgghcWBs$0n!Ja4WGBIr)YH*ST(RS8$U@#BTp~E@f%LT$me#L-I>$J z9WVHnZQ*DN?UotQCs|Ph!suieh3f-HwODY)B@lCadh7QT)tl%r(L3=~kxgi6{elC1Z2nlz-HwD(ln8lT4ZetiD{KfE9A`@XJoUa#jf%NUy<+@>`p z29kZ>b0E*rhSojq1wDI8gxVi}cx_uC_8PA$dZaBd>y3o^xWoz{DvQ8haTt}C_J=Wd z9~f0#{>uM4nxgUOdrXtY;RSE;civ$y1ix{DbjK0&dc#YWqtGN#E_%ybgTk=pP&*vZ znvLfjPSZWV{XF_|Eesh_POhWGdEfmxY_#E6Qkm?Dm(Ba5a&LJ&Vz!s=#OiUM|4xGR z%foa{RvV^mh+_G3p7QgN%ke_tR`?=f^q%bI6w#{5O|E6Zv|N!BV`2qLml6b}_XFtI zoN&C*m=3l5MSjYTc6wV(h6lvn^?)>QY883qqgKYSh{4~u<(nm_aMK?4aAT~Wb(LQ8 zUQF&%I{bcWN1Hz=g7ZvumM&($r(a)z@HrKB*v`e2_ig0U)WKKl?}d$NtI6sf!u?@E ztkkfZ`%U)4S6jBjo-}>Tyi`Mue=;P}B2U%$YZm=7RRgO;Q(?Tj3|;$cjc-@4f>_ZD zP<)}9cK$xVi|!V{`lR`^>6sh6n%%-Ye{;S%EfA$FC%`C%ShnRk4Uk#J3a1xBotZw> zzLkOJX*Ckmdd2h0yfCxjEqmr`gs^4YK$(vE#;zAffsn}%6q zt4<<#*-yfs=fwWj&09k54FThxcF)Sb2=~P zp<0@#!ek`x?Y|am3&vBpxaZ7lZDPZ38IqEjBfhpLR{O#XXCIf)gU>NM@<|-ril0wM zn^ocKG%#GKZb*^467l$TSr{Smz0)@Rq|cMDai^0}m^0W>Cy3O=p|v&X$zSBM<7E){d~)kEOFm5!(}zlAF9ooHTh ztq4koPA13AR&cnXk>wv8NO5lFn3LYX48?PC-*3BUUii`G+CGlpI&vI^Ymb0cooeh{ z^c8;flqIUaHD^6$yQ&1f0^VDnGZuKl>K1g(qCEQUn7bTdDq8N{NRh67EW58Mp>algcYC0 zLm%b!G&}VV`|#wK;RkaWGFfjC z^^N~`A`&h8CBea?qMvrxMH+j)Sh#rX2xJcnr9pNzOj6{@B34eK+|CF*`8N@^NHe^% z?=%%T9OpYPXT#3642o?oXG0Tj7_NRYo@V-a;?&Z7VDl&7fZPMLRP{#l5}9nc<(5qf zGw-tY^RjUI@d}!xe@W?A7*LguL-G2Lp&5(U9iTe4GFD{;k z%RTnNk8NY{?8$oSEX|W_T2 zs&iMtkdKule|7~ZP48q6)@aebp=&Uy)du9PEb;B*vy^&nID2}b5H5_*qWs4U&aaUO z&VOI?wpWYs>S8k(HrfdD#XO<*w+3OiZ7Gy&nL?7~FW9Rb@h-2ro|leyz@qFMENP=U z{uoBoV`9;qH+nNH7w5$h3O#J*5>0p*?n3Dui!d$a6I(M^3%A6GtiknnB>h{`;KTc^ zba{me_{UF|crEEm7wYUqKI%khwiNTvQ`(3}=<~-nD&O?e$D&)h)yTi*LZ~6LLADOy&82jEimWSI7o7`@A4Q*GRp${v1u}{yuz+9t(Kj@yTKw@^v!!*&5=YZ>Q)-?|yvc^i5!&HkF>-W30iW+~~`ee&q1U4OfeO%ULEP z@a5MHRI>LuwO%Ws3CdU24RQl zd9Zagz*!#0DCoo~t|{(`ubXAl3&XLn#V*8fUqwD&d&CeuqmJ-4mkGGMxR!Q@^k%m2 z=0QSB2oHZe2pr;b1;65(yh+Ou?Pr>UZ{}?LH@B5!$HYp?R%F4M5zdrT^M&cDUz7Z5 ze#t}YL-FF0|JcVmv43*sKE0mXF4>Z^0cfB)sTlla=+G#!^gqpK%nrq1gHAT-zlC_` zcn3*zJ^10SgK&OU3(wx`3hO%hvN3tRY0$_7{1Q9`Tn2cd_P;JVbnAo=7PArL?h156 zb`tC;nZ*V=YLdnqJ3Qj<1?g^j7~HQ#f-MLxRd zeek+UL$$;CogGDB(YS!5yu^Ol(?i0Y2iN$6kU)&9TLDHz)_Chn9bJo3m&A2t!Jy~X zl;+?H70o^jZkvjtjASgDT>^8Y+>z35kuO#83h#ROHYJlDigVy&GaT56;-R!hU>fg#hTp;K%Veg4oUF}S%N%#}qKt7mXinCmcp zxJ`#HH+kXX4AK1;yvDTeK97i3WV7|O>mb_6KVeL!@vLC z1V5JPQyD+X%x#E$t(-<$wIcs^!Bz-5H3E;u?WX9iBYc!vGK~G6L~kDaVOB@SuoJwU zmj}7vf68re+hZzT`+bNu28Qz5>*7sIcj3pCu!F-*EF{CtR~IpFgXy!Uq3a zwEplDZumJLCfgSA1IkyJ{lwEk=jCobKzy&|)!k$RE-GWOK@BwwSSF-pxPZwnWxDFq z4|=ur;m!c3-hKU`I52S`9cj@Iv!gFtY^g@E6TR`7%VwyN=%M*j36-uJz(0%U zKdJm=>icaB=+C>@oU{EKH;oEKC!H;@SrxFSv5}_CC^riKRt3>*anvTxrB5H)%32R} z^Dn=A(I8PDhAy+j?u92v29$)Iw-TW^MvXj=%EFp=n6H!vu8yR9sgYf9p32k(1sb2Y5bqr>V*Q=P43*t;WucK1SdNPvz5f%1E832-MYR?f9d?P9>>J9zo0P)F09$(hI+&&R zvSL%02^4TU9WC!Hhu+qncy(hJ)!53?;;p-&epNK}eP9EdJkS)UFT^n8H&l9i3ctE?2efxBrO;~uP(5iDJ3OX} zkMeZJL4(7f-~A~#q>)p&^lc%2VhDJMxx>#xw87ACo1o#Z5MZ5BgRPo4$bD1rmp%^80mg3=t zt!UEVX}m;bF%It#n01U9(v&L{8Z5=$G);$sc_Zkvlmn=S$*>LTZ~6UyemLAI15Vfo z_`-TS=`E^~+_a8@u}|!%;@~>SEnm*og!iYF|JLF}n?QKI&=P;#J3-O%Hzg1NX zxZT$ul$338U&sUUTH?feU#^EC@sJpAh=4O@De zH%7JtGv7jUbq0cZxRnsBc#%(7>WSeE#vp4m7kAulCXLv|O{tecAy-O=4*Ac6a~C!+ z{o~&x&Zf>N?@@1b)OjXGtDYh1eTAKGS_D7%SbFm5Hv9PKR-@8)Evl2xKn+7(F!5fB z;dfq8S-}|Y^79zT{E4T#^He}@ma~v)c!l@(T7{0%t!$B%$k933LEpBWFsh%D2d?&g zXmzBU*u_aOtUM=R$YA(|K-~(JQXeYdj3Z|RAX27$nIl_qfZ@Fjh zK=eqpfq`-sxZ>$3Qfm>*J>-wqqktK#=tHDpot zo-19KK)?7jO8%G6Rx5866i&>c%G;^<{z4p7b~xd)m=1Duh~cm0YCtbPf{d~A8`7=caevq{H-UbCzUC8pOG!&M76TAl~Qi{rIw6(N@5-}Gy zv|03e9IX?UxWqxlpe3~OrwZ(OGKN*H=-^GiJTN;e0j52eghpW}Xr|*lLB2jud>&WP z(76`yqN9gBA8kuXYAbN@=_nZZMi>8X+DA!&b4c$ncS+sY zKvMlF5tc=drUwi1*~}zgrtUk2iv9%Q;OuuyrDZ-2Xgx#K_VQ$ZDhI6A4?l=&<~$-9_?KWS60ILt1UO!lSAdr+x#x`hzC(P>v{$pJtg|=Mm!+zB~!Wlo4uf_ zkwWEhsSuYN%O+~s(TJf**cH$NhxZuc$~+0Fj;iA$FIRzVXccKi^?@ll>xH8Wlu7!U z7jAVlf?scSv6sN<`j73+G430n<$ybt%K}_Iw$4bZK$XT#U4utGmw--*9ctxXC#UDb zxU|Y9_#F^J8uKPW$-{L_w?0YiNG!*N-u~b%`Xsb0PSG9(m1YO$B2d3zM=Qqmg-ZDZ z=CNlgtzQ(1Cf14&bY~7OpLdcr&6+Gxp1lQf7c8OgLqrdj?n7aUks6(;&qvGatAJk& z$N0liCoJb!bJewbp|dBRdRHXFtc&t&g_RCn+Fgjn^IAb`O%VP&{*h`fneuAKTBzA| zjKbTCSa8CBMvkXG@PX&t@M}dp>vPZ=*(@=?mVbded?*LEe!KbGbE4n($$;j}_w)J1 z7I*Be(!(rXnqt)TTNJ36(QI9n0*h?tP^qdbT;7|=&KVffi*f1b|0o{zOc*gZC-7D^DULIHoB^T|qC&Is)TFrSJI%{m6DD@J7Hko zjr7hy3Zh;wLVBc9m*0kMqgpheZxv8O>RHj%8I^ zu+Za5^zCvgW@Jo-t;4)<=)KRhVzLXb?>G#Ktt&_=Z!k=GT`3eg^%8R)t~hq)VsO5y zi;^Qp>1g+Vl8Tsoa2C(^^Y+ezzXO-Cv*LZw#WE6|e_O+8J9D({zn^AiS2eHNk|Xv( z7E|MzV9_IA);w$580u%1hey{0!O+ZL+*&AoLZLlIQg3<`u4#o(++YI;+#4;}yt&8k zud=~nt;alSv4BsnouT~aGW>E*7F4$!;n|;tK;E+yCbw_}y;50*<||J^*R%1sG5t7w zUti4in)d_b){w&ROU&DPBwzhZS@bAGVSvLf7_rF&``2BfaXgPZ96Se2Uy~^2uP=nI zoxy{Gt9jW*XPm*-!znv$oZNDPuAa(feeITmQ;xNm9jy?i*J}!8GbhpUo=7}!V+;5W zVQAlZhWe=N<;rIdz~ucKY5SZ>@bP01)7dtJ{EX9ZT6#OPsc}ZPic2(9X9B+=EzZND z4C$D(419^r6l7(d@a@UV@jvY7US_~TPSJIj^) z?}gy5L%}fWu>l&39J!!>8~83UpZG#u>=h{*LEDK{68S~%`Hy`|F!MnMyvoo=gH25| zH!@w)Qj!Tn)i}zSk?leg|>rXEiI%Djx{?JyUgG~oH`5&FZ)h?`r+e36I-+LMC ziCn~T;)8d}81XGMW9 zI)_#rRRXoavzgk?UwlIL66~8W7}iSkaqGu6!n012>{V${7{KViiNzoZNoKKa$=qve zB2scDv_~@0XZ?mQpZ?aoF?=&v{Mk)EZN@KVrb!?tsL@NF~9 zX)S>8MlGD1SxF79F*f0CTKz`CyHxhW@%nPwJf=DwBH%%yk0~{6~3``Lr)2TKTdNgebJ}h zM+537>!a4}W(pXr#dq|{gKui0?aXj&8zgBDE}*!ew+@N3?EDyg&N@ANi7imnBnOkU5LC--HS z>%Z~KA&wX%mX7Csnv7RIaawCOj&D7d4pNrM6e1>#*CuXegD%RD#$gk*Gb(^d|EXd5 zh;1~i^|55u%u+~yzJmUqdd(g;uNR&r4y2xG?x^bdi0SQ{ff!szijLEm&yyr*X%goz zD{irK^NN^_a)0s~A?CD3r?CUmEwMpa^m+aMBB|=X75cPIp>WlSuq$CF+qT?*uJ0C~ zqlQ?hEw{k|+wM|ruR(mu)*=Y`v4d(`=0R>&kudeW0nJWWjYS@3p?r-Qc8|VC4Lz+q zv*;LflvL8utD3OC)Qzo)>gJiPX?SAr49Jgn#-hTT^mw$ck$>lhH{JJbLCf*z(aB9JYsyW_a*3HU*G&sEV>) zXu^B1VXV~i4c};#gQ+Qlpe4-<_5a+XjS`SNZrlqq6w~Rssgxvsm^6DGuRs%W#Gavt zJHYnQ_+-)^T3a-SH*_9`+8r@8`ozEO~P~ z3p{++Q~x*ru|W%wp~*|$>$k{3fjIc}TNb~m?59{uL!FVZmL+oNrNsGt|7xS{odsZ{vz#^@bP)LrLxkVMZ}59#67hr7 zbM{cx3)d>Xrxn%zHM{=U2}8Oyss4!`ESp-$N@~ZFuf=kFxitnNu8KUexeZj8I*iNj zC=f|Sc{K8x8ialA13lXvX=O|xwye3y=B62<{EQl!7d)Exy|4jrg&j?htz!Qo96(x# zCACIRyyGGb=anYn`QO!aW|W*{pX+)U{dg;xoU(w6#o27!41rw6=A+{jHz+w1hW~zl zqQ9GEcECg*%-9$I%-sd8v19S=yj@iO-#lL6wjbuSr;^9% z`7k?#vHM39saJD6nj0^N8}9RQ_mdmcJ3gv;ZOabmePca!Tu_Cs&NsrJ`ID(DAPrr_ zp3~WXi!s#dA(_Z5kaVclK(SLUDekZboin4^_#`Zm$ob(Rh4lPno= z_a}dOAR3S9l|kr9C#2RZ^wM!U{}O)&p17xyZnyyyNH+)v{(a&DVj{5q>`Ew)wZvla zyZSmxSF-5YVK{R-g_=gyvb)=@ggL*Sa%=SnT>qe0?BQGDbLHpcCAW*Oy37F&h#myx zBW#YAGTa)bM|$G>D)hVs+*_l8t~p!jMW4mI4`e~4O$iPBeU9ynIL}@=jU?-2U-Swc z0pm0nP8e~XF7Hp}dP@qReTXUDnmY)#z0GLaIA4~`g1ym&R*1PWk*B%5g|scq_=D_R zSX;7+M%*-k?c#U8K`No;3x^%B( z!<}(9)G1{T!Cz#I8cUw=zjcB5;!mtRE1exvZo1>HQ20i8m1;%qJwrb zRnOeSSJ-WXN!j^yL17OYyJIRdKDveSKc!+o^bqWkpMyug*V2Xu3grLwCX6T`N`gMH zV>qxW37Yg^bRy2FvWKSP`FQzWJC&aA!z0CWY`e}n3f;W|&gf^bd-b3AEsv!b=_Gpp z%q`Hz=ooz|o5lK=FYHWIdMz86Jaf z^Ub8avJm)+39O&!?;fONgX6A7KxB|UmKZdV(SQN0cwZu1oM}Q+E$2dC>q*S|%P;=f zBme`&OwYauE1W3*luQikg^NBh@HlEFIb7BS+2mndwro0&Jr;)hPudACi3@OB=5IJUJhAP`cnL-NpN^ov61KHIrLGS6W$a#vxoF_FgExy1%)r=s>wUSyC8`cyuho!nIka^2GJnXXpCW-fSlbtW=`mR`B_oEv6 zC9a~P2_~TCG1N%vRs(Ol9*xSglOT10B}z?vMr!Jt1lOkrq3eA#?KhBz!}%$~>I)-j zgJ>T*x?u#|80U^J7e6CQwMoM4{$-#&(vNm`>%iG*y6i-?G+7=CLhBXjp#OF@P6;7W z${ERro!$n&&!tjEx1+Fr+$|#~wNHGKC}_~_Bkm;=5xX5*#2K9?g&3TJ(=YbW{cN#c zep!#L>UQD7`UTBO5TA%%JWnYDZXMSE-3=S*w8KfZc!n%|U7JXu z%AuGezL)ItMDC@=4odpmm!g;DLYi?V*+~Aen%2D%GpRRx+1n6&b!rdP$Qfa2CDHD^ zgwTQ};qG_!1=r*B&~P?cmioN+So-G)z#nq>*%rlX;u^W>{NSOoNuSv-JDn z?5^}eD!34hDoqkl&X|L%546%&-(_5WJAqv8F3QQ+%hCgC*d^21l;snPL3?aq3x%nl;JGg4FyW93fmeUXo$$=4cl|KBq__&L z<3$dq{Q}V&^N{*<#_=UC+o65tT9MuNhyA{_Q&{%fjKZH6;rE{+=V(nhT1Wn%=?^@3 z$H#gI(#)XJ>=>w;++Y+iZ8vv|NJKSB8k5rSM7J+D>0iU%Cfy5pFd{&f=Jgv06D?H@ z_tt&p-m#{AcGP zH$OsG=R6cvoGygnb=j2Mbd`mCE)bH6%&4nZAR2tX%L+9GY(L6r>os?YSzZKW==7mC z4pTwF?pNc%?c*p$h{EwYe^|sT7j)Wjn|vn9@f>mf6s{{n#ai{OqOd~He*c}{)dHWORg!R~E)mj=kPK4BLQz>;(`b<`XtgT?eYFoj^DRGo>;0M>4<_+TG1cJmE1x#a zHwM4AGX>WVGSn59h0jlK5cAdkxGd%i*@*k2*!ojYmYPkII>TYrUJuqUPm1Kl=k3un zZ7|;|dWHgT(MZp1c1Y~0)(#D)Az~k>|D;60Q+5y6^^8WBr*`ls#}ohlYoiXAI-z@3 z0W7&{Ow}QQaPqZ{;jP3xell;J$iEs4cfPn|yK)z0=jBTVs+2(TXG{7w?zA{dl$KmR zbd>)IazNLIRYI-kwLZAMgGMgt%P+^}z{&KxT+o^U1&2{Aqw|M}TeBJ=PqGn-N!x7r}x=_$_$Pqm**|b`^1jejs6g)nkxoQ?hR~zbU~D=X59ap~{kkvGhDXzkdOfd%+8@4jW%GOX;fy_dP$iK6 zc~@lrvY7EV#4g_xG;3Zi?|K&o$y%yp`gJ#39H`dpD6%ewx%i^VssR|=F&3}n93+$B zr+GroQCJ!Fh79!YGIxh$wnTpp$u)=^>o}3u-)e-1ZR@Erxs(qKE`^`pOBEJ1r8& z#acqNI6t^!b(WT-Z#44J$$}X&iIh2WG&Gwi3jg^9kc)XD%ILO&kI2>ClP{ikPxPYh z^9w-*dl4S5bygPE2-?H8EjkRDlwiWPZs8ps5ajb`lXuSu?4s3s78n6)1!Py_+>+G zWic>DYd>3XYyrJ+^T3~PWYFisaNKIQm)`t4$y;Q%gR#YF8nY)DLN}=kqhCsq;Uyz1 zDZ2-g#XN(u^&txWQO?&FiTQ}jYbjlv?_Sw#YLuJ3o7b$eLyfdH*4xksZ9-4e34LXD zRn`?KQko(`6?{JC3E#!pWChe> zDAMW@N_QyI>%%E{sJ04<#yR10F~<|TBa65EX$1G)JLydF6bRaRw`rQ`6CS84<{q}$ z!iQ)h^!n9AGgUJ9jnWF3I&vaSXdep4{j(&zGlD-`XovFs)`MGbHMHq1a_*81Sg~^! zR2VF$+ec)XMX!dY-gB%d_+K!l`Y(c9uQ@nn*ctM^70Z`cG(*$yEi~=(0+5X#A@JKH z$XODAFM5j%$20R$-sCwQQ7n_}9Ul(nrjy9*{uofU_ZP1J{?4^J1M$3P9K1hoiZ{L; zC)l|}*qyQwh6YU_o5$LqF=#sLdU}s<|7nj`F6%(~N?qJ_WIMI~6j|+-n_-ybA8(kK z&xWth6;9gy;C=h0Vde8$Nc3?)g)c8jrRWgv3a~*Z*k3P?>ka_tJ}eiMug=%X-L8j8enULCtjaTCgzky+15V)}#B{ z4C>WHKI3E=(%u$>m0ts(UDXe@j+D+DRe&N-}Fy_S?<|-Z zZb}F15M12bnW9EN((7?Vg}5Q`(^4Cib{(dUj8($XTVBw(PM7q9InUU@w2{QlVFR^g%UDcG?t|d+6eZFapZtwA*}9( z@OzF5y=q^M^H&c5g~tx~RQUzP9ZTgo--}>T@*KMEuLB2zmDqk`M$R7oc>liW4Kvrq zYtJ~*;})K^p$DxB8w=f?t}$6tYd zEi{CF&kBqb-@0?#A}@>>{f3RqG{YMTMWec#<>!{YE3y*Xe*LKkN_dW+}T&J zUp(jj8f>y#1DC4o&{UzFlxFbetrpdwKP#ScFS|qMbb$@~^qS8L5dF?+%8=h}hKue^#Tg1AJ~P)0HU>5cB7;(0TF_&p#B2uFu9m z=NwC1({+Q?!&2Dzg9YHD;YWd|^}*uz7$Hh-2=#lMgg>_hfLwtMULVmy`L$)jg3P*0-Wk6Hixh0;5CN`Uph3aTn7&{5p#}A}w$sx#pFM-a=nRsR`(eY=q zxxCkMnABBG8Sd`Dre_I0ipRN?*yH<@$^M&mHWMoTN2-XGz|>guoeZMG|HX0gt*2VWt=vGcAZmv&p;Iff8$6 zcl#8bS~yd(W?>9`b~L5;c2C*;2f2dtGm#^FE&#Qqli*pU0p3lkrF#{7c&dIee7NOF zCmudvo*^?NgTwn#YTjD3c`6SwX0B-0>o&O`s^#)xJ}LFO1NB~B%zFM_6A}_MsI_S; zjvP@4`+AbF-fQ5A=>FZjcJfVFlUPV2MNX)6ybff))28KCzIfQM7o75%iy^Czk^kSG z=J}Ub!qj_S4!x#QJCtD#fuC4Af`a)2xz303w9(DNgcwpGNjpf&YExu*sl__7Q= zj?HB!4J|R_`z^Xw7{Lv8iudylck*hKFuCAS-01fhdhEOkXN3B~D0esft8kO*c7EqK zQ#edK;z^bx(776QDRr69TU z;Tg0w%5>9=``097=xMb2>nk#wDUx%##+3-%TFvn(PyyC* zZunzjCoL)xc=tYW&zZD_p+?E?6vkn+$gM;yXrfh2clS zX8VIOhE-0H&*t%(ji1{(12Z`D$qCP9!?_jWvW1W9|_{ zNlV)Yv#ZyGjBmGislhVPQt5V6LP+$ z1dpz)$DSbYx*PlykLWoVec%Es!^rS8pFVCCvPe`F^aS*mt))V zYjP8_6)1HEG%%QoUBXZn3XWgffgB^s>P34dowu}-~OrYfSec|SM zu?1b0iprDhV5x>Hs`t(s0tA134QZM{I{YzXR} zd`z){34B>oA#`3DMNS?5uk8ih9oh~ACuX6Tc3iF&>#^L3N!V5>_K?XTGY>d70KlDybA7_b(V z|5<~{*#)Q-{f27$_Y&$=bKvw7CjxE^GSBtd;g3)G?rHXDkl+VBqIYK)J4~{5=6u_o z6c{yBjT$o2;7!R3CU@&8kNgpZw~Le5q5F>b#P}&K&`e_f3-e**MJf80l?;cz4`+Wu zO(hdv%|@O(AG95(V?*W{GE+Hb)b`d6S{!Cli_LIIcGY7_+Tyt`Bo2GQI9Mz8`EEqq zrjG3$62(dTVb)S4J@I_8t3cfGTj-MMgFu{_(FcZjiTS4UXK0(Hy+n!TL(ZIJI^3MW zqHo3u8+|_W%ImK9Ie7q#4V#8)=Njlj$VQ2(<9f)RE=6;65tb!vV0$kOrDcv07-#y2 zNiA7`CxzE^E-FpZG_(v3ELI|w26H%Pn<2dEF{MQpy~X|iOR&8pdIkbdQJnn-?)k71 zG!Go0;)m0qWbrb#c}of(K8Ru8t^MID*Fk>tIBD3;6<$4_1wDR>BoX^J&-qqijGYWJOsu?>tV=*layJt zQ<(J%;6zFv`m(_s0tRTZqMrV=ZhbTwCPl;Dnt3>6%UxQ$AzSjf&t@?1T241yhl9J( z1Bp$^H2OO=69;df57)OX!>GJ>G%afxpIEgYW^A{n>@+R-=GG*nq#WXvA3ZQcs)vOv znT$88j?t#!$qlx)Zg8-D7KH^}Vsm2M*bb)=v_L%uzl*&>^^CbVwzE^r*|+huuAR^< zx_e(=u!Fz?N8!BQE8ZyPkT+~n2P=QE+!1({+S~UCI_6@p&E1U7&Hc{G?}$C{=?Zjy zta#qtJsoD`IO3xX7sbq4J>TA%2CkotX{L56ENf6@qbC@Vn`s~p)O!Ij2Aa70X#>^f z0}mX&7j{-Pl1b4wLF?HtezZ-UA`ULcaSHpuVu%*5f4+kj9^5O*npX{8+f!)kB5iQe z%Wl4-Y(Qrg72vm5qrl}#G(Nc0?}S;(63NSPhhegvA63qggPBd649jev@ozm|c;;F< z`;c#iehHsQ+qItK+C%W)&bcI);s9rElc4Kb%v*=dMFX{gP^&Tt6&LQKgToV9qsJns zx!%K#6E?ues(Rt*^EW)kFcQDZR>H5BBLB~)gI3Nk6&iDQKwWkQ{rs~Ke*83M|2i-7 z?`OuJHs(`{cAc`Qt0vgaPYNo6S1P16P z_nt#2FQru=RvwcquT~)*DXCMt&K8P~ompTo1q5O!8(|%YY=hw5!*h3}f(QwA6cH6k zUSdPjzc_Qg@B96yDb$T3_}E3_yNP{d_0XHO*;NFOrTgiO z%pT&(^Q7QY z3zOnui;>dflzLvK3@`|y=8_F<<7xo{fPhe%<*?;y(mHPa6DJQGQ^aOhbg z1(}TOo7rt#o!*5)Z)D@8B@HMA4@|JXiMW$H`60`7SoKsz_gbZ}n|82E=f?SoGr8#N z5(v_fLs;K7NKI}jT( zuK-;y=0n4$`*6Q!U_`>GUf*)YQwm4FpiooD4&Q&cjPrHz7mPkxur6PfjU -0.20078 -0.10337 0.060461 -0.91415 0.1093 -0.90508 0.5017 0.12717 -0.31144 0.15824 +at -0.019143 -0.017879 0.25241 -1.2375 0.81273 -1.2265 0.16146 -0.14443 0.21601 -0.25264 +from -0.09197 -0.012729 -0.0060296 -0.9388 -0.10932 -0.83526 0.49825 0.030485 -0.26831 0.23417 +by -0.33604 -0.2464 0.29963 -0.94804 0.098661 -0.92171 0.32177 -0.0036779 -0.071185 0.048951 +been -0.25494 -0.074667 0.19737 -0.96355 0.0032124 -0.87794 0.34561 -0.10455 -0.16332 -0.050892 +not -0.19936 -0.24242 0.52563 -1.0341 -0.88076 -0.56225 0.13903 -0.015902 -0.11776 0.59915 +as -0.21367 -0.22472 0.12267 -1.0727 0.18493 -0.81337 0.44497 -0.045123 -0.14549 0.2321 +his -0.48603 0.025464 0.12305 -0.91551 -0.22244 -0.86314 0.35775 -0.092713 -0.23615 0.039325 +an -0.48816 -0.23777 0.21673 -0.89387 -0.085778 -0.95051 0.22186 0.051467 -0.054749 0.14937 +it 0.088151 0.06808 0.18461 -0.99546 -1.0999 -0.44344 0.18492 0.12933 -0.57249 0.66995 +were -0.3996 -0.35245 0.11363 -1.0223 -0.30912 -0.69173 0.16747 0.107 -0.19961 0.47033 +had -0.28349 -0.12388 0.22009 -1.0286 0.10782 -0.84988 0.45542 0.0085547 -0.24302 -0.0012204 +after -0.34786 0.045636 -0.023854 -0.82463 0.16736 -1.013 0.56963 0.027898 -0.20699 0.033479 +but -0.20207 -0.2405 0.19077 -0.8589 -0.5069 -0.81368 0.31668 0.39135 -0.29938 0.41487 +they -0.1298 -0.31476 0.38336 -1.1176 -0.15058 -0.56061 0.28551 -0.20703 -0.29367 0.34014 +said -0.39474 -0.36102 0.3086 -0.93279 -0.26217 -0.81679 0.25929 -0.16438 0.027083 0.45336 +this -0.092812 -0.10551 0.35124 -0.96899 -0.40498 -0.68296 0.30468 0.0917 -0.38239 0.35388 +who -0.20105 -0.095276 0.32085 -0.91372 -0.16938 -0.79356 0.38023 0.0038929 -0.37117 0.027668 +Australian -0.28387 -0.070388 0.13034 -0.80433 0.13356 -0.9253 0.67532 0.22014 -0.4056 -0.10834 +we -0.43378 -0.024427 -0.047516 -1.1312 -0.57399 -0.59072 0.2059 -0.40156 -0.31484 0.4411 +Palestinian -0.11929 -0.0022232 -0.3722 -1.021 1.0886 -1.3694 0.71574 -0.21566 0.077381 -0.28098 +their -0.18141 -0.17626 0.16614 -0.92324 -0.40464 -0.69394 0.26769 -0.055062 -0.30801 0.40075 +which -0.19957 -0.11257 0.22569 -0.88656 -0.070622 -0.89995 0.36561 -0.0093768 -0.28029 0.11368 +people 0.040337 -0.13309 0.12374 -0.90381 0.11218 -0.88308 0.48656 0.18849 -0.36103 0.23864 +two -0.10355 0.0031566 0.1133 -1.0841 0.44068 -0.84927 0.50567 -0.067127 -0.30814 -0.0035397 +up -0.25718 -0.099621 0.096818 -0.97874 0.13418 -0.89428 0.35766 -0.09086 -0.20867 0.14024 +there -0.20937 -0.37056 0.45481 -1.1153 -0.99885 -0.32444 0.14491 0.17278 -0.36451 0.87714 +about -0.28995 -0.19368 0.29839 -0.85869 0.072993 -0.97997 0.39695 0.28764 -0.28723 0.023871 +also -0.064228 -0.073123 0.15672 -0.89139 0.23014 -0.98076 0.5608 0.14038 -0.23721 0.099119 +its -0.094794 -0.0089572 -0.061089 -0.92513 0.15797 -0.89387 0.53339 0.099649 -0.25874 0.08474 +South 0.29405 0.3306 0.29858 -0.98334 0.3158 -0.82364 0.64126 0.40047 -0.65075 -0.17298 +out -0.48574 -0.13048 0.083028 -0.80023 -0.57943 -0.77788 0.37554 0.28506 -0.37562 0.32881 +into -0.36937 -0.17606 -0.13391 -0.94078 0.34168 -0.99665 0.64295 -0.11696 -0.1669 -0.0054359 +would -0.28577 -0.23793 0.18882 -0.95394 -0.58257 -0.59028 0.37692 0.12538 -0.2183 0.64066 +US -0.24584 -0.41715 0.18146 -0.92122 0.72152 -1.1306 0.47029 0.012934 0.053693 -0.0086742 +when -0.4617 -0.29113 0.1645 -1.0117 -0.043739 -0.84131 0.34338 -0.1758 -0.0047467 0.28804 +against -0.24538 0.078647 -0.056364 -0.85907 0.29025 -1.0199 0.58317 0.11893 -0.27324 -0.1253 +more 0.31973 -0.055314 0.46665 -0.98215 0.10186 -0.77057 0.36613 0.61176 -0.47173 0.26166 +I -0.3498 -0.20172 -0.020818 -1.0454 -1.1019 -0.45334 0.42848 -0.012756 -0.25491 0.65215 +last -0.18243 -0.29531 0.23062 -0.99804 0.62399 -1.0047 0.51393 0.31862 -0.26751 -0.041609 +first -0.13614 0.093762 0.13683 -0.96666 0.43209 -1.0278 0.54946 0.12433 -0.24603 -0.069502 +New 0.25543 0.27318 0.18001 -1.058 0.24951 -0.82687 0.54174 0.3602 -0.52094 -0.14335 +A -0.31209 0.011631 0.22446 -0.92899 0.067243 -0.93878 0.49181 0.0034494 -0.14883 -0.012253 +He -0.75237 -0.67949 0.049378 -0.93605 -0.078393 -0.99741 0.23349 0.020627 0.027144 0.28656 +Israeli -0.26379 -0.10594 -0.41009 -1.0794 1.2779 -1.3504 0.68809 -0.53596 0.089812 -0.21142 +Australia -0.21157 0.022314 0.07604 -0.78834 0.15132 -0.90568 0.72975 0.28225 -0.51305 -0.1799 +one 0.1261 -0.099178 0.15185 -1.06 0.17422 -0.92321 0.3207 0.11182 -0.13747 0.0563 +if -0.48178 -0.23325 0.025306 -0.92117 -0.29508 -0.82477 0.49644 -0.049607 -0.15429 0.30857 +United -0.42223 -0.26833 0.26968 -0.98168 0.49726 -1.0389 0.36316 -0.083795 -0.01649 -0.10937 +over -0.26667 -0.11149 0.37049 -0.90953 0.12751 -0.97556 0.35257 0.17014 -0.22273 0.17052 +Government -0.29815 -0.43747 0.24994 -0.82199 0.34598 -1.0416 0.54893 0.34044 -0.087492 0.035292 +or -0.27575 -0.096525 0.20245 -0.89668 -0.91115 -0.61982 0.16335 0.0376 -0.42491 0.53103 +than -0.33 -0.21229 0.19697 -1.0063 0.00041447 -0.6629 0.4611 0.093545 -0.33235 0.3079 +all -0.26628 -0.14896 0.24025 -0.89538 -0.16143 -0.8923 0.30807 0.12912 -0.084696 0.32484 +no -0.40013 -0.16031 0.15533 -0.84239 -0.20989 -0.87639 0.52505 0.050859 -0.22787 0.15883 +could -0.49695 -0.36794 0.25997 -0.88439 -0.49008 -0.65626 0.40343 0.15186 -0.16664 0.51918 +before -0.3407 -0.058254 0.0596 -0.95199 0.08027 -0.8974 0.41102 0.020095 -0.24425 0.012549 +three -0.26678 -0.015288 -0.047869 -0.95902 0.50998 -1.122 0.43916 -0.010073 -0.22936 -0.22466 +say -0.032002 -0.26703 0.19972 -0.94938 0.079993 -1.0376 0.34252 -0.020494 -0.10124 0.080242 +told -0.42438 -0.20704 -0.0056567 -0.90714 -0.24315 -0.75983 0.41709 -0.090443 -0.13259 0.37537 +new -0.54038 -0.21066 0.05754 -0.91031 0.2118 -0.8609 0.47213 -0.12175 -0.28987 0.020162 +some -0.20853 -0.07386 0.15236 -0.97983 -0.019563 -0.69457 0.50208 0.087262 -0.38281 0.18132 +any -0.22956 -0.25756 0.27368 -0.85082 -0.871 -0.73584 0.17203 0.35347 -0.39229 0.48237 +"We -0.24137 -0.11195 0.16273 -1.0519 0.15123 -0.91253 0.33623 -0.34671 -0.076989 0.071385 +bin -1.1369 -0.19739 0.43403 -1.2298 1.1812 -1.1997 0.2993 -0.53082 0.32635 -0.62403 +attacks -0.3315 -0.046235 0.0059848 -1.189 1.2997 -1.355 0.46851 -0.31042 0.00050552 -0.73975 +very -0.24525 -0.18 0.24736 -1.0176 -1.009 -0.44592 0.27645 -0.0046416 -0.3104 0.80213 +still -0.48843 -0.23529 0.18375 -0.91555 0.030518 -0.81222 0.49447 -0.10733 -0.12523 0.2623 +now -0.22925 -0.28336 0.41243 -0.96635 -0.11287 -0.77443 0.3012 0.037946 -0.20964 0.2162 +just -0.26101 -0.088722 0.26512 -0.96292 -0.06783 -0.72943 0.47772 0.24115 -0.38367 0.21506 +security -0.30075 -0.16487 -0.15123 -0.92988 0.50471 -1.1198 0.58145 -0.1661 -0.028197 0.014528 +police -0.1127 -0.1825 0.039113 -0.96865 -0.027693 -0.90584 0.39815 0.076821 -0.062821 0.37022 +our -0.14584 -0.04477 -0.14099 -0.80127 -0.90416 -0.79821 0.27668 -0.15629 -0.43345 0.38823 +killed -0.18154 -0.19708 0.10268 -0.97047 0.42065 -1.1094 0.34835 -0.076757 0.01084 -0.098382 +Arafat -0.52927 -0.03356 -0.17259 -0.96235 0.71803 -1.2615 0.49958 -0.55362 0.26507 -0.15125 +"I -0.39736 0.13625 -0.023159 -0.98296 -1.4491 -0.42356 0.37467 -0.19728 -0.26311 0.77596 +them -0.16723 -0.29989 0.2555 -1.0339 -0.59839 -0.57582 0.26505 -0.13065 -0.33663 0.47831 +being -0.29334 -0.13715 0.11571 -0.90582 -0.42662 -0.83744 0.29407 -0.0085566 -0.33293 -0.079894 +Minister -0.77857 -0.041647 0.055757 -0.78251 0.35742 -1.1563 0.62952 -0.24813 0.18156 0.0074797 +forces -0.31611 -0.26023 0.13476 -0.95077 0.68984 -1.1688 0.46259 0.055986 -0.04458 -0.18726 +States -0.21613 -0.22527 0.2876 -0.8926 0.5769 -1.0471 0.57627 0.048655 -0.192 -0.17265 +But -0.04944 -0.13106 0.14496 -0.89226 -0.10263 -0.82114 0.51183 0.072984 -0.2451 0.28737 +fire 0.4593 -0.2163 0.63263 -1.1762 0.35455 -0.69784 0.27687 0.50648 -0.33031 0.23918 +other -0.29501 -0.42237 0.33144 -1.0263 0.19114 -0.78719 0.38055 -0.11142 -0.1256 0.24444 +what -0.28618 -0.23335 0.4351 -1.0115 -0.54005 -0.5525 0.27984 -0.11731 -0.2719 0.50848 +man -0.2559 0.24893 0.065557 -0.8362 0.024539 -1.0033 0.51622 0.11164 -0.35693 -0.20309 +around -0.31284 -0.16331 0.21767 -1.0888 0.29451 -0.89781 0.24964 -0.052161 -0.10537 -0.017295 +where -0.3501 -0.35727 0.47376 -1.063 -0.22067 -0.68804 0.12911 0.058005 -0.1445 0.34572 +can -0.055922 0.030927 0.058761 -1.0212 0.14008 -0.88066 0.367 -0.07038 -0.22231 0.073602 +think -0.1731 -0.1926 0.32029 -1.0495 -0.84012 -0.48107 0.28456 0.059164 -0.4043 0.52989 +per -0.35812 0.11215 -0.18332 -0.80901 0.1944 -1.0827 0.57297 -0.26525 -0.10867 0.11525 +day 0.012601 0.1896 0.095068 -0.86566 0.34808 -1.0604 0.52837 0.19571 -0.52749 -0.26127 +next -0.31571 -0.060529 -0.0075701 -0.86395 0.11404 -0.95719 0.53605 -0.029668 -0.22698 0.14434 +Al -1.3353 -0.092465 0.39203 -1.0874 0.63041 -1.0789 0.35236 -0.71515 0.2539 -0.46528 +company -0.19165 -0.28963 0.25913 -0.84085 -0.2211 -0.83681 0.36584 0.31188 -0.30592 0.29555 +It -0.284 -0.11323 0.36562 -0.93056 -0.60506 -0.65385 0.23822 0.0019475 -0.25188 0.54004 +four 0.037041 0.084169 -0.089042 -0.91625 0.064523 -1.0705 0.28069 -0.05684 -0.33851 -0.033145 +Qaeda -0.91306 -0.15476 0.19559 -1.0222 0.77476 -1.1154 0.47116 -0.39111 0.024283 -0.52145 +"The -0.38686 -0.023665 0.048808 -0.95457 0.36467 -1.0604 0.50549 -0.097076 -0.02866 0.014342 +take -0.4219 -0.03483 0.0012477 -0.72079 -0.21566 -1.0017 0.52492 0.13763 -0.22839 0.072995 +you -0.087751 -0.16713 0.16542 -1.0399 -1.0658 -0.64585 0.15991 0.045301 -0.22861 0.5694 +officials -0.32051 -0.21077 0.037937 -0.95437 0.60363 -1.1237 0.57537 -0.21206 0.067605 -0.1028 +suicide -0.28618 -0.10063 -0.22642 -0.9794 0.79137 -1.1419 0.51294 -0.19923 -0.065382 -0.14762 +so -0.13635 -0.30147 -0.081736 -1.0996 0.067797 -0.51032 0.70453 -0.16876 -0.39209 0.58863 +Afghan -1.1706 -0.3155 0.067356 -1.0196 1.0935 -1.2534 0.6789 -0.43071 0.18712 -0.46391 +under -0.48811 -0.067802 0.0057148 -0.87174 -0.12285 -1.0058 0.40118 -0.17195 -0.19471 0.070437 +President -0.32441 -0.2851 0.16182 -0.85866 0.1776 -1.0136 0.41405 0.19381 -0.16785 -0.043423 +Federal -0.25055 -0.4163 0.36037 -0.87956 0.020906 -0.89772 0.38427 0.23415 -0.11237 0.12181 +In -0.56293 0.22817 0.088029 -0.71931 0.010781 -1.0672 0.64169 -0.25677 -0.24875 -0.038812 +time -0.52833 -0.056916 0.043438 -0.85557 -0.29898 -0.82812 0.40698 -0.15416 -0.31113 0.056874 +Taliban -0.74078 -0.31884 0.16068 -0.96942 0.53735 -1.053 0.48127 -0.18015 0.10536 -0.23858 +made -0.37549 0.23968 0.0083349 -0.85004 -0.51914 -0.76553 0.45113 0.21039 -0.44265 0.10979 +number -0.12057 -0.15317 0.18722 -0.90501 0.45588 -1.1197 0.42543 0.019829 -0.21294 -0.10256 +days -0.072485 0.027079 0.1092 -0.93477 0.11575 -0.9536 0.45806 0.2372 -0.4375 0.059927 +Laden -0.90037 -0.18422 0.36881 -1.1109 0.78784 -1.0523 0.24214 -0.38333 -0.059544 -0.4559 +down -0.072217 -0.12778 0.054756 -1.1118 0.34834 -0.82644 0.47349 -0.12034 -0.22186 0.052777 +through -0.25441 -0.033393 0.18056 -1.0011 0.15407 -0.97571 0.37446 0.020637 -0.20062 -0.072035 +those -0.21808 -0.19675 0.40513 -0.99374 -0.42841 -0.66267 0.22048 0.09974 -0.20575 0.43765 +meeting -0.45894 -0.0097337 -0.18976 -0.83278 0.23521 -1.156 0.46863 -0.13151 -0.10006 -0.19093 +including -0.22074 -0.15843 0.069876 -0.88368 0.28899 -1.0397 0.517 0.10314 -0.33756 -0.23928 +Hamas -0.18186 -0.22878 0.11349 -0.90034 0.53257 -1.0775 0.49148 0.10502 -0.13666 -0.042208 +Gaza 0.097114 0.057388 -0.021218 -0.92321 0.58338 -1.0238 0.54903 -0.006679 -0.42196 -0.066572 +workers -0.53701 -0.18398 0.14693 -0.95833 -0.065438 -0.76921 0.48484 0.010138 -0.10631 0.090272 +Sydney 0.42337 0.17773 0.41603 -1.1125 0.11717 -0.67133 0.60738 0.33638 -0.49206 0.19372 +she -0.74477 -0.083015 0.31348 -0.95676 0.12699 -0.94792 0.40537 -0.48402 0.0428 0.17063 +military -0.55691 -0.17432 0.019327 -0.91594 0.56586 -1.1349 0.52516 -0.18514 -0.013428 -0.18002 +should -0.44619 -0.28481 0.20766 -0.89841 -0.39622 -0.70786 0.38093 0.17609 -0.25709 0.38403 +called -0.18626 -0.18218 0.13878 -0.91435 0.2147 -1.1208 0.34494 0.16412 0.0060132 0.0092137 +since -0.36396 -0.0063352 -0.12582 -0.94967 0.46389 -0.94729 0.57313 -0.069767 -0.20223 -0.085856 +cent -0.1494 -0.15155 0.26716 -0.73245 -0.010617 -1.0085 0.59429 0.60725 -0.18189 0.039498 +second -0.22516 0.037361 -0.049318 -0.94383 -0.014107 -0.87578 0.54721 0.015513 -0.31377 0.16859 +Test -0.033719 0.34239 -0.17324 -0.83923 0.14746 -0.98619 0.72496 0.045624 -0.65275 -0.21728 +Wales 0.053656 0.28324 0.055285 -0.96671 0.22785 -0.81622 0.68125 0.21636 -0.27924 0.10288 +Islamic -0.22614 -0.19205 -0.016994 -0.91469 0.66012 -1.0559 0.57151 0.075808 -0.17611 -0.018144 +today -0.11086 -0.080891 0.070837 -0.83169 0.40189 -1.0907 0.53966 0.13669 -0.29179 -0.083567 +get -0.26654 0.11655 -0.0089127 -0.88745 -0.87471 -0.70857 0.35412 -0.061572 -0.26976 0.58908 +World -0.19331 -0.044139 0.28748 -0.94014 -0.073753 -0.8746 0.34228 0.15011 -0.2833 0.16732 +between -0.49888 -0.17084 0.071969 -0.98188 0.49201 -1.0247 0.51424 -0.14237 -0.085301 -0.17244 +September -0.18975 -0.064982 0.19584 -0.94499 0.34528 -0.98927 0.44114 -0.020988 -0.18947 -0.095848 +back -0.27283 -0.059433 0.13938 -0.94367 -0.15244 -0.87978 0.41035 0.014452 -0.19059 0.13653 +because -0.43831 -0.10384 0.093664 -1.0154 -0.2803 -0.67246 0.3828 -0.14649 -0.17899 0.40723 +members -0.30101 -0.18809 0.17142 -0.9703 0.73091 -1.1413 0.5201 -0.084871 -0.074367 -0.25823 +while -0.20608 -0.041047 0.18854 -0.90223 0.20482 -0.97908 0.46448 0.00026892 -0.23846 0.022349 +- -0.3817 -0.435 0.20958 -1.1556 -0.43852 -0.68643 0.37675 -0.36924 0.10648 0.5545 +Bank -0.19756 -0.18417 0.055352 -1.025 0.69146 -1.0088 0.56631 -0.15637 -0.20305 -0.22032 +staff -0.25389 -0.26152 0.32648 -0.85727 -0.22542 -0.81737 0.31717 0.039845 -0.20685 0.30589 +report -0.20298 -0.29043 0.13439 -0.86815 -0.22312 -0.77922 0.42075 0.2256 -0.22305 0.39632 +near 0.063087 -0.13746 0.04948 -0.97593 0.57767 -1.0817 0.54532 0.017656 -0.20763 -0.052598 +going -0.34285 -0.30352 0.10319 -0.94297 -0.59234 -0.6944 0.36893 -0.084732 -0.22855 0.39174 +further -0.21702 -0.11672 0.28065 -1.0878 -0.19926 -0.5478 0.38098 -0.15962 -0.2667 0.40168 +world -0.34496 -0.2073 0.31545 -0.97096 0.096099 -0.83532 0.37357 0.10556 -0.23433 0.10518 +him -0.68234 -0.058697 -0.16187 -0.83721 0.057589 -1.017 0.49891 -0.32563 0.050758 0.069657 +local -0.38225 -0.29285 0.21606 -0.9377 0.07638 -0.939 0.34291 0.045473 -0.044331 0.19069 +former -0.42283 -0.13981 0.18794 -0.81396 -0.11717 -0.9734 0.34292 0.087346 -0.16579 0.048752 +Australia's -0.25338 -0.06371 0.16415 -0.81694 0.052229 -0.90036 0.64271 0.22495 -0.4157 -0.061322 +end -0.15889 0.24558 -0.055311 -0.83453 -0.043634 -0.96825 0.43326 0.15381 -0.34587 -0.053832 +attack -0.17126 -0.013473 0.045089 -1.1729 1.0639 -1.2619 0.4447 -0.2385 -0.085905 -0.58779 +Israel -0.35389 -0.13604 -0.40936 -1.0228 1.3653 -1.4265 0.73706 -0.53007 0.19975 -0.26019 +West 0.23361 0.22398 -0.15368 -0.9687 0.64233 -0.98961 0.6875 -0.029865 -0.54572 -0.15117 +hours -0.043814 -0.041619 0.30682 -0.97939 -0.025469 -0.8232 0.25673 0.19288 -0.27147 0.15032 +government -0.30304 -0.35389 0.19802 -0.82989 0.28777 -1.0482 0.59923 0.34018 -0.12011 0.092391 +international -0.48173 -0.17748 0.049294 -0.75205 0.53984 -1.1959 0.64301 0.21821 -0.16932 -0.14384 +Afghanistan -1.1966 -0.44437 0.15186 -1.0763 1.0313 -1.1843 0.59815 -0.42975 0.27204 -0.37176 +leader -0.77413 -0.10514 -0.06776 -0.8829 0.21361 -1.121 0.39473 -0.36839 0.12408 -0.001276 +like -0.50088 -0.28038 0.22604 -0.99886 0.02199 -0.83443 0.38421 0.014473 -0.057847 0.098137 +only -0.23106 0.07436 -0.044206 -0.79498 -0.98372 -0.62288 0.41626 0.080259 -0.44068 0.59421 +do -0.36461 -0.098158 -0.041925 -1.0584 -0.58619 -0.52612 0.47479 -0.20727 -0.26433 0.47595 +off -0.35971 -0.31598 0.18306 -1.0005 0.46072 -1.01 0.54209 -0.072324 0.022646 0.030194 +make -0.30113 0.049585 -0.073341 -0.891 -0.5538 -0.77719 0.42122 -0.023962 -0.29509 0.41399 +claims -0.36885 -0.26892 0.27832 -0.92341 0.031652 -0.83457 0.3885 -0.014591 -0.22142 0.17689 +another -0.20017 -0.37784 0.34455 -0.99432 -0.22374 -0.69401 0.30434 -0.0451 -0.16091 0.41697 +expected -0.26527 -0.079034 0.15499 -0.94017 -0.033431 -0.92758 0.37691 0.090954 -0.22083 0.12863 +it's -0.14742 -0.21869 0.0124 -1.1749 -0.38998 -0.56266 0.50493 -0.11677 -0.22547 0.50131 +many 0.057404 0.085441 0.17244 -0.87545 -0.25314 -0.8043 0.35708 0.27594 -0.41464 0.18643 +spokesman -0.10824 -0.084093 0.24338 -1.0036 0.37949 -1.0592 0.44724 0.10272 -0.095293 -0.069468 +given -0.43047 0.071514 0.0050702 -0.82036 -0.12134 -1.0035 0.50737 0.094394 -0.21531 -0.032985 +five -0.16969 0.029744 0.15184 -0.97348 0.25694 -0.95445 0.43115 0.071704 -0.24367 -0.043415 +go 0.078374 -0.19796 0.088563 -1.1733 -0.30378 -0.71145 0.24977 0.049791 -0.22449 0.48565 +good -0.15264 -0.054147 0.08512 -0.93805 -0.23591 -0.88373 0.4757 -0.030068 -0.34181 0.23762 +looking -0.34264 -0.11517 0.12333 -0.91539 -0.50244 -0.80002 0.422 0.03678 -0.32918 0.2594 +Osama -0.72648 -0.056445 0.38 -0.94188 0.057955 -0.91816 0.26583 -0.19597 -0.10273 -0.14943 +left -0.35945 -0.33987 0.4253 -1.0454 0.20377 -0.83701 0.36679 0.091791 -0.042632 0.10899 +group -0.3377 -0.11551 0.16781 -0.90786 0.28475 -0.99937 0.36675 0.016636 -0.304 -0.17077 +saying -0.13771 -0.21288 0.22513 -0.85351 -0.53943 -0.84151 0.33804 0.1424 -0.37602 0.18033 +Tora -0.9356 -0.25858 0.31026 -1.0856 0.4355 -0.96089 0.36838 -0.35437 0.1891 -0.12649 +Qantas -0.65939 -0.30487 0.28702 -0.902 -0.1617 -0.80426 0.37087 0.018263 -0.0082757 0.099808 +work -0.47285 -0.073762 0.35523 -1.0526 -0.31577 -0.55673 0.26701 0.084506 -0.16215 0.26032 +Prime -0.46482 0.1016 0.027213 -0.77844 -0.26784 -0.9513 0.5403 -0.21129 -0.1866 0.029596 +put -0.1248 -0.16775 0.41894 -1.0333 -0.583 -0.44898 0.27078 0.20875 -0.49565 0.57485 +know -0.59676 -0.37725 0.34874 -1.1539 -0.45241 -0.53131 0.22397 -0.29578 0.012399 0.39678 +during -0.21109 -0.10078 0.039143 -0.76322 0.25825 -1.179 0.54879 0.27295 -0.27751 -0.26122 +most 0.13793 0.04456 0.22526 -0.98488 -0.36391 -0.65328 0.40291 0.42988 -0.60882 0.25216 +air 0.26741 -0.074068 0.29465 -1.0677 0.15293 -0.85312 0.1924 -0.0063716 -0.39769 -0.0064085 +action -0.75958 -0.37306 0.11814 -0.88526 -0.14207 -0.83496 0.34372 0.20376 -0.090856 0.1885 +Indian -0.52359 0.00096827 0.19522 -0.90832 0.41361 -1.1591 0.5906 -0.22471 0.025619 -0.19738 +these -0.40536 -0.37146 0.31893 -1.0205 -0.58433 -0.45952 0.29835 -0.0078722 -0.31221 0.56102 +way -0.043924 -0.17663 0.024529 -1.0232 -0.037238 -0.90182 0.28442 0.025983 -0.18049 0.087988 +Yasser -0.55153 0.097803 -0.13613 -0.90587 0.54645 -1.1794 0.63655 -0.20578 0.077585 -0.14809 +found -0.29833 -0.023452 0.13144 -1.0503 0.34796 -0.98793 0.32726 -0.12611 -0.15783 -0.18491 +support -0.3308 -0.052304 0.051654 -0.93353 0.072362 -0.84319 0.49866 0.040403 -0.26077 0.12345 +died -0.29559 -0.13104 -0.025482 -0.9058 0.30137 -1.1359 0.33124 0.014805 -0.038687 -0.14306 +whether -0.4517 -0.20994 0.25801 -0.89994 -0.60469 -0.66229 0.33923 -0.060431 -0.19682 0.57263 +years -0.11243 -0.15501 0.057288 -1.009 0.33752 -0.83704 0.64005 0.12612 -0.21893 0.1085 +national -0.32425 -0.18239 0.0956 -0.66453 0.46247 -1.1941 0.63184 0.46011 -0.27304 -0.11904 +metres -0.0024676 -0.017324 0.34124 -0.92656 0.13016 -1.0326 0.44193 0.43597 -0.22321 0.11957 +Afghanistan. -1.0575 -0.4603 0.2064 -1.0681 0.91871 -1.0909 0.54211 -0.34105 0.23903 -0.29086 +come -0.28172 -0.26435 0.032234 -0.82914 -0.27653 -0.82745 0.48779 0.29357 -0.29068 0.23432 +set -0.54167 -0.095208 -0.075166 -0.82243 -0.09791 -0.8961 0.59911 -0.017329 -0.092535 0.13694 +six -0.49273 -0.098289 -0.13952 -0.86139 0.18714 -1.1441 0.54307 -0.063048 -0.10221 -0.088211 +year. -0.02107 -0.076537 0.025904 -0.88686 0.28219 -0.8883 0.62195 0.1519 -0.30504 0.083323 +interim -0.55091 -0.063612 -0.098585 -0.75635 0.36788 -1.1661 0.75483 0.019867 -0.26509 -0.16353 +team -0.23807 0.076507 0.10539 -0.84693 0.44473 -1.1163 0.69508 0.094907 -0.054019 -0.16245 +power -0.36772 -0.052696 0.19511 -0.89868 -0.34209 -0.84353 0.38587 -0.047361 -0.21216 0.3796 +Foreign -0.42638 -0.33748 0.13848 -0.87259 0.047046 -0.92526 0.46018 -0.0052589 -0.023769 0.1715 +terrorist -0.48168 -0.18911 0.20601 -0.90702 0.50172 -1.0465 0.52332 0.0094234 -0.23281 -0.23079 +how -0.01793 -0.1927 0.35889 -1.0481 -0.16997 -0.64969 0.38255 0.078809 -0.21499 0.39838 +arrested -0.24013 -0.030285 0.077353 -0.99602 0.77287 -1.1554 0.5164 -0.05334 0.0040569 -0.19586 +11 -0.22958 0.060746 0.23076 -1.0176 0.38595 -0.94242 0.46941 0.048733 -0.25515 -0.10744 +trying -0.35715 -0.17342 0.086758 -0.82987 0.054978 -1.0587 0.47409 0.0037893 -0.21448 -0.1188 +don't 0.054365 0.057473 0.0429 -1.0606 -0.8671 -0.48444 0.41769 0.11095 -0.55092 0.47744 +start -0.12029 -0.16384 0.22578 -1.0056 -0.23547 -0.64488 0.49944 0.068158 -0.33384 0.32661 +Africa -0.24422 0.33216 -0.17724 -0.96404 0.15966 -0.93151 0.67632 -0.058485 -0.47762 -0.23633 +official -0.27807 -0.27393 0.050194 -0.95618 0.68695 -1.1649 0.52643 -0.1773 0.10471 -0.11005 +part -0.34295 -0.38945 -0.008875 -0.8628 0.13704 -1.0347 0.53515 0.22521 -0.10832 0.0017831 +Bora -0.761 -0.16929 0.2101 -1.1157 0.74454 -1.1218 0.47463 -0.29481 0.17755 -0.29277 +force -0.43796 -0.28804 -0.086755 -0.91122 0.42819 -1.1881 0.41628 0.079343 -0.11514 -0.073932 +us -0.27594 -0.071172 -0.20932 -0.96433 0.67585 -1.2376 0.37581 -0.30314 -0.14262 -0.33753 +John -0.23649 0.10085 -0.032482 -0.76448 -0.44261 -0.85056 0.49864 0.14196 -0.2002 0.32642 +early -0.27264 0.025757 0.10665 -0.91027 0.36301 -1.0546 0.51371 -0.058836 -0.30955 -0.20738 +groups -0.36844 -0.17499 0.19636 -0.95065 0.53639 -1.0072 0.3913 -0.11098 -0.19514 -0.15957 +third -0.010789 0.10851 0.11942 -0.86795 -0.41811 -0.78002 0.41311 0.31304 -0.47069 0.19831 +week -0.3272 -0.23908 0.076761 -0.98408 0.073715 -0.74294 0.37483 -0.016686 -0.19666 0.20611 +Meanwhile, -0.34793 -0.12484 0.015576 -0.82154 0.21952 -1.0105 0.49337 -0.031845 -0.23596 0.0039735 +several -0.29225 -0.38715 0.37939 -0.87924 -0.10337 -0.82511 0.32297 0.17878 -0.12513 0.21207 +area 0.051532 -0.079689 0.48495 -1.1795 0.40117 -0.7519 0.39812 -0.12376 -0.091419 0.2226 +believe -0.79137 -0.19282 0.30649 -1.0801 -0.20069 -0.65642 0.28836 -0.38646 -0.090604 0.1288 +war -0.072243 -0.19775 0.16679 -0.94965 0.23958 -0.99727 0.35177 0.22279 -0.092642 0.1017 +authorities -0.30937 -0.19796 0.20576 -1.0058 0.10396 -0.80331 0.4773 0.098594 -0.19382 0.21115 +yesterday -0.28142 0.068957 0.0015726 -0.86612 0.43597 -1.0735 0.69558 -0.018298 -0.23959 -0.10578 +50 -0.0055131 0.080877 0.11533 -1.0507 -0.39545 -0.64091 0.43053 0.24701 -0.28416 0.40795 +100 -0.16565 0.06535 -0.018297 -0.87717 -0.23263 -0.92046 0.48097 0.33465 -0.40374 0.057434 +troops -0.36922 -0.29548 0.19338 -0.87142 0.10742 -0.94169 0.4159 0.10247 -0.18104 0.051702 +few -0.16567 0.076985 0.16912 -0.88033 -0.37245 -0.86022 0.42284 0.21798 -0.42656 0.18659 +does -0.13963 0.10813 0.28804 -0.99911 -0.79363 -0.50716 0.35456 0.10862 -0.4552 0.42702 +Defence -0.33275 -0.25229 0.073641 -0.92387 0.25551 -0.8613 0.59302 0.015404 -0.076559 0.048157 +Arafat's -0.4413 -0.043291 -0.081289 -0.97458 0.29104 -0.9891 0.52851 -0.36433 0.084934 0.11324 +Dr 0.16032 0.22758 0.71706 -0.94864 -0.35815 -0.64197 0.41628 0.65847 -0.48944 0.11823 +Minister, -0.70766 -0.14913 0.079326 -0.81266 0.38258 -1.1154 0.59941 -0.16916 0.14987 -0.007826 +peace -0.40619 -0.10977 -0.29056 -0.8501 0.38124 -1.085 0.66782 0.041173 -0.11891 0.071098 +best -0.27665 -0.072405 -0.094569 -1.0096 0.1308 -0.86547 0.53475 -0.20991 -0.53823 -0.085448 +following -0.050905 0.051095 -0.0067287 -0.87015 -0.10041 -0.9497 0.49073 0.17642 -0.31966 0.035212 +areas -0.10445 -0.21987 0.52734 -1.1521 0.12014 -0.59408 0.40009 0.0093 -0.16673 0.35121 +leaders -0.67576 -0.26126 -0.010294 -1.0261 0.66205 -1.0784 0.4177 -0.33904 0.10604 -0.17319 +weather -0.3792 -0.21008 0.34221 -1.0772 -0.26225 -0.60824 0.28774 -0.069025 -0.24615 0.40984 +match -0.117 0.17501 -0.069883 -0.81983 -0.32765 -0.87824 0.53774 0.20668 -0.56704 -0.036571 +militants -0.40722 -0.23625 -0.014737 -0.91665 0.84706 -1.1936 0.56538 -0.074623 -0.067505 -0.24198 +eight -0.062936 -0.11716 0.24904 -0.90097 0.28141 -0.97546 0.4945 0.33458 -0.26289 -0.054645 +want -0.40733 -0.26792 0.10897 -0.84382 -0.76376 -0.80675 0.35178 0.14463 -0.20792 0.12911 +need -0.27294 -0.12376 0.088059 -1.0434 0.055144 -0.95699 0.26591 -0.15744 -0.16685 0.1328 +confirmed -0.45606 -0.34261 0.15985 -1.0169 0.38209 -0.9086 0.42904 -0.030701 0.025065 0.054046 +Christmas -0.42346 -0.20059 0.11211 -0.95636 0.26371 -0.97323 0.45247 -0.045015 -0.040042 0.050131 +close -0.38157 -0.17253 0.1743 -0.9326 0.27512 -0.97731 0.53688 -0.076656 -0.15657 0.030634 +state -0.017015 -0.26476 0.50601 -1.0991 0.40481 -0.83473 0.3761 0.065668 -0.24655 0.11798 +came -0.037252 -0.09478 0.041212 -0.91742 0.24824 -1.0215 0.38391 0.092885 -0.28134 -0.13021 +Pakistan -1.0344 -0.55098 0.11778 -1.0003 0.79482 -1.3063 0.43674 -0.25713 0.10226 -0.45291 +must -0.3736 -0.19977 0.10201 -0.80054 -0.0041245 -0.89754 0.58479 0.23427 -0.44577 0.069285 +months -0.047902 0.014662 0.089159 -0.83993 0.14977 -1.0455 0.43782 0.33566 -0.41078 -0.15639 +agreement -0.42855 -0.30447 0.23283 -0.90504 0.33957 -1.0427 0.55064 0.21444 -0.030315 -0.019234 +Sharon -0.69808 0.10407 -0.08883 -0.79992 0.5812 -1.3704 0.55518 -0.65019 0.26103 -0.22204 +fighters -0.39655 -0.19813 0.39436 -1.0541 0.8874 -1.0215 0.56892 0.041546 -0.087308 -0.36139 +12 -0.061409 0.12732 0.26817 -0.92274 -0.4023 -0.67929 0.46967 0.30867 -0.55092 0.21683 +help -0.21131 -0.05732 0.10325 -0.8906 0.01684 -0.99759 0.36714 0.14182 -0.34479 0.019159 +reports -0.088877 -0.17663 0.053594 -0.84656 0.040128 -0.8556 0.52898 0.23915 -0.24587 0.21702 +East -0.13076 -0.14889 0.23242 -0.90461 0.3774 -0.84839 0.49526 0.35142 -0.45245 -0.023691 +They -0.13025 -0.011063 0.16687 -1.0313 0.29914 -0.87881 0.45788 -0.13691 -0.2807 -0.09322 +brought -0.26909 -0.16135 0.31796 -0.95253 0.0753 -0.92622 0.39879 0.19852 -0.20287 0.016761 +city 0.18714 0.034228 -0.02816 -1.0117 0.45029 -0.99585 0.50922 0.12603 -0.26503 -0.035275 +Peter -0.28762 0.030569 0.17909 -0.83232 0.16319 -0.98571 0.45237 0.033855 -0.16878 0.0051439 +pay -0.19245 -0.22097 0.087784 -0.78108 -0.016373 -1.1001 0.29659 0.24276 -0.19958 -0.0072483 +hit -0.029509 -0.098019 0.2516 -1.0285 -0.30607 -0.86616 0.22168 0.18218 -0.26614 0.24156 +pressure -0.35528 -0.19301 0.12892 -0.89867 -0.22716 -0.77736 0.37761 0.095688 -0.28776 0.3276 +then -0.35176 -0.12039 -0.031151 -0.97461 -0.50257 -0.66456 0.3705 -0.16971 -0.25899 0.4849 +taken -0.57664 -0.13542 0.028271 -0.78419 0.30666 -1.1149 0.5694 -0.046325 -0.076419 -0.10462 +better -0.59077 -0.0051027 0.019789 -1.0218 0.16008 -0.91138 0.47098 -0.33228 -0.1158 0.07229 +believed -0.60145 -0.22611 0.30478 -1.1601 0.07217 -0.74924 0.26245 -0.33365 0.0025145 0.072238 +did -0.3958 -0.38905 0.18655 -1.0382 0.16038 -1.1677 0.057599 -0.20014 0.19879 -0.0073938 +took -0.10839 0.15146 -0.15541 -0.81116 -0.44431 -0.89837 0.53021 0.16957 -0.40483 0.11652 +senior -0.38855 -0.17306 0.11395 -0.94729 0.3511 -0.99365 0.53431 -0.10283 0.043805 0.069495 +held -0.41108 -0.37821 0.22226 -0.99807 0.42861 -0.94562 0.37285 -0.16397 -0.086166 -0.051732 +got -0.11397 -0.15438 0.13865 -0.97647 -0.35867 -0.73659 0.31706 0.14362 -0.24058 0.4386 +talks -0.49931 -0.24516 -0.034256 -0.92318 0.021433 -0.91349 0.44587 -0.16768 -0.11938 0.10184 +British -0.22552 -0.16832 0.169 -0.97782 -0.012919 -0.7888 0.42968 0.070682 -0.23556 0.22442 +her -0.56598 0.055176 0.047555 -0.94216 -0.24176 -0.80909 0.40857 -0.51021 -0.30132 0.29705 +without -0.25886 0.032211 0.1553 -0.93582 -0.25533 -0.85048 0.38057 0.20898 -0.3702 0.15656 +injured 0.00074489 -0.19117 0.18654 -0.98108 0.79047 -1.1871 0.46141 0.30228 -0.15298 -0.24834 +Northern -0.39826 -0.15638 0.18488 -1.0521 0.46062 -0.85188 0.52095 -0.034399 -0.10565 0.060159 +well -0.48799 -0.12225 0.032829 -1.0237 -0.50361 -0.5965 0.29598 -0.28021 -0.44472 0.27521 +maintenance -0.61375 -0.15998 -0.027396 -0.85445 0.032333 -0.9155 0.50017 0.058579 -0.084606 0.031407 +Melbourne -0.066233 0.013403 0.13338 -0.98869 -0.047375 -0.90083 0.39517 0.051843 -0.37869 0.085985 +lot -0.41807 -0.029617 0.20499 -1.028 -1.1215 -0.49001 0.24849 -0.1816 -0.20683 0.79841 +both -0.25871 -0.12474 0.18061 -1.0886 0.4581 -0.94714 0.46536 -0.34784 -0.017741 0.008381 +much -0.23254 -0.44972 0.19097 -0.92214 -0.70927 -0.51109 0.40323 0.2331 -0.29684 0.75299 +south 0.14374 -0.010507 0.36496 -1.127 0.7505 -0.80757 0.644 0.12086 -0.45496 0.0085237 +cut -0.20004 -0.091944 0.12072 -0.73048 -0.74231 -0.68913 0.36247 0.32306 -0.43043 0.42861 +accused -0.33038 -0.23776 0.13033 -0.92194 0.54449 -1.2079 0.43274 -0.019504 0.057967 -0.24631 +earlier -0.41149 -0.010543 0.10353 -0.90578 0.39562 -1.0189 0.52437 -0.15676 -0.17788 -0.17027 +asylum -0.11538 -0.20893 0.10297 -0.86109 -0.50573 -0.62727 0.37326 0.067346 -0.33961 0.6031 +10 -0.49438 -0.050398 -0.16229 -0.73428 0.53319 -1.2559 0.65049 -0.10158 -0.056939 -0.27456 +see -0.45122 -0.12177 -0.070854 -0.87715 0.040913 -0.86575 0.49731 -0.13756 -0.12492 0.24944 +too 0.18287 0.10614 0.18846 -0.96015 -0.44039 -0.75929 0.37792 0.27915 -0.43332 0.24308 +armed -0.45016 -0.20113 0.10785 -1.0627 0.9071 -1.2118 0.48822 -0.21134 0.16624 -0.29639 +across -0.075699 -0.19022 0.3084 -0.9353 0.038318 -0.82468 0.41577 0.25869 -0.37853 0.1539 +family -0.33615 -0.3111 0.19088 -0.97136 -0.15573 -0.72959 0.43323 -0.12522 -0.099185 0.41385 +such -0.26143 -0.21594 -0.064741 -0.88669 0.069956 -0.83751 0.53223 0.10565 -0.3756 0.13515 +Royal -0.27418 -0.14938 0.23725 -0.83529 -0.044903 -0.91108 0.41084 0.21683 -0.15486 0.22923 +court -0.29437 -0.34959 0.23248 -0.80349 -0.42829 -0.74289 0.328 0.19074 -0.2465 0.34028 +children -0.13545 -0.1111 0.18071 -0.91423 -0.18138 -0.891 0.37643 0.22425 -0.2165 0.20958 +shot -0.43351 -0.030061 0.041995 -1.0517 0.018698 -0.88439 0.39441 -0.18968 -0.093336 0.14719 +that's -0.32107 -0.31654 0.20442 -1.0791 -0.60048 -0.50862 0.31307 -0.054204 -0.17481 0.64328 +won -0.24805 -0.090059 0.23784 -1.0392 -0.25679 -0.82697 0.40986 0.015292 -0.13416 0.47716 +Labor -0.28452 -0.016484 0.13024 -0.82394 -0.092419 -0.88592 0.36317 0.10737 -0.36493 0.10804 +lead -0.6846 -0.14887 0.018467 -0.89821 -0.15861 -0.89749 0.43335 -0.21159 -0.091138 0.16415 +There -0.12561 -0.18585 0.26807 -1.0295 -0.14237 -0.65248 0.3227 0.12425 -0.29543 0.31737 +economy -0.13179 -0.041875 0.16667 -0.94119 -0.19573 -0.78074 0.54168 0.26438 -0.43674 0.28742 +change -0.24467 -0.17946 0.32127 -0.92869 -0.58275 -0.69887 0.24735 0.21868 -0.29403 0.5092 +Authority -0.42217 -0.25264 0.022447 -0.9286 0.28218 -0.95497 0.52786 0.025805 -0.13965 0.068731 +despite -0.27543 -0.041766 0.18001 -0.89649 -0.11945 -0.94989 0.47286 0.19412 -0.37398 0.012583 +Commission -0.53551 -0.17218 0.0092348 -0.83712 0.11043 -0.99994 0.50412 0.058624 -0.050097 0.075623 +return -0.36737 0.11555 -0.16405 -0.92815 0.37975 -1.0945 0.55478 -0.1456 -0.05689 -0.03853 +David -0.29403 -0.2399 0.18094 -0.8574 0.5962 -1.0227 0.5455 0.081132 -0.16507 -0.11859 +commission -0.50002 -0.21257 -0.037708 -0.77535 0.21794 -1.0495 0.53008 0.13119 -0.0026982 0.026108 +call -0.43877 -0.13721 0.060423 -0.79857 -0.11072 -1.0173 0.41725 0.10147 -0.11236 0.098438 +statement -0.26195 -0.34525 0.2732 -0.99823 0.61947 -1.0717 0.46618 0.012719 -0.010397 -0.12125 +past -0.28915 -0.24112 0.17668 -0.87909 0.27451 -1.0496 0.47349 0.31347 -0.22181 -0.047715 +information -0.45086 -0.23671 0.13233 -0.80661 -0.14774 -0.91442 0.46415 0.22982 -0.20506 0.13103 +even -0.27058 0.048198 0.1213 -1.0117 0.10055 -0.90405 0.63489 -0.07906 -0.12025 0.057478 +arrest -0.086376 -0.058381 0.046312 -0.99876 0.7556 -1.1305 0.61311 0.063976 -0.18774 -0.18132 +place -0.4674 -0.10882 -0.080005 -0.83937 -0.094726 -0.98055 0.49015 -0.032161 -0.28943 0.15186 +year 0.27039 -0.007233 0.012092 -0.95417 0.52353 -0.99487 0.63841 0.25306 -0.25799 0.010371 +play -0.27862 0.060327 -0.093838 -0.85528 -0.30116 -0.93001 0.49092 -0.0087302 -0.35281 0.2132 +asked -0.35223 -0.14514 -0.012209 -1.0488 0.58157 -1.2223 0.42761 -0.20006 0.052649 -0.1946 +public -0.18334 -0.1192 0.10097 -0.97386 -0.028791 -0.84513 0.43904 0.045472 -0.2538 0.19906 +working -0.4241 -0.18273 0.19895 -0.99109 -0.27194 -0.70348 0.3491 -0.006734 -0.17877 0.17169 +Union -0.70263 -0.24755 0.16509 -0.7781 -0.16795 -0.91712 0.41789 0.088135 -0.013141 -0.040677 +night 0.3338 -0.081474 0.50338 -1.0528 0.50759 -0.95374 0.4198 0.65809 -0.2817 -0.074874 +key -0.20595 0.18618 0.12332 -0.91346 -0.035322 -0.8324 0.40848 0.15421 -0.45605 -0.01563 +north 0.20955 0.088155 0.17457 -1.0621 0.55754 -0.98414 0.57941 0.19041 -0.20828 -0.012402 +continuing -0.32642 -0.11595 0.059364 -0.91338 0.023336 -0.87647 0.44437 0.19161 -0.25225 0.02376 +morning 0.11553 -0.086749 0.34038 -0.89217 -0.11287 -0.90697 0.4043 0.25783 -0.49138 0.012475 +leading -0.40523 -0.14475 0.0038426 -0.85295 0.21737 -1.0282 0.50669 -0.020732 -0.21039 -0.12723 +George -0.26592 -0.074049 0.13953 -0.91944 0.27929 -0.92697 0.43571 0.043364 -0.22461 -0.017088 +Police -0.15652 -0.10478 0.25991 -0.99124 0.11237 -0.88833 0.36961 0.1514 -0.1261 0.27155 +used -0.18958 -0.30279 0.24588 -1.0075 0.61903 -1.1353 0.33997 -0.018343 0.050965 -0.15997 +An -0.73566 -0.74929 -0.083344 -0.85408 1.1541 -1.4149 0.54669 -0.041512 0.28698 -0.33833 +southern -0.19998 -0.22607 0.29311 -1.0376 0.53842 -0.77811 0.56998 0.045338 -0.23899 0.16733 +captured -0.32281 0.002107 0.028081 -0.98009 0.4448 -1.0749 0.43451 -0.10775 -0.11066 -0.18329 +fighting -0.4162 -0.16521 0.11722 -0.96955 0.39053 -1.0457 0.48753 -0.038334 -0.084151 -0.24748 +released -0.22014 -0.23812 0.27713 -1.0124 0.2663 -0.93555 0.38565 0.0074626 -0.11337 -0.023907 +Waugh -0.22164 0.31172 -0.15097 -0.9313 -0.1693 -0.91597 0.56799 0.0009978 -0.40726 -0.1532 +Bush -0.21058 -0.060153 0.13604 -0.93105 -0.019194 -0.84492 0.35936 -0.12177 -0.25703 0.039739 +crew -0.25699 -0.1299 0.11452 -0.96782 0.51338 -1.0019 0.54531 -0.18658 -0.11839 -0.057076 +Pentagon -0.50376 -0.14918 0.27364 -0.93791 0.11913 -0.87984 0.36275 0.073624 -0.18463 0.011025 +At -0.040947 0.050582 0.15598 -0.94083 -0.22792 -0.76664 0.49245 0.17632 -0.43636 0.22072 +possible -0.18651 -0.11057 0.16929 -0.87023 -0.24695 -0.88211 0.36847 0.13555 -0.31755 0.19685 +December -0.30598 -0.10927 0.042717 -0.92013 0.52984 -1.1102 0.5527 -0.040006 -0.15978 -0.17016 +major -0.44952 -0.12188 0.14541 -0.92805 -0.015055 -0.9586 0.41725 0.020641 -0.19495 -0.050842 +economic -0.1941 -0.053602 0.18002 -0.87354 -0.12584 -0.75682 0.49391 0.26234 -0.40212 0.21214 +least -0.4078 -0.10687 0.12923 -1.0402 0.62992 -0.99161 0.53722 -0.11336 -0.11638 -0.14722 +head -0.26216 -0.18496 0.23588 -1.0013 0.25817 -0.88177 0.3235 0.0361 -0.21237 0.069663 +"If -0.31976 -0.32386 0.082281 -0.95444 -0.43486 -0.67138 0.38064 0.081474 -0.24689 0.43899 +eastern -0.68697 -0.16474 0.29965 -1.0627 0.81823 -1.0332 0.50845 -0.20251 0.10151 -0.2734 +American -0.1649 0.027856 0.083113 -0.93408 0.087311 -0.90684 0.49512 0.053134 -0.26319 0.060772 +win -0.32446 0.17796 -0.062549 -0.98462 -0.17157 -0.72011 0.52971 -0.15452 -0.46296 0.22632 +Queensland 0.016527 0.044988 0.066651 -0.98336 0.13892 -0.92871 0.43538 0.28002 -0.28573 0.070304 +winds -0.025473 -0.0088529 0.28802 -1.0519 0.037637 -0.7839 0.40417 0.21201 -0.39116 0.16377 +final -0.17817 0.037405 0.10366 -0.84472 0.24134 -1.0356 0.50595 0.20273 -0.2776 -0.029239 +Australians -0.17072 -0.092185 0.14527 -0.85526 0.19707 -0.95961 0.64503 0.21698 -0.453 -0.11382 +received -0.23806 -0.34423 0.38949 -1.0045 0.07478 -0.92204 0.20017 0.28745 -0.14465 0.1326 +give -0.304 0.094438 0.14191 -0.81612 -0.71065 -0.79482 0.35153 0.23877 -0.35483 0.26816 +Hill -0.59047 -0.42286 0.35883 -1.0262 -0.15735 -0.52297 0.46119 -0.056186 -0.089813 0.56627 +charged -0.11786 -0.16061 0.1471 -0.92866 0.27995 -1.1529 0.23516 0.0059955 -0.097249 -0.033219 +unions -0.51975 -0.38418 0.23387 -0.82299 -0.13937 -0.86892 0.37861 0.32471 -0.13947 0.16578 +behind -0.28614 -0.042677 0.25453 -0.93283 -0.42581 -0.7827 0.30868 -0.013495 -0.30824 0.3429 +within -0.076887 -0.09889 0.20743 -1.003 -0.54968 -0.64844 0.32648 0.1392 -0.52967 0.41043 +use -0.27491 -0.19348 0.06734 -0.99719 -0.31027 -0.82378 0.36823 0.011094 -0.27744 0.27496 +detainees -0.22612 -0.050389 0.22689 -0.88058 0.086684 -0.97112 0.49411 0.20803 -0.16081 0.12214 +fires 0.32144 -0.1585 0.72934 -1.1739 0.13582 -0.74533 0.26257 0.40625 -0.28486 0.26694 +director -0.16241 -0.20705 0.25557 -0.91044 -0.081741 -0.91521 0.2435 0.21604 -0.21635 0.12319 +Afghanistan, -1.0889 -0.40139 0.15554 -1.0654 0.87947 -1.1022 0.55014 -0.39719 0.21156 -0.28073 +Two 0.039483 0.10582 0.0092365 -0.86606 0.25223 -1.0646 0.52589 0.044008 -0.14283 0.068588 +large 0.060472 -0.077479 0.43381 -1.0201 0.17983 -0.93253 0.278 0.23135 -0.31978 0.12265 +your -0.017639 -0.13241 0.012114 -1.0383 -0.67943 -0.81817 0.1693 -0.11422 -0.35786 0.36868 +far -0.064217 -0.017994 0.13792 -1.0614 0.68439 -1.1755 0.46011 0.17765 -0.15849 -0.33652 +Williams -0.40211 -0.099452 0.039003 -0.94621 0.13136 -0.90192 0.449 -0.10279 -0.20152 0.032541 +India -0.48269 0.028407 0.23908 -0.9185 0.78234 -1.3202 0.63529 -0.1195 -0.045859 -0.58352 +damage -0.071572 -0.053924 0.26836 -0.91188 -0.25969 -0.78529 0.3703 0.42384 -0.40989 0.28618 +known -0.34469 -0.33091 0.15857 -1.096 0.087767 -0.74902 0.34905 -0.19035 -0.035211 0.20957 +child -0.022981 -0.24182 0.31703 -0.8507 -0.24837 -0.86491 0.27661 0.40675 -0.14529 0.28148 +million -0.68378 -0.34192 0.10969 -0.83539 0.16323 -1.0869 0.3785 0.039167 -0.029955 -0.029096 +legal -0.3215 -0.2221 0.14686 -0.88873 -0.33615 -0.78393 0.38696 0.15758 -0.22108 0.29789 +able -0.37697 -0.13266 0.22291 -0.95258 -0.20151 -0.85636 0.33762 -0.17219 -0.15911 0.36692 +stop -0.41403 -0.08617 0.19544 -0.98944 0.12766 -0.91673 0.31749 -0.10126 -0.1994 0.037702 +high -0.034964 -0.0018303 0.032594 -0.95032 0.40361 -1.1331 0.54806 0.02092 -0.12699 -0.16178 +may -0.088139 0.17051 -0.11849 -0.83318 -0.21708 -0.98455 0.50248 0.20886 -0.60238 -0.1351 +long -0.58904 -0.29478 0.20529 -1.0233 0.20982 -0.93275 0.38765 -0.3167 -0.12836 -0.037084 +soldiers -0.54631 -0.24664 -0.0013115 -0.98134 0.50507 -0.97717 0.5551 -0.23703 -0.051598 -0.064674 +centre -0.16357 -0.088873 0.23781 -0.91368 0.50806 -1.0944 0.56083 0.43539 -0.15288 -0.12649 +water 0.0163 0.15115 0.20899 -0.90915 -0.17346 -0.85685 0.42673 0.20662 -0.37154 0.3471 +process -0.3912 -0.33273 0.13729 -0.98103 -0.18425 -0.71818 0.32323 -0.064817 -0.20143 0.42002 +interest -0.22889 -0.10378 -0.04432 -0.77426 0.41609 -1.0316 0.66139 0.07026 -0.27459 -0.038257 +remain -0.33546 -0.041843 0.19591 -0.98053 0.27623 -0.93689 0.51675 0.089744 -0.15228 -0.088631 +Cup -0.39222 0.20582 -0.19441 -1.04 0.49042 -1.0834 0.74202 -0.31475 -0.10536 -0.2315 +forced -0.26048 -0.20505 0.033136 -0.93682 0.54523 -1.2521 0.37319 0.11684 -0.073001 -0.23612 +cricket -0.079899 0.23933 0.080047 -0.87499 0.057947 -0.94591 0.57732 0.27945 -0.42145 -0.17575 +Centre -0.098491 -0.098919 0.29968 -0.88787 0.36578 -0.91792 0.519 0.44358 -0.24666 -0.097863 +there's -0.14267 -0.37116 0.43398 -1.1361 -0.58011 -0.43721 0.23176 -0.046849 -0.2551 0.63644 +services -0.027633 -0.11073 0.24148 -0.94517 0.099167 -0.81618 0.48252 0.27186 -0.22543 0.21946 +role -0.25075 -0.14711 -0.016529 -0.84185 -0.30629 -0.91197 0.4177 0.0034674 -0.28862 0.18281 +morning. -0.13115 -0.12871 0.30529 -0.93988 0.13057 -0.9026 0.42958 0.10169 -0.33749 -0.0042525 +seen -0.25503 -0.14886 -0.0071094 -0.96396 0.29621 -0.96718 0.52247 -0.13596 -0.084971 0.042143 +might -0.12136 -0.015283 0.34012 -0.99759 0.18655 -0.90543 0.46259 0.18435 -0.22641 -0.00030777 +radio -0.31587 -0.025496 0.12696 -0.90522 0.19487 -1.0003 0.47502 -0.046322 -0.19526 -0.051484 +15 -0.0027815 -0.010627 0.35139 -0.91984 0.031506 -1.0024 0.38359 0.30927 -0.34202 -0.027485 +failed -0.28408 -0.13997 0.13126 -0.95783 0.23679 -1.0263 0.38851 0.03713 -0.10962 -0.058015 +"It -0.2127 0.0065145 0.15431 -0.9023 -0.72538 -0.57713 0.47729 0.13848 -0.30031 0.56853 +conditions -0.30619 -0.33596 0.28766 -0.97664 0.16578 -0.84737 0.39348 0.24603 -0.24549 0.12226 +heard -0.036849 -0.13805 0.32521 -0.96742 -0.21658 -0.76473 0.27268 0.16032 -0.36014 0.33078 +training -0.33004 -0.10865 0.19393 -0.90618 0.15863 -1.0472 0.41182 0.043335 -0.24102 -0.12324 +Palestinians -0.084665 -0.042344 -0.32423 -1.0157 0.99253 -1.327 0.65852 -0.17126 0.014889 -0.21945 +already -0.23222 -0.17401 0.1536 -0.9142 0.0067545 -0.88513 0.39916 0.076321 -0.14774 0.19729 +taking -0.34111 -0.083927 -0.076089 -0.8193 -0.3044 -0.88678 0.43857 0.010839 -0.37356 -0.063635 +towards -0.24141 -0.067541 0.1225 -0.93239 0.29631 -1.0728 0.46656 0.034587 -0.15042 -0.10345 +dead -0.30904 -0.2196 0.0068343 -1.0166 0.67039 -1.0183 0.52865 -0.24931 0.014482 0.069926 +same -0.28721 -0.05681 0.067372 -0.89551 -0.75304 -0.62097 0.23121 -0.10415 -0.427 0.42835 +Lee -0.57065 0.287 -0.31648 -0.79795 0.079652 -1.0968 0.48908 -0.042647 -0.30256 -0.36131 +board -0.085416 -0.21346 0.17409 -0.90036 0.13884 -0.87745 0.48846 0.12395 -0.19114 0.17559 +latest -0.1553 -0.098918 0.045245 -0.85515 0.51157 -1.0497 0.60468 0.062235 -0.3672 -0.13693 +However, -0.35929 -0.23019 0.23856 -1.0014 0.3696 -1.105 0.36722 -0.010449 0.081887 -0.039713 +due 0.26217 0.15237 0.08374 -0.82533 0.73949 -1.1983 0.7406 0.44587 -0.39938 -0.33752 +rates -0.23545 -0.052488 0.23878 -0.89587 0.30736 -0.91888 0.59585 0.16932 -0.24906 0.027702 +thought -0.34475 -0.14509 0.32866 -0.99768 -0.054778 -0.80094 0.37854 0.053205 -0.15685 0.18667 +Alliance -0.74028 -0.15661 -0.045948 -1.0052 0.34901 -0.97857 0.50019 -0.30252 -0.01314 -0.063821 +canyoning 0.00096151 -0.12593 0.14691 -0.81281 0.069324 -1.097 0.39818 0.10198 -0.35588 -0.11744 +offer -0.50201 -0.24419 -0.022542 -0.82268 0.15344 -1.0637 0.50403 -0.11537 -0.020506 -0.019694 +strikes -0.13813 -0.10681 0.082023 -0.95404 0.37004 -0.9642 0.49136 -0.0023333 -0.20633 0.023301 +half -0.29326 -0.17483 0.10851 -0.99788 0.093941 -0.83061 0.39508 -0.13702 -0.15929 0.11612 +Shane -0.40518 0.13598 -0.035674 -0.97505 0.06794 -1.0409 0.40337 -0.10238 -0.069763 -0.0046095 +storm 0.022854 -0.01158 0.37061 -1.0505 0.087099 -0.8141 0.37323 0.10991 -0.26812 0.23018 +I'm -0.21456 -0.013578 -0.085031 -0.91216 -0.49315 -0.83478 0.57767 -0.052232 -0.30253 0.2994 +aircraft 0.042737 -0.070513 0.23712 -1.0473 0.20835 -0.94714 0.36037 0.081297 -0.24822 0.043258 +bowler -0.34089 0.33838 -0.0016996 -0.93128 0.025725 -0.98494 0.49746 -0.047297 -0.2425 -0.10725 +Adelaide -0.044939 0.079867 0.074706 -0.9117 -0.040047 -0.9078 0.47254 0.1713 -0.47185 -0.026522 +great -0.071226 0.030578 0.21264 -1.0573 -0.11088 -0.70531 0.4732 0.026426 -0.30536 0.34767 +army -0.42827 -0.206 -0.03653 -1.0522 0.77898 -1.1822 0.52938 -0.39546 0.2095 -0.16596 +position -0.57825 -0.26886 0.043969 -0.81203 0.15898 -1.0362 0.46842 0.12703 -0.12563 0.07192 +administration -0.58092 -0.22505 0.080669 -0.81091 0.26554 -1.035 0.53144 0.077576 -0.095358 0.10347 +control -0.050748 -0.17503 0.22343 -0.97335 0.094469 -0.84336 0.42982 0.27929 -0.24484 0.24974 +violence -0.2323 -0.070436 -0.0079771 -0.94813 0.36988 -0.97238 0.48493 0.013139 -0.16171 -0.021263 +continue -0.28833 -0.014519 0.15639 -0.97033 0.23828 -0.90154 0.47412 0.29717 -0.22186 0.0051712 +news -0.59215 -0.15621 0.017262 -0.94796 0.27223 -0.91985 0.42573 -0.12415 -0.18765 -0.061016 +After -0.33253 0.14233 0.075992 -0.78174 -0.0085916 -0.97334 0.50921 0.097841 -0.27502 0.032031 +series -0.2891 -0.085626 0.17297 -0.90951 -0.092798 -0.70652 0.57757 -0.022069 -0.20133 0.29959 +York -0.23988 0.20609 0.11751 -1.0175 0.17168 -0.82336 0.44681 0.045135 -0.14793 -0.023503 +ago -0.37093 -0.35865 0.10456 -1.0275 -0.18844 -0.77547 0.29485 0.23651 -0.19287 0.21604 +strong -0.12487 -0.19973 0.31163 -0.93742 -0.26036 -0.73653 0.34761 0.14708 -0.36251 0.34623 +likely -0.5693 -0.3563 0.11266 -1.0417 0.012559 -0.80848 0.34499 -0.17244 -0.031366 0.24764 +later -0.54452 -0.075866 0.11857 -0.81861 0.2648 -1.0883 0.51375 -0.080365 -0.077602 0.030132 +today. -0.17828 -0.08966 0.19215 -0.86792 0.20829 -0.98452 0.53873 0.094942 -0.31039 0.004548 +Australia, -0.19928 -0.043556 0.17708 -0.80673 0.045817 -0.89914 0.66936 0.28328 -0.47921 -0.097498 +along -0.35875 -0.23487 0.13841 -0.99281 0.28109 -0.96264 0.46829 -0.088655 -0.25587 -0.18575 +Blue -0.32921 0.17929 0.14827 -0.96856 0.19427 -0.97128 0.51554 0.15698 -0.37641 -0.024242 +line -0.25023 -0.10539 0.15418 -0.97211 0.24883 -1.0799 0.38552 0.039534 0.052945 -0.069131 +right -0.10617 -0.11315 0.23144 -0.97867 0.33221 -1.0104 0.52065 0.12385 -0.14311 -0.133 +claimed -0.35025 -0.17717 0.27294 -0.95935 0.34933 -0.97263 0.38423 -0.025992 -0.20119 -0.17129 +Nations -0.46612 -0.40396 0.13747 -0.84393 0.28359 -0.93601 0.51385 0.24839 -0.26527 0.10986 +risk -0.16904 -0.17755 0.30726 -0.98054 -0.065309 -0.8264 0.33338 0.11302 -0.1219 0.21404 +own -0.014097 -0.26602 0.11106 -0.89549 0.46691 -0.89507 0.45256 -0.030322 -0.22677 0.04712 +buildings -0.061143 -0.0047946 -0.025975 -0.89984 0.095714 -0.994 0.49 0.15945 -0.31889 0.022768 +hospital -0.037349 -0.12998 0.18955 -0.95268 0.21243 -0.91339 0.46714 0.13491 -0.21672 0.073965 +chief -0.36788 -0.1658 0.11414 -0.84898 -0.033546 -0.87442 0.46921 0.15726 -0.25923 0.1799 +matter -0.54564 0.006823 -0.029043 -0.86175 0.077958 -1.0526 0.52024 -0.086473 -0.3017 -0.070833 +concerned -0.1732 -0.20173 0.32926 -1.0133 0.084236 -0.86609 0.36841 0.20493 -0.10091 0.17977 +campaign -0.40699 -0.27161 0.025515 -0.89658 0.24313 -0.98682 0.44068 0.035115 -0.091242 0.032817 +show -0.21416 -0.27701 0.3153 -1.0321 -0.15971 -0.67999 0.3832 0.09236 -0.17343 0.30864 +Adventure -0.040517 -0.13532 0.353 -0.95168 0.023476 -0.93465 0.30689 0.23992 -0.28893 0.11019 +guilty -0.20216 -0.043522 0.083572 -0.92687 0.20071 -0.92099 0.43184 -0.067119 -0.3179 0.00091516 +African -0.2024 0.35056 -0.066211 -0.93961 0.14744 -0.97384 0.62526 -0.010557 -0.41916 -0.24435 +envoy -0.67473 -0.14806 -0.046447 -0.81502 0.33356 -1.1331 0.44533 -0.16175 0.05812 -0.085223 +homes 0.14088 -0.034475 0.39976 -1.0534 0.10088 -0.71782 0.52129 0.29373 -0.34711 0.14863 +boat 0.0086287 -0.10716 0.22524 -0.98937 -0.10005 -0.61566 0.41495 -0.068118 -0.2481 0.32673 +rate -0.39919 -0.069286 0.0034546 -0.84483 0.2335 -0.92006 0.62933 0.1589 -0.31521 0.08722 +month -0.091638 -0.071536 0.12925 -0.9252 0.43046 -1.0922 0.45127 0.1197 -0.20081 -0.17437 +west 0.0094504 0.022666 -0.043279 -1.0138 0.60269 -0.97813 0.59047 0.02209 -0.39855 -0.031355 +launched -0.28076 0.0035345 0.09612 -1.0289 0.55087 -1.0934 0.46398 -0.030732 -0.08573 -0.20215 +Ms -0.1693 -0.024214 0.2036 -1.065 -0.48284 -0.8086 0.24235 -0.10775 -0.33241 0.33664 +move -0.12252 -0.17686 0.078811 -0.85205 -0.16308 -0.942 0.38466 0.059054 -0.22594 0.2758 +industrial -0.51341 -0.1521 0.060852 -0.82769 -0.37555 -0.86717 0.37908 0.13903 -0.1444 0.093291 +special -0.24727 -0.25317 0.05622 -0.88789 0.0026893 -0.82646 0.35959 0.20746 -0.21304 0.23176 +Downer -0.58852 -0.22938 0.35931 -0.94535 -0.29586 -0.76081 0.32812 -0.16499 -0.045356 0.26698 +Kandahar -0.29682 -0.11128 0.13414 -0.92091 0.58496 -1.0662 0.5407 0.041656 -0.14686 -0.16771 +plans -0.26949 -0.17732 0.129 -0.91765 0.26921 -0.93932 0.51331 0.029577 -0.18829 0.081238 +officers -0.28559 -0.22919 0.1258 -0.93854 0.61275 -1.151 0.53171 -0.063958 0.03405 -0.1115 +town -0.035656 -0.22186 0.089919 -1.04 0.84213 -1.14 0.45628 -0.166 -0.035811 -0.095347 +firefighters -0.12692 -0.19933 0.46779 -1.0823 0.31873 -0.84548 0.45963 0.24173 -0.21691 0.042936 +decision -0.48339 -0.020654 0.030877 -0.85514 0.19915 -1.0503 0.51939 0.055609 -0.1193 0.00057066 +flight -0.17949 -0.1495 0.18775 -0.88991 0.39984 -1.0605 0.47715 0.15983 -0.10361 -0.20439 +death 0.057547 -0.13383 0.095832 -0.95011 0.12673 -0.86911 0.37013 0.14583 -0.21993 0.17032 +Swiss -0.25035 -0.17656 0.15292 -0.85423 -0.50274 -0.69927 0.32663 0.21845 -0.31788 0.43299 +me -0.35403 -0.10642 -0.16637 -0.77878 -0.60913 -0.94614 0.47597 -0.023491 -0.16753 0.2014 +Trade -0.21383 0.019332 0.046942 -0.93263 0.30361 -1.0082 0.44523 0.032281 -0.26381 -0.049947 +men -0.08405 -0.17308 -0.12009 -0.97632 0.90007 -1.2422 0.57854 -0.26449 0.020887 -0.25508 +today, -0.13313 -0.11522 0.17201 -0.90986 0.29172 -0.96278 0.53729 0.11652 -0.26396 0.079324 +captain -0.33279 0.11211 0.05412 -0.91826 0.17814 -0.98857 0.53571 -0.015231 -0.25209 -0.11477 +really -0.35473 -0.097594 0.19306 -0.91792 -0.78484 -0.678 0.38567 0.20476 -0.3916 0.50253 +planning -0.24482 -0.083709 0.097347 -0.85534 -0.10172 -0.92347 0.36516 0.0084243 -0.38041 -0.081162 +jobs -0.14945 -0.047958 0.27719 -0.84695 -0.48319 -0.70103 0.48378 0.16802 -0.35257 0.43338 +Laden's -0.84876 -0.22134 0.40069 -1.1128 0.73137 -1.0188 0.2719 -0.36349 0.013102 -0.33474 +event -0.024604 -0.072418 0.23616 -0.96716 0.32212 -0.99293 0.64446 0.38017 -0.13658 0.0059757 +enough -0.32023 0.098302 0.0096032 -0.85613 -0.16518 -0.99403 0.48051 -0.030379 -0.2096 0.080321 +bus -0.71213 -0.079262 -0.25133 -0.92337 1.0806 -1.4162 0.78796 -0.48473 0.078979 -0.33458 +UN -0.54816 -0.048432 0.12611 -0.86137 0.27431 -1.0655 0.59413 -0.031415 -0.13637 -0.003523 +Zinni -0.50128 0.017488 -0.1918 -0.93632 0.22123 -0.94346 0.60073 -0.18784 0.0024587 0.066372 +important -0.22451 -0.2042 0.18431 -0.9583 0.047671 -0.85765 0.44231 0.11295 -0.27287 0.10683 +health -0.10558 -0.17499 0.2288 -0.94858 0.22865 -0.97927 0.37151 0.10052 -0.10578 0.02896 +others -0.28787 -0.395 0.34208 -1.0667 0.40654 -0.84971 0.45401 0.0066727 -0.10223 0.083959 +Industrial -0.57372 -0.09693 0.02127 -0.83164 -0.49892 -0.89496 0.39075 0.063725 -0.16263 0.13486 +Mark -0.36877 0.27568 -0.03104 -0.90449 -0.48173 -0.91208 0.40797 0.147 -0.29862 0.023239 +union -0.6202 -0.28923 0.21896 -0.77973 -0.28947 -0.94769 0.37978 0.32314 -0.027591 0.07152 +"He -0.45909 -0.21562 0.058993 -0.84483 -0.099631 -0.87833 0.43008 0.078521 -0.29326 0.10338 +late -0.3475 -0.25341 0.25738 -0.9397 0.35775 -1.0721 0.51631 0.10118 -0.22909 -0.032748 +sure -0.14035 -0.058039 0.11566 -0.92932 -0.49738 -0.66551 0.38233 0.16903 -0.45261 0.49004 +side -0.31318 -0.055371 -0.13075 -0.93074 -0.095578 -0.98997 0.42557 -0.00036938 -0.31781 0.0050635 +weapons -0.4718 -0.2076 0.10377 -0.92709 0.22634 -0.9232 0.38295 -0.13678 -0.20357 -0.015071 +Service 0.10996 -0.18879 0.25716 -1.0271 -0.25646 -0.64395 0.33704 0.37956 -0.33758 0.45461 +jail -0.37638 0.026194 -0.025368 -0.92421 0.23885 -0.87398 0.55937 -0.048547 -0.18372 0.054618 +Zealand 0.0043498 0.13487 0.09079 -0.8991 -0.030375 -0.8348 0.50432 0.36604 -0.35552 0.095627 +International -0.3996 -0.14946 0.11295 -0.73793 0.39268 -1.1519 0.57884 0.2536 -0.20171 -0.08369 +probably -0.33818 -0.12145 0.18426 -0.95942 -0.076147 -0.75996 0.4724 0.059822 -0.3102 0.21379 +network -0.76982 -0.14867 0.29491 -1.0421 0.31272 -0.82967 0.35551 -0.3277 -0.070193 -0.056567 +Australia. -0.22091 -0.017653 0.187 -0.80241 0.0045872 -0.84669 0.65882 0.30617 -0.49004 -0.096869 +find -0.3074 0.13148 0.22503 -0.90008 -0.27705 -0.77319 0.38533 -0.092883 -0.28932 0.13818 +my -0.55451 0.12144 -0.0093719 -0.97671 -0.62483 -0.66736 0.48245 -0.25872 -0.50878 0.077701 +station -0.53447 -0.29584 0.13297 -0.85269 0.32235 -1.0057 0.42896 0.17143 -0.1653 0.042014 +Bichel -0.40509 -0.044277 -0.0088616 -0.88798 0.24663 -1.1217 0.52461 0.015741 -0.17843 -0.15178 +1999 -0.18455 0.069741 0.18764 -0.8856 0.53729 -1.1298 0.46995 0.0017765 -0.30787 -0.26738 +life -0.24612 -0.33524 0.18092 -0.93094 0.15349 -0.92696 0.32574 0.04259 -0.15932 0.10387 +National -0.32576 -0.18403 0.13924 -0.69377 0.30312 -1.1257 0.63131 0.3921 -0.2447 0.010923 +prepared -0.21991 -0.20488 0.12785 -0.885 0.14089 -0.97711 0.3799 0.14702 -0.18668 0.038318 +home -0.17758 -0.073843 -0.056814 -0.9827 0.25884 -0.88551 0.56779 -0.03591 -0.26311 -0.022736 +Sydney, 0.38089 0.10582 0.37774 -1.1327 0.37215 -0.75697 0.59491 0.24816 -0.40122 0.19168 +political -0.23895 -0.17101 0.093477 -0.8838 0.17914 -0.98695 0.50693 0.25728 -0.17116 0.046091 +14 -0.31575 -0.076226 0.018773 -0.82727 0.83066 -1.2612 0.6004 -0.37257 0.009522 -0.22477 +helicopters -0.23121 -0.12721 0.081126 -0.9841 0.62077 -1.0337 0.47125 0.0061639 -0.20141 -0.12253 +wants -0.39181 -0.28013 0.16434 -0.88982 0.34146 -1.0773 0.43535 0.0763 -0.12478 -0.13743 +General -0.33731 -0.36169 0.34625 -0.91321 -0.25595 -0.83866 0.32095 0.27438 -0.14076 0.26922 +carrying -0.37832 -0.025182 -0.028287 -0.89457 0.22042 -1.0354 0.52053 -0.11677 -0.2781 -0.29793 +Middle -0.40746 -0.1289 -0.089367 -0.91371 0.2377 -0.95979 0.52702 -0.015126 -0.079519 0.1346 +using -0.26039 -0.19974 0.0027378 -0.85818 0.07639 -0.91421 0.45785 -0.044387 -0.19986 0.036548 +northern -0.1314 -0.10187 0.16731 -1.0625 0.51044 -0.84401 0.53194 0.10286 -0.16342 0.10458 +operations -0.4037 -0.3316 0.025667 -0.89908 0.47275 -1.0024 0.56941 0.22835 -0.24424 -0.031465 +defence -0.34835 -0.2211 0.050224 -0.95564 0.17038 -0.8682 0.51416 -0.0026649 -0.068871 0.15956 +carried -0.26137 -0.13546 -0.019057 -0.94378 0.33946 -1.0995 0.42136 0.014035 -0.021979 -0.016227 +Hollingworth -0.030212 0.07015 0.23553 -0.96126 -0.022018 -0.89547 0.47997 0.25544 -0.2351 0.065736 +comes -0.12515 -0.21734 0.30096 -0.96863 0.091718 -0.82099 0.52801 0.28297 -0.21324 0.20068 +person -0.31443 -0.073895 -0.07208 -0.99595 0.39315 -1.0454 0.47549 -0.15756 -0.21276 -0.042487 +Unions -0.58393 -0.34103 0.16019 -0.85448 -0.010625 -0.86669 0.40667 0.13006 -0.11536 0.059159 +Jihad -0.25044 -0.1311 0.11354 -0.91889 0.56741 -1.0475 0.54933 -0.036782 -0.07521 -0.13064 +every -0.23024 -0.18855 0.20065 -0.97747 -0.54483 -0.62561 0.38552 0.046008 -0.21172 0.57272 +Israelis -0.3279 -0.092185 -0.3384 -1.0311 0.98386 -1.3114 0.63479 -0.45063 0.025191 -0.21609 +years. -0.071905 -0.16077 0.028975 -0.98995 0.16042 -0.80394 0.58575 0.14118 -0.29376 0.15611 +Relations -0.47999 -0.22928 0.007061 -0.82066 0.38031 -1.0734 0.60641 0.2529 -0.34925 -0.099694 +abuse -0.41617 -0.17554 0.11074 -0.97323 -0.09883 -0.84307 0.39191 0.030254 -0.13567 0.22793 +kilometres -0.23393 -0.077966 0.26269 -0.95865 0.21062 -0.98748 0.44364 0.1892 -0.14065 0.021218 +until -0.36532 -0.015918 0.015624 -0.91358 0.06594 -0.95147 0.50103 -0.04358 -0.14284 0.088419 +tried -0.3707 -0.23133 0.098954 -0.93306 0.34043 -1.1061 0.2772 0.037984 0.050213 -0.051578 +become -0.30943 -0.1512 0.041733 -0.94765 -0.16194 -0.72357 0.51597 0.0077977 -0.36744 0.21203 +Fire 0.44447 -0.19245 0.64022 -1.2496 -0.43456 -0.4926 0.11751 0.48495 -0.56266 0.60643 +alleged -0.13987 -0.14386 0.23963 -0.96288 0.2887 -1.1934 0.18076 0.18774 0.023957 -0.033033 +policy -0.23414 -0.14868 0.037421 -0.92876 -0.17332 -0.80174 0.47739 0.083862 -0.1634 0.30527 +job -0.29817 0.15863 -0.011452 -0.73014 -0.44408 -0.80389 0.59752 0.047052 -0.40874 0.17 +race -0.23623 0.12272 -0.12789 -0.87828 0.12137 -1.0007 0.55153 0.084974 -0.30908 -0.056355 +raids -0.4405 0.055256 0.062423 -0.97207 0.59969 -1.1253 0.52018 -0.20184 -0.073733 -0.19791 +Security -0.25179 -0.26211 0.012311 -0.99779 0.54335 -1.0733 0.49651 -0.13276 -0.044672 0.03434 +each -0.25856 0.074421 0.05647 -0.83658 -0.083764 -0.9344 0.56955 0.26072 -0.35617 0.015302 +said, -0.25902 -0.23099 0.28328 -1.0505 -0.28032 -0.65906 0.29252 -0.11605 -0.18789 0.41448 +deal -0.17886 -0.34216 0.20539 -0.84713 -0.13152 -0.9213 0.3724 0.21342 -0.14918 0.36828 +making -0.28803 -0.08816 0.0096906 -0.82431 -0.64894 -0.738 0.39803 0.1298 -0.52578 0.13695 +emergency -0.26612 -0.1099 0.065147 -0.91568 0.41001 -1.0744 0.52717 0.037593 -0.18953 -0.10363 +sent -0.19357 -0.27141 0.29263 -0.77914 -0.046579 -0.91439 0.52573 0.31398 -0.057896 0.13753 +plane -0.34638 -0.1023 0.082522 -0.96101 0.2565 -1.0639 0.36914 -0.16762 -0.031945 -0.043187 +McGrath -0.17043 -0.051306 -0.020217 -0.9169 0.27615 -1.0228 0.48797 0.020804 -0.22426 -0.031734 +seekers -0.48644 -0.44184 0.13376 -0.96734 0.12767 -0.66738 0.49504 -0.098521 -0.095709 0.32882 +immediately -0.36355 -0.227 0.043711 -0.96031 0.26305 -1.0306 0.46492 0.039272 -0.097878 0.042057 +opening -0.17873 0.038679 0.038125 -0.85227 0.24574 -1.1265 0.48156 -0.01966 -0.35637 -0.31265 +financial -0.30118 -0.27108 0.12209 -0.83559 0.11444 -1.009 0.40422 0.124 -0.10492 0.10687 +opposition -0.52953 -0.28352 0.024003 -0.82079 0.18808 -1.0265 0.48246 0.12408 -0.16336 0.077984 +beat -0.44952 0.047498 -0.059399 -1.057 -0.36293 -0.67571 0.42371 -0.24185 -0.28456 0.22016 +HIH -0.47638 -0.30372 0.11696 -0.78749 -0.012724 -0.80612 0.40415 0.14367 -0.23078 0.29014 +am -0.46544 0.14943 -0.027456 -0.98103 0.27046 -0.88687 0.48696 -0.33832 -0.11751 -0.088589 +proposed -0.22032 -0.21796 0.32289 -0.90467 -0.45117 -0.7144 0.30345 0.28281 -0.27091 0.30881 +evidence -0.40336 -0.16851 0.057301 -0.99487 0.063628 -0.8195 0.45084 -0.0023912 -0.15993 0.12882 +issue -0.20286 0.14266 0.12136 -0.92091 -0.2528 -0.76598 0.39263 0.30105 -0.31183 0.19294 +community -0.23492 -0.37318 0.25533 -0.91363 0.059018 -0.88329 0.39885 0.32284 -0.1588 0.23015 +suspected -0.34525 -0.10702 0.18567 -1.0473 0.27441 -0.84641 0.39509 -0.14546 -0.14767 -0.013768 +bombing -0.27627 -0.12407 -0.025868 -0.8967 0.11571 -0.88214 0.44439 -0.13446 -0.24008 -0.0067358 +deaths -0.080647 -0.10233 0.13786 -0.92447 0.033617 -0.85785 0.36213 0.16064 -0.30454 0.10584 +radical -0.14642 -0.02874 0.0063376 -0.8976 0.41309 -1.0202 0.49822 0.15056 -0.23713 -0.13541 +laws -0.21059 -0.044915 0.19047 -0.93203 0.11675 -0.97785 0.42655 0.20573 -0.3067 -0.03825 +went -0.45038 -0.11098 0.18192 -0.94314 -0.014208 -0.95047 0.4455 0.14278 -0.11996 0.082557 +allow -0.090794 -0.074926 0.1755 -0.97726 0.088112 -0.94784 0.37043 0.15258 -0.090754 0.18805 +result -0.29583 -0.18522 0.2357 -0.91104 0.0054902 -0.92295 0.34697 0.17311 -0.19238 0.17041 +"It's -0.37833 -0.11473 -0.013531 -1.0353 0.011208 -0.81535 0.59501 -0.086298 -0.14879 0.24644 +Senator -0.36911 -0.24955 0.33815 -1.0253 0.043189 -0.81357 0.30949 0.046325 -0.17431 0.24162 +Department -0.30033 -0.34507 0.26669 -0.84222 -0.049876 -0.91746 0.46195 0.35211 -0.11222 0.14093 +warplanes -0.29239 -0.09469 0.18425 -0.94719 0.32186 -0.9657 0.37826 -0.04488 -0.047268 0.035734 +Council -0.35524 -0.3422 0.12564 -0.89316 0.2501 -0.97434 0.483 0.20005 -0.14954 0.0051255 +Ariel -0.48719 0.037788 0.031469 -0.74902 -0.10285 -0.97876 0.61608 -0.13939 -0.040404 0.20097 +different -0.098991 -0.16926 0.22102 -0.98309 0.02349 -0.91166 0.49676 0.16403 -0.161 0.13375 +"There -0.19236 -0.17333 0.25456 -1.0477 -0.0088454 -0.76699 0.321 0.086953 -0.15734 0.26294 +rejected -0.28531 -0.049575 0.055564 -0.89875 0.026118 -0.95553 0.38317 0.037622 -0.12241 0.067581 +reported -0.19702 -0.19608 0.18906 -0.91063 -0.021168 -0.88541 0.3912 0.13244 -0.17061 0.17465 +One -0.1883 -0.021232 0.32823 -1.0043 0.34116 -1.0373 0.30109 -0.0078587 0.017532 -0.097623 +details -0.2459 -0.0043803 0.17589 -0.8699 -0.030403 -0.96819 0.41229 0.11994 -0.21326 0.03971 +hundreds -0.1179 -0.098527 0.14361 -0.99988 0.28367 -0.97639 0.47041 0.074146 -0.18637 -0.08792 +Secretary -0.35576 -0.20606 0.075651 -0.93688 0.191 -0.90759 0.51749 -0.11536 -0.036384 0.024759 +full -0.12038 0.14044 0.20748 -0.92319 -0.29811 -0.66853 0.4504 0.078529 -0.33246 0.34165 +calls -0.29975 -0.15709 0.15753 -0.84773 -0.14706 -0.86039 0.36401 0.27873 -0.19795 0.14575 +drop -0.42159 -0.13677 0.080038 -0.94191 0.11131 -1.0293 0.42309 -0.16101 -0.19606 0.01346 +growth -0.07259 -0.28981 0.27615 -1.0298 0.29384 -0.78796 0.46195 0.11602 -0.19833 0.19302 +hard -0.20498 -0.02465 0.1661 -0.9054 0.0013864 -0.94509 0.44938 -0.043615 -0.14109 0.10793 +fight -0.25409 -0.15276 0.3869 -1.0736 0.57205 -0.94709 0.49104 0.060624 -0.061899 -0.23552 +Woomera -0.24158 -0.055035 0.19377 -0.91819 -0.016829 -0.87466 0.50685 0.29162 -0.17826 0.2253 +allegations -0.30052 -0.30396 0.21668 -0.86851 -0.016164 -0.94555 0.37399 0.33265 -0.20512 0.17885 +caught -0.28616 -0.038503 0.10752 -0.95922 0.27824 -1.0011 0.51716 0.058671 -0.05291 -0.085257 +opened -0.16128 -0.099327 0.041465 -0.97883 0.51974 -1.1129 0.40655 -0.14017 -0.0966 -0.24245 +getting -0.60234 -0.078298 -0.16695 -0.90073 0.0048955 -0.99791 0.46585 -0.19268 -0.1735 -0.077584 +bombings -0.18144 -0.045621 -0.08839 -0.93942 0.35837 -0.94121 0.53292 -0.071254 -0.24936 -0.024677 +although -0.39983 -0.086445 0.2458 -1.0253 -0.13943 -0.83683 0.36993 -0.12281 -0.076385 0.21606 +building -0.17313 -0.06911 0.02497 -0.86335 -0.10145 -0.91135 0.46626 0.11933 -0.34054 -0.01262 +always -0.099338 -0.16392 0.23017 -0.99304 -0.091784 -0.71582 0.35264 0.086487 -0.2496 0.3216 +2 -0.15545 0.035836 -0.0077972 -0.98733 0.25396 -1.0182 0.48962 -0.015344 -0.22089 -0.24752 +look -0.20214 -0.12049 0.13222 -0.91602 -0.7254 -0.70241 0.40645 0.13836 -0.3255 0.44921 +Jewish -0.056948 -0.041342 0.04173 -0.94601 0.38495 -0.97229 0.52959 0.0022186 -0.2429 -0.076027 +source -0.33497 -0.087328 -0.1113 -0.9172 0.34065 -0.9776 0.57745 -0.1448 -0.21374 -0.012633 +flights -0.22701 -0.10587 0.22915 -0.90944 0.37374 -1.0377 0.47777 0.1837 -0.14216 -0.19452 +quite -0.25175 -0.22422 0.27164 -1.0326 -0.18216 -0.74256 0.33936 0.06437 -0.28912 0.29318 +killing -0.25686 -0.14649 -0.00014256 -0.90274 -0.12336 -0.98858 0.44911 0.0068644 -0.20173 -0.040376 +Strip -0.1356 -0.26696 0.18214 -0.98423 0.82974 -1.1219 0.42037 0.036817 -0.078735 -0.12709 +bid -0.37077 -0.23103 0.19757 -1.0146 0.81412 -1.2049 0.28057 -0.12465 0.22361 -0.28075 +understand -0.37883 -0.15315 0.098055 -0.94035 -0.0089921 -0.86651 0.40035 0.027029 -0.22866 0.048836 +year's -0.0078248 -0.09619 0.17557 -0.97446 0.1173 -0.83811 0.59289 0.18105 -0.29963 0.17022 +innings -0.17982 0.076362 -0.15785 -0.92241 0.49047 -1.13 0.59651 0.023168 -0.32511 -0.32717 +access -0.35938 -0.23449 0.048085 -0.88403 0.11329 -0.97133 0.5078 -0.035407 -0.18539 0.068704 +ago. -0.16745 -0.11987 0.047255 -0.98502 0.091684 -0.94066 0.48054 0.059722 -0.26523 0.11259 +young -0.052772 -0.1533 0.21176 -0.98047 -0.1703 -0.86867 0.28618 0.16079 -0.2614 0.1791 +himself -0.41513 -0.01386 -0.013133 -0.96159 -0.03035 -0.83948 0.4415 -0.073896 -0.18098 0.13272 +meet -0.6892 0.12278 -0.059613 -0.82415 0.1907 -1.1716 0.49659 -0.23193 -0.034196 -0.17992 +On -0.24926 0.2477 -0.054523 -0.80452 -0.51011 -0.76588 0.50566 0.037485 -0.20762 0.23825 +Commonwealth -0.23119 -0.14886 0.14519 -0.90128 -0.0035436 -0.92767 0.44947 0.10889 -0.23743 0.18265 +Bureau -0.16077 -0.021117 0.24038 -0.91542 0.17771 -0.8947 0.5087 -0.02436 -0.29051 0.085372 +targets -0.14882 -0.11944 0.053442 -0.94995 0.34197 -0.88971 0.48677 -0.026809 -0.26734 0.032219 +"We're -0.086301 -0.012208 0.073553 -0.97498 0.04867 -0.88478 0.40897 0.088269 -0.24305 0.13491 +militant -0.4391 -0.29585 0.026277 -0.95421 0.69054 -1.1851 0.54031 -0.11661 -0.024484 -0.18447 +running -0.079897 0.05711 0.038853 -0.91501 -0.13324 -1.0015 0.39354 0.18559 -0.45126 -0.18506 +caves -0.28691 0.11883 0.066076 -1.0442 0.57614 -0.99247 0.55009 -0.031571 -0.032725 -0.20788 +declared -0.052889 -0.05141 0.15401 -0.96843 0.46864 -1.0297 0.46719 0.10203 -0.21326 -0.12957 +reached -0.44212 -0.16723 0.12568 -0.91301 0.024306 -0.90236 0.39833 0.062853 -0.08777 0.046893 +18 0.054921 -0.11309 0.11605 -0.77062 -0.060609 -0.92333 0.35447 0.30628 -0.45244 0.18787 +20 -0.22533 -0.1106 0.14139 -0.8831 0.4986 -1.1438 0.49541 0.11371 -0.20783 0.0040105 +among -0.49796 -0.27051 0.11415 -0.94687 0.47517 -0.96776 0.47731 -0.12582 -0.13888 -0.090727 +based -0.25069 -0.22415 0.25071 -0.98506 0.13426 -0.90901 0.29891 0.037888 -0.048462 0.078416 +Howard -0.094855 0.025978 0.21725 -1.0421 -0.22107 -0.83696 0.3628 0.026865 -0.2639 0.11659 +try -0.46085 -0.26442 0.20995 -0.99564 0.10121 -0.90349 0.35863 -0.057345 -0.12138 0.15032 +believes -0.67137 -0.17036 0.26685 -1.0768 0.14739 -0.72407 0.35888 -0.36828 -0.040496 -0.0035927 +July -0.32955 -0.36062 0.39482 -0.94008 -0.14972 -0.71303 0.32794 0.19853 -0.2126 0.25866 +actually -0.2289 -0.073151 0.14274 -0.93537 -0.43631 -0.73256 0.33608 0.085956 -0.31936 0.35602 +currently -0.30254 -0.11033 0.17194 -0.84159 -0.084001 -0.8061 0.50987 0.17284 -0.28415 0.13813 +announced -0.42028 -0.18456 0.18197 -0.9778 0.14524 -0.92541 0.39784 -0.054199 -0.044202 0.042121 +clear -0.01766 -0.14938 0.25252 -1.0235 -0.07958 -0.72622 0.41753 -0.029375 -0.27612 0.2745 +State -0.37626 -0.24598 0.14162 -0.87221 0.56295 -1.087 0.61413 0.022581 -0.19923 -0.25108 +Parliament -0.46191 -0.25638 0.23833 -0.90053 0.43435 -0.99233 0.53144 0.1489 -0.10922 -0.11228 +here -0.29754 -0.28154 0.27744 -1.0449 -0.3836 -0.61764 0.23703 0.12542 -0.27986 0.43399 +Britain -0.41509 -0.16547 0.19246 -0.93156 0.4166 -1.0847 0.5131 0.12528 -0.23074 -0.25184 +year, -0.10651 -0.013289 0.075046 -0.9704 0.31971 -0.93009 0.60224 0.21259 -0.30398 0.0022467 +executive -0.15144 0.032854 0.10856 -0.85138 -0.23817 -0.86353 0.43772 0.14153 -0.40333 0.21818 +surrender -0.39416 -0.1037 0.12542 -0.92244 0.022295 -0.92797 0.50559 0.03057 -0.17871 0.13987 +Alexander -0.39375 -0.070985 0.019329 -0.82865 0.25753 -1.1342 0.5418 -0.13856 -0.035291 -0.0044781 +flying -0.12358 -0.085658 0.0039751 -0.90072 -0.052444 -0.98421 0.44649 0.076044 -0.35365 -0.11421 +weekend -0.27191 -0.20531 0.14953 -1.0588 0.21455 -0.8166 0.39648 -0.052563 -0.24843 0.1731 +time. -0.27678 -0.035373 0.015089 -0.85877 -0.17774 -0.82998 0.40956 0.0045983 -0.29376 0.14535 +human -0.325 0.040529 0.1051 -0.91902 0.32687 -1.0524 0.5324 0.015324 -0.20708 -0.086047 +Immigration -0.62166 -0.32346 0.16311 -0.83192 0.17072 -0.95213 0.47813 0.17228 -0.11817 0.084171 +days. -0.21962 -0.072669 0.16506 -0.92774 0.24268 -1.0086 0.4454 0.040181 -0.32095 -0.066109 +airline -0.23745 -0.10759 0.25576 -1.0061 -0.017262 -0.93116 0.33664 0.060348 -0.14106 0.0597 +river -0.31547 -0.14686 0.24461 -0.79813 -0.53261 -0.88609 0.33665 0.082408 -0.27995 0.35627 +annual -0.07151 -0.0082519 0.10891 -0.90364 0.13375 -0.95719 0.39925 0.14119 -0.27644 0.024862 +yet 0.032871 0.011395 0.30045 -0.93906 -0.21429 -0.78424 0.52674 0.21043 -0.27387 0.25205 +we're -0.11724 -0.2325 0.16908 -1.0447 -0.12363 -0.72712 0.359 0.076173 -0.26036 0.31823 +travel -0.24645 -0.12484 0.29633 -0.85444 -0.19344 -0.84535 0.40432 0.08839 -0.29996 0.27319 +sex -0.12885 -0.17146 0.17803 -0.94059 0.29546 -0.91931 0.50233 0.047885 -0.077329 0.21403 +expect -0.24927 -0.091875 0.0239 -0.89745 -0.25451 -0.82458 0.39189 0.11725 -0.31161 0.24229 +outside -0.29979 -0.087116 0.094266 -0.8943 0.00045409 -0.93309 0.41995 0.077897 -0.32089 0.0948 +gave -0.20511 0.10134 0.27444 -1.0108 -0.50872 -0.68088 0.28404 0.065595 -0.31698 0.37159 +future -0.13391 -0.038217 0.22378 -1.0037 0.1114 -0.96022 0.29762 0.099481 -0.26009 0.013145 +people, -0.12077 -0.13285 0.064225 -0.89586 0.20543 -0.92167 0.52999 0.11773 -0.3363 0.041737 +Kallis -0.22297 0.042648 0.024925 -0.89704 -0.25563 -0.93736 0.43078 0.055985 -0.2876 0.061194 +arrived -0.20971 -0.11303 0.15902 -1.0245 0.44714 -1.0242 0.40287 -0.048344 -0.0052894 -0.069317 +responsibility -0.10669 -0.19514 0.24343 -1.0107 0.27539 -0.92534 0.34749 0.13125 -0.22071 -0.023336 +Chief -0.21446 -0.028111 0.10836 -0.85874 0.050764 -0.97388 0.51436 0.1159 -0.30729 0.038645 +sources -0.26177 -0.10926 0.082926 -0.91144 0.37326 -0.96432 0.54344 -0.004703 -0.21427 -0.05484 +expressed -0.29158 -0.1309 0.084792 -0.89884 0.067026 -0.92867 0.46335 -0.021058 -0.17247 0.10516 +again -0.28054 0.10503 -0.031662 -0.87632 0.13049 -1.0395 0.5817 0.1995 -0.31702 -0.13758 +needs -0.69947 -0.16154 0.12364 -1.0156 0.20539 -0.97623 0.36055 -0.27137 -0.10422 -0.095865 +times -0.19059 -0.082645 0.23329 -0.95971 -0.10218 -0.79772 0.4028 0.085123 -0.26922 0.19396 +leader, -0.63614 -0.15872 -0.021229 -0.97841 0.23224 -1.0678 0.37307 -0.24234 0.069236 0.059875 +media -0.36359 -0.33511 0.11944 -0.96789 0.53827 -1.1395 0.51612 0.081919 -0.025864 -0.17633 +overnight 0.0026782 -0.16337 0.5379 -1.0077 0.30795 -0.95688 0.40591 0.4137 -0.20355 0.067067 +caused -0.32583 -0.15928 0.24236 -1.1669 0.65764 -1.1243 0.40977 -0.038673 0.019246 -0.15685 +investigation -0.24167 -0.16591 0.095002 -0.84671 0.093706 -0.96468 0.47883 0.28363 -0.23212 0.12051 +victory -0.14237 -0.031346 -0.040868 -0.86656 0.10501 -0.99638 0.47517 0.052506 -0.37078 0.020271 +cost -0.33531 -0.31573 0.21847 -0.93661 0.098379 -0.70413 0.42365 0.12404 -0.28671 0.21083 +means -0.21139 -0.21608 0.035407 -0.95129 0.066174 -0.84813 0.46002 0.059957 -0.26126 0.21452 +guides -0.195 -0.11011 0.1319 -0.89564 0.31203 -1.038 0.43995 0.011187 -0.29771 -0.16936 +Afghanistan's -1.0852 -0.42476 0.11174 -1.0582 1.0038 -1.1647 0.58459 -0.38897 0.24901 -0.34677 +Test. -0.35461 0.17268 -0.081656 -0.87091 -0.061653 -0.94691 0.54565 -0.035941 -0.46732 -0.15517 +parties -0.25651 -0.23092 0.10005 -0.87591 -0.013637 -0.92388 0.46985 0.22713 -0.19787 0.16205 +November -0.15432 -0.02002 -0.035073 -0.88768 0.66978 -1.2153 0.60292 -0.031687 -0.15572 -0.21273 +away -0.026386 -0.011804 0.03243 -0.95371 0.010804 -0.85442 0.58628 0.049947 -0.38244 0.091771 +Glenn -0.2025 0.10252 -0.18489 -0.82056 -0.064589 -0.94112 0.5735 0.08154 -0.16768 0.098507 +night. 0.14726 -0.13411 0.43348 -0.98423 0.48031 -1.0034 0.48321 0.56319 -0.26636 -0.052575 +less -0.34774 -0.087851 0.020444 -0.975 0.24762 -0.89823 0.53689 -0.19108 -0.17694 0.10416 +gives -0.30648 0.00095754 0.12032 -0.87802 -0.081254 -0.92676 0.50007 0.22389 -0.18439 -0.0023295 +refused -0.20994 -0.12008 0.043993 -0.95577 0.43249 -1.1323 0.47532 0.082949 -0.042781 -0.082605 +decided -0.25164 -0.15128 0.14698 -0.93189 0.42 -1.1056 0.4041 0.03367 -0.13229 -0.021897 +wage -0.15918 -0.18509 0.15199 -0.94062 0.094331 -0.86955 0.37411 0.32563 -0.27524 0.11126 +certainly -0.36459 -0.25731 0.20807 -0.96518 -0.3249 -0.76573 0.36741 0.088155 -0.2325 0.37688 +face -0.41217 -0.10768 0.014726 -0.9521 0.52086 -1.1 0.50755 0.03151 -0.021106 -0.17162 +having -0.21479 -0.094558 0.02323 -0.92666 -0.26909 -0.80156 0.35772 -0.052212 -0.30304 0.14079 +bombers -0.25448 -0.24683 -0.018675 -1.0088 0.98883 -1.1495 0.57514 -0.24854 0.0085853 -0.30157 +13 -0.2514 -0.17806 0.23568 -0.97128 0.20978 -0.84804 0.46292 0.032578 -0.44878 -0.12467 +More -0.17663 -0.063707 0.21824 -0.97878 0.1765 -0.85505 0.40461 0.18004 -0.35206 0.12186 +Musharraf -0.31525 -0.17799 0.15549 -0.96105 0.086704 -0.96223 0.36748 -0.010628 -0.14574 0.11553 +Sir -0.079121 -0.16903 0.152 -0.92032 -0.10546 -0.7863 0.37201 0.1975 -0.27092 0.33351 +Western -0.35848 -0.0024335 0.15828 -1.0712 0.76845 -1.0325 0.61841 -0.21278 -0.080128 -0.20051 +Warne -0.17762 0.088479 0.051883 -0.98411 0.27026 -1.0481 0.45843 0.04756 -0.20877 -0.23601 +we've -0.27202 -0.062883 0.079416 -1.1073 -0.22395 -0.74813 0.32714 -0.062417 -0.18222 0.27504 +returned -0.25684 -0.014633 -0.013888 -0.9261 0.34609 -1.0596 0.40779 -0.1468 -0.081473 -0.062052 +house -0.25438 -0.19207 0.098137 -1.08 0.3123 -0.92787 0.35562 0.0027978 -0.076825 0.14032 +figures -0.24194 -0.11312 0.34844 -0.95948 -0.0096087 -0.81971 0.48248 0.17377 -0.29287 0.066865 +soon -0.50325 -0.24627 0.077906 -0.85691 -0.057127 -0.89574 0.49108 -0.072185 -0.13845 0.16944 +Opposition -0.55172 -0.28795 0.025411 -0.82279 0.15422 -1.0296 0.43879 0.087711 -0.12644 0.081617 +Energy -0.52219 0.0083993 0.13363 -0.99076 0.077371 -0.91272 0.46538 -0.10207 -0.15002 -0.045709 +appeared -0.07688 -0.12422 0.15721 -0.98941 0.32351 -1.022 0.33754 0.039885 -0.14885 -0.028518 +"What -0.11813 -0.12509 0.11716 -0.96938 0.18886 -0.96622 0.43089 -0.085791 -0.11728 0.12231 +parts -0.15738 -0.13451 -0.028285 -0.92109 0.36979 -1.0102 0.59461 0.23022 -0.24569 -0.019808 +point -0.31625 -0.15522 0.11486 -0.85343 -0.091388 -0.86706 0.49356 0.15778 -0.21028 0.15196 +weeks -0.31093 -0.12954 0.15842 -1.0454 0.14362 -0.78349 0.3397 -0.15216 -0.18535 0.086455 +step -0.24769 -0.085087 0.14128 -1.0074 -0.053275 -0.74336 0.48037 -0.027143 -0.17706 0.29505 +Hicks -0.7295 -0.27189 -0.031627 -1.0161 0.38705 -1.0018 0.4731 -0.20284 0.079142 -0.086215 +ended -0.46385 -0.18155 -0.094221 -0.89408 0.8742 -1.3229 0.50061 -0.12044 0.0057563 -0.33374 +big -0.10401 0.029808 -0.11517 -1.132 0.90247 -1.2428 0.42649 -0.23731 -0.041625 -0.43859 +run -0.026621 0.058854 0.23927 -0.88576 0.22445 -0.97455 0.42719 0.25457 -0.43438 -0.13246 +Robert -0.18885 -0.24728 0.16502 -0.98001 0.23693 -0.83256 0.53339 0.0054403 -0.14761 0.18343 +rather -0.3921 -0.18474 0.26465 -1.0403 -0.1311 -0.66115 0.3769 -0.095472 -0.27836 0.36664 +dispute -0.38151 -0.13673 -0.055228 -0.96796 0.28504 -0.99155 0.46686 -0.097563 -0.17168 -0.066103 +thousands -0.20815 -0.052841 0.13491 -1.0094 0.16653 -0.96091 0.44757 0.058202 -0.20876 0.060942 +countries -0.30045 -0.16149 0.20757 -0.9137 0.050078 -0.93056 0.44059 0.26011 -0.20321 0.065365 +Reserve -0.12533 -0.037669 0.16344 -0.95301 0.48337 -0.99076 0.5605 0.14818 -0.23771 -0.18154 +biggest -0.17696 -0.16626 0.0047131 -0.98654 0.71474 -1.1002 0.51817 -0.038413 -0.11861 -0.14601 +can't -0.14316 -0.038243 0.029441 -0.95136 -0.084281 -0.90605 0.38663 0.036244 -0.27861 0.048795 +region -0.67664 -0.11581 0.1894 -0.92088 0.14594 -1.015 0.44602 0.078378 0.019968 -0.07271 +issues -0.18967 0.2033 0.15594 -0.96702 -0.22947 -0.86135 0.43302 0.28347 -0.29927 0.10877 +beyond -0.31479 -0.26768 0.24727 -1.0479 -0.071206 -0.80629 0.36612 -0.041367 -0.24782 0.18122 +huge -0.081257 0.32418 0.050619 -0.83504 -0.26709 -0.95097 0.45568 0.19193 -0.39068 0.031293 +them. -0.22048 -0.31103 0.13912 -0.97638 -0.10318 -0.75878 0.42885 -0.033493 -0.25774 0.35585 +break -0.034984 -0.16235 0.10839 -0.87804 -0.10658 -0.79174 0.56585 0.22224 -0.2667 0.28082 +ensure -0.13504 -0.10694 0.22563 -0.9484 -0.052151 -0.80939 0.35235 0.16253 -0.32167 0.21016 +ground -0.23677 -0.18518 0.27125 -1.0726 0.19723 -0.85167 0.26207 -0.030968 -0.17042 0.04772 +tourists -0.36032 -0.11573 0.067654 -0.80911 0.14706 -1.072 0.548 0.14094 -0.24755 -0.11331 +shortly -0.22155 -0.017607 0.093779 -1.0259 0.31995 -0.92463 0.50257 0.045857 -0.19887 0.016661 +something -0.21869 -0.1265 0.17115 -0.92387 -0.29442 -0.71776 0.42465 0.14374 -0.37656 0.23146 +terms -0.45899 -0.1411 0.16535 -0.99854 -0.086348 -0.81406 0.37841 -0.10845 -0.26085 0.059 +top -0.52027 0.15306 -0.28095 -0.71283 -0.35815 -1.0341 0.46039 -0.13882 -0.28352 0.043035 +safety -0.1443 -0.1671 0.089085 -0.86247 0.047306 -0.9441 0.42246 0.14677 -0.2587 0.1754 +whose -0.15884 -0.16834 0.28541 -0.90295 0.061624 -0.948 0.33678 0.10392 -0.17018 0.067711 +order -0.61937 -0.18925 -0.087087 -0.87335 0.32193 -1.1745 0.53799 -0.12251 -0.097608 -0.11936 +21 -0.35252 -0.3032 0.19308 -0.73447 0.1381 -1.053 0.5186 0.49776 -0.37451 -0.02863 +seven -0.32449 -0.090214 0.01174 -0.86455 0.13791 -0.91959 0.56921 -0.12242 -0.083617 0.06326 +worst -0.093513 0.13321 0.21029 -0.89142 -0.16556 -0.82448 0.47646 0.23528 -0.4839 0.10489 +200 -0.07257 0.050468 0.089691 -0.95671 -0.28409 -0.75853 0.45668 0.16083 -0.44957 0.24796 +changes -0.23516 -0.19769 0.32922 -0.90195 -0.31492 -0.78549 0.30952 0.20265 -0.23301 0.35419 +Mountains -0.52557 -0.0070327 0.1814 -1.1009 0.42383 -0.93624 0.50681 0.024818 -0.13433 -0.11177 +1,000 -0.13408 -0.0031082 -0.0071555 -1.0484 0.062027 -0.81847 0.46957 0.075143 -0.34528 0.0069611 +attempt -0.21777 -0.13646 0.037072 -0.99718 0.42526 -1.057 0.46832 -0.007266 -0.13694 -0.073133 +wave -0.1237 0.06939 0.13382 -0.97782 -0.31499 -0.75068 0.31747 0.15389 -0.31235 0.26425 +She -0.57889 0.024528 0.29046 -0.75118 -0.40824 -0.97542 0.2939 -0.14587 -0.20861 0.24839 +heavy -0.25764 -0.17552 0.18984 -0.94983 0.12568 -0.86752 0.3063 -0.017535 -0.095908 0.13068 +banks -0.21874 -0.1408 0.14122 -0.9399 0.16793 -0.85874 0.41583 0.11357 -0.21469 0.05204 +struck -0.21501 -0.12046 0.25122 -0.90835 0.044797 -0.91014 0.40803 0.11327 -0.32215 0.14165 +bill -0.51599 -0.271 -0.00073813 -0.9119 0.64295 -1.1705 0.52009 0.043544 0.089397 -0.25129 +massive -0.32483 -0.06258 -0.013938 -0.83339 -0.061484 -0.86455 0.4527 0.091288 -0.25824 0.15906 +foreign -0.4108 -0.35808 0.051144 -0.92501 0.25962 -1.0232 0.3764 0.024047 -0.0070203 -0.0068743 +Monday -0.30755 0.021482 0.19795 -0.85557 0.11402 -0.9588 0.44421 0.17013 -0.24844 -0.019671 +residents -0.18282 -0.17343 0.16833 -0.89066 0.055371 -0.95199 0.4216 0.31978 -0.299 0.0037635 +Detention -0.39476 -0.14458 0.15996 -0.82447 0.041516 -0.93888 0.51081 0.35091 -0.20424 0.057306 +protect -0.15792 -0.18836 0.083067 -0.88514 -0.20558 -0.83509 0.45219 0.19162 -0.32459 0.25114 +crash -0.37378 -0.15719 0.27305 -0.95702 0.087902 -0.82382 0.34335 0.042488 -0.15859 0.054763 +Kabul -0.26443 -0.16481 0.3114 -0.94373 -0.19575 -0.79068 0.40535 0.15031 -0.24102 0.28756 +Jacques -0.16548 0.058804 0.152 -0.97539 0.056449 -0.92379 0.45371 0.11116 -0.24996 -0.015329 +gunmen -0.063602 -0.13022 0.0073489 -0.93044 0.24926 -1.0779 0.53094 -0.0072605 -0.221 -0.029566 +River -0.34144 -0.19561 0.22203 -0.75358 -0.077981 -1.023 0.34737 0.094786 -0.17132 0.1026 +denied -0.38527 -0.30648 0.16933 -0.94346 0.72253 -1.2464 0.36061 -0.068193 0.098559 -0.25226 +Governor-General -0.32618 -0.34426 0.26649 -0.91605 0.058059 -0.92269 0.40493 0.17553 -0.14275 0.17862 +act -0.50422 -0.27666 0.10494 -1.0576 0.42009 -1.0005 0.3776 -0.14642 -0.01395 -0.10325 +Safety 0.075012 -0.13791 0.25712 -0.92599 0.1798 -0.91217 0.42602 0.34453 -0.34069 0.074462 +he's -0.76149 -0.25187 0.16369 -1.0071 -0.25816 -0.7671 0.30205 -0.32931 0.036876 0.21559 +general -0.34393 -0.29248 0.27743 -0.82782 -0.18493 -0.88201 0.34027 0.26915 -0.13627 0.16395 +inside -0.18642 -0.14043 0.18562 -0.95672 -0.01729 -0.88924 0.36219 0.24348 -0.22756 0.077796 +"In -0.37246 0.014417 -0.04582 -0.72871 -0.92338 -0.67055 0.44785 0.30004 -0.49557 0.20112 +feel -0.18015 -0.17165 0.10289 -1.0476 -0.39224 -0.67754 0.40273 0.046544 -0.27883 0.51188 +beginning -0.31562 -0.040915 0.044385 -0.94139 0.12054 -0.97017 0.45147 -0.047391 -0.3183 -0.19903 +it, -0.058407 0.022432 0.35018 -0.94972 -0.4629 -0.56738 0.37619 0.096636 -0.4813 0.30966 +Israel, -0.31752 -0.079865 -0.38344 -0.98436 0.97659 -1.2919 0.65736 -0.39128 0.072302 -0.12737 +Pakistani -0.88321 -0.48353 0.10139 -0.98664 0.71346 -1.2353 0.44264 -0.25487 0.059342 -0.40104 +decide -0.18269 -0.13465 0.062756 -0.90553 0.10744 -0.99522 0.40557 0.15254 -0.20989 0.15111 +though -0.43559 -0.026187 0.16191 -0.99179 -0.087738 -0.82109 0.37879 -0.17426 -0.10786 0.15234 +Russian -0.41079 -0.094812 -0.0072505 -0.90948 0.27982 -1.0214 0.55015 -0.10899 -0.13083 -0.074736 +trees -0.045673 -0.030206 0.30045 -0.91687 -0.1976 -0.84275 0.45741 0.4433 -0.34606 0.24949 +giving -0.11861 0.065388 -0.08762 -0.88097 0.031239 -1.0487 0.46707 -0.0079952 -0.36886 -0.17169 +attacks. -0.25392 -0.032236 0.016311 -1.1569 1.1794 -1.3267 0.5168 -0.23359 -0.076471 -0.64156 +commanders -0.46258 -0.24119 0.10232 -0.96894 0.4164 -1.0378 0.4784 -0.054836 -0.077072 -0.14536 +president -0.33677 -0.30219 0.11797 -0.84533 0.16699 -1.0107 0.424 0.19408 -0.20011 0.0065484 +witnesses -0.14075 -0.027639 0.11048 -0.9081 0.07699 -0.87359 0.48174 0.018874 -0.28779 0.079268 +"They -0.2338 -0.139 0.11731 -1.0643 0.39083 -0.97842 0.42528 -0.15528 -0.069783 -0.059073 +fact -0.60335 -0.19652 0.11474 -1.006 -0.10808 -0.7693 0.35506 -0.13315 -0.030147 0.2337 +longer -0.55887 -0.24209 0.29306 -0.99047 0.18211 -0.94771 0.3721 -0.19865 -0.02897 0.17724 +Powell -0.51358 -0.10002 0.075846 -1.0233 -0.023909 -0.83873 0.41738 -0.22141 -0.25485 0.096454 +collapse -0.19438 -0.084022 0.080058 -0.90043 0.00063324 -0.83945 0.49146 0.062255 -0.23982 0.1335 +boy -0.16384 -0.11246 0.014311 -1.1305 0.25015 -0.68509 0.4744 -0.26999 -0.076922 0.1922 +involved -0.23396 -0.1966 0.18392 -1.0082 0.052488 -0.92838 0.3691 0.11502 -0.10534 0.17506 +forward -0.23214 -0.14703 0.15094 -0.98371 -0.23519 -0.98797 0.36629 0.099242 -0.22711 0.1875 +militia -0.43077 -0.22653 -0.067671 -0.92817 0.68308 -1.1518 0.55044 -0.1347 -0.026065 -0.12228 +situation -0.5339 -0.14488 0.032761 -0.79896 0.25281 -1.0406 0.50343 0.18194 -0.12588 0.0018157 +ASIO -0.23567 -0.30546 0.39225 -0.89077 -0.5876 -0.67046 0.27892 0.33283 -0.21739 0.49707 +response -0.1571 -0.087453 0.26491 -0.95863 -0.086937 -0.78355 0.31053 0.20016 -0.26188 0.041097 +As -0.34266 -0.024876 0.19252 -0.9934 0.56732 -1.1094 0.45626 0.15147 -0.27764 -0.42731 +disease -0.030411 0.047909 0.062412 -0.95125 0.2199 -0.95773 0.42018 0.080438 -0.22037 0.027476 +placed -0.31413 -0.078587 0.059193 -0.94205 -0.040332 -0.99733 0.36912 -0.054451 -0.2258 0.095615 +chance -0.52828 -0.12485 0.095101 -1.0493 -0.17369 -0.78443 0.39704 -0.036474 -0.14919 0.25015 +address -0.21817 0.010137 0.092077 -0.89644 -0.15827 -0.90724 0.42719 0.10645 -0.30291 0.22053 +States. -0.16341 -0.15763 0.15576 -0.92377 0.64676 -1.1334 0.57526 -0.03691 -0.25793 -0.2704 +party -0.35005 -0.18344 -0.040608 -0.96678 0.11393 -0.97366 0.46049 -0.010412 -0.17804 0.11221 +entered -0.19469 -0.22309 0.15619 -0.87189 0.35959 -0.97711 0.5195 0.14584 -0.16542 -0.056635 +Day -0.26448 -0.067392 -0.0062925 -0.9677 0.62361 -1.1215 0.65933 -0.16353 -0.13543 -0.27834 +short -0.29861 -0.096258 0.051112 -0.99715 0.2501 -0.87024 0.50111 0.013569 -0.15373 0.040428 +Boxing -0.17312 0.25159 -0.16338 -0.84506 -0.1219 -1.0209 0.54002 0.042375 -0.49181 -0.31169 +Martin -0.23051 0.14617 -0.1226 -0.81136 -0.39254 -0.929 0.4845 0.17899 -0.31655 0.10688 +Donald -0.3668 -0.31585 0.18055 -0.88702 -0.082501 -0.83075 0.43068 0.057527 -0.060287 0.3466 +Local -0.4166 -0.31576 0.13843 -0.79674 -0.091945 -0.97806 0.37698 0.074839 -0.084672 0.20961 +followed -0.068441 0.044316 0.091602 -0.93525 0.32473 -1.0785 0.4884 0.17029 -0.1689 -0.057822 +warned -0.27548 -0.099088 0.13718 -0.94938 0.18932 -0.9183 0.2788 -0.048953 -0.1141 -0.11389 +48 -0.84419 -0.18653 0.29293 -0.83778 0.3217 -0.97718 0.43714 -0.17774 0.010283 -0.20241 +serious -0.32479 -0.19952 0.01172 -0.87772 0.61493 -1.0947 0.58385 -0.10002 -0.019106 -0.014508 +inquiry -0.29588 -0.25489 0.087912 -0.87935 0.29723 -1.0276 0.47503 -0.048841 -0.10658 -0.055423 +sort -0.051322 -0.15173 0.14363 -0.88693 -0.18115 -0.69567 0.41564 0.012624 -0.30785 0.38157 +prevent -0.17982 -0.1031 0.17494 -0.90397 -0.22325 -0.77348 0.48222 0.2477 -0.2021 0.29359 +strike -0.26249 -0.10207 0.077732 -0.93117 0.2996 -0.95785 0.51303 0.083574 -0.1658 0.014509 +Anglican -0.1808 -0.056134 0.25429 -1.002 -0.16747 -0.79432 0.39045 0.19596 -0.15251 0.22658 +cancer -0.2918 -0.14501 0.19404 -0.87255 0.014863 -0.88379 0.3752 0.15281 -0.1911 0.11058 +bring -0.082268 0.0039916 -0.0066104 -0.83081 -0.13348 -0.92132 0.54214 0.17418 -0.4141 -0.034829 +available -0.32264 -0.075275 0.033305 -0.98118 0.086585 -0.90595 0.42473 -0.20275 -0.16315 0.13557 +morning, 0.071681 -0.084214 0.37602 -0.92478 -0.07168 -0.85084 0.41671 0.25985 -0.39865 0.13377 +Brett -0.39988 0.12227 -0.14695 -0.84352 0.26524 -1.0828 0.5565 -0.031347 -0.19666 -0.13479 +money 0.10693 -0.24461 0.33205 -0.98638 -0.26491 -0.85389 0.28839 0.2983 -0.35361 0.30637 +Muslim -0.37519 -0.1731 0.21203 -0.97612 -0.01014 -0.85301 0.41571 0.0089575 -0.18362 0.096238 +mountains -0.52235 -0.0313 0.19906 -1.0696 0.45976 -0.95238 0.44859 -0.0063259 -0.10718 -0.17352 +main -0.4307 -0.096279 0.18151 -0.87066 -0.3373 -0.87146 0.37781 0.24209 -0.3128 0.046284 +overnight. -0.05978 -0.17425 0.50098 -0.97825 0.32724 -0.98814 0.44684 0.38269 -0.20557 0.056648 +border -0.61028 -0.14578 0.017971 -0.95586 0.41711 -1.0875 0.48467 -0.21194 0.0062121 -0.20204 +current -0.15874 -0.1446 0.20205 -0.79474 -0.091161 -0.85191 0.54808 0.33502 -0.32097 0.15464 +AFP -0.43069 -0.06174 0.041412 -1.035 0.36056 -0.91176 0.55137 -0.32412 0.032452 -0.011461 +Daryl -0.49073 -0.11078 0.0059247 -0.9298 0.20923 -0.97749 0.41212 -0.31057 -0.061639 -0.028531 +level -0.23517 -0.16461 0.18845 -1.0032 0.53353 -0.97729 0.52615 -0.16901 -0.1271 0.019749 +never -0.47821 -0.085864 0.14045 -0.78639 0.063474 -1.027 0.46941 -0.1867 -0.1437 0.026296 +cannot -0.32269 -0.13929 0.24225 -1.0206 -0.03028 -0.9009 0.3505 -0.049398 -0.092678 0.139 +royal -0.54 -0.23168 0.16237 -0.86746 0.082618 -0.9545 0.37876 -0.044377 -0.038106 0.020396 +calling -0.27627 -0.10037 0.003318 -0.8251 -0.072697 -1.0253 0.38615 0.12013 -0.18733 -0.10744 +Anthony -0.29676 -0.056315 -0.14688 -0.86255 0.1869 -0.96764 0.48321 0.04497 -0.19118 0.084065 +lives -0.33202 -0.28284 0.25269 -1.0548 0.70137 -1.1561 0.44864 -0.04875 0.078248 -0.23948 +according -0.36104 -0.20245 0.088021 -0.90923 0.24059 -1.0262 0.48457 0.03779 -0.21451 -0.22357 +Geoff -0.18856 -0.29532 0.25044 -1.0282 -0.25594 -0.67297 0.33488 0.17971 -0.23647 0.43254 +state's -0.18054 -0.27202 0.37814 -1.1113 0.30717 -0.89957 0.35238 -0.019664 -0.18023 0.1016 +"This -0.42224 -0.05965 0.14074 -0.88887 -0.14413 -0.90186 0.42267 -0.049023 -0.23884 0.11355 +movement -0.15536 -0.36437 0.16587 -0.91736 0.45287 -1.0791 0.48025 0.20168 -0.027551 -0.036841 +Justice -0.16172 -0.08131 0.01455 -0.8468 -0.25169 -0.91213 0.50762 0.17318 -0.24023 0.29564 +Vaughan -0.52576 -0.039893 0.10583 -0.93523 0.36761 -1.0281 0.5194 0.0068841 -0.16615 -0.14374 +deadly -0.20142 -0.12306 -0.062067 -0.97255 0.40423 -0.8879 0.50728 -0.052048 -0.19292 0.084739 +ruled -0.071221 -0.070779 0.19589 -0.96566 0.27633 -1.0952 0.38484 0.27097 -0.084554 -0.013572 +fast -0.37751 0.026316 -0.011812 -0.89545 0.23886 -1.0078 0.54184 0.22559 -0.32299 -0.14724 +led -0.35603 -0.40632 0.26926 -1.1032 0.86261 -1.1361 0.38627 -0.12178 0.28368 -0.1525 +insurance -0.28391 -0.13389 0.054707 -0.92632 0.23121 -0.92442 0.46559 0.15454 -0.19599 0.050628 +burning -0.16641 -0.098378 0.33981 -0.95832 -0.2186 -0.84922 0.37866 0.13416 -0.35948 0.076853 +fired 0.24878 -0.16657 0.38399 -1.1783 0.50918 -0.91939 0.31095 0.27848 -0.22079 -0.022189 +anything -0.18968 -0.25379 0.13284 -0.87075 -0.4172 -0.75594 0.36244 0.088717 -0.29159 0.26666 +study 0.0016092 -0.019816 0.10753 -0.98043 0.24135 -0.87145 0.48581 0.057884 -0.26077 0.080121 +"These -0.45929 -0.19157 0.10329 -0.98596 0.10077 -0.87076 0.40393 -0.10262 -0.096417 0.082231 +trip -0.25091 -0.34149 0.097458 -0.86118 0.71392 -1.1633 0.39403 0.025984 -0.16656 -0.15394 +Workers -0.55923 -0.13892 0.13249 -0.86279 -0.048219 -0.84642 0.50666 -0.00838 -0.098121 0.067299 +speaking -0.37817 -0.098246 0.004995 -0.87793 -0.15698 -0.88181 0.432 0.067994 -0.26448 -0.022681 +White -0.60335 -0.1973 0.2229 -0.93662 0.36819 -0.92215 0.37535 -0.068352 -0.12827 -0.17589 +cent. -0.11218 -0.078002 0.27892 -0.91788 0.18222 -0.98627 0.5622 0.40077 -0.24635 0.040361 +difficult -0.25006 -0.2152 0.12371 -0.9856 0.1282 -0.83924 0.4174 0.041246 -0.22196 0.079786 +rule -0.2409 -0.055641 0.12339 -0.86898 0.12055 -1.0115 0.45835 0.22055 -0.09693 0.096909 +Allan -0.40569 0.11774 0.033441 -0.902 0.1465 -0.98182 0.5628 -0.15242 -0.18927 -0.010615 +costs -0.1733 -0.14964 0.12231 -0.90499 0.17765 -0.84202 0.45353 0.23073 -0.23502 0.14769 +yesterday. -0.28329 0.027702 0.053544 -0.87839 0.21135 -0.96857 0.65698 0.020271 -0.28429 0.020266 +fighter -0.41604 -0.095168 0.30198 -0.98387 0.47422 -0.99762 0.53228 -0.0050993 -0.15331 -0.15822 +member -0.2331 -0.095176 0.15376 -0.85168 0.52189 -1.1619 0.51991 -0.013982 -0.14735 -0.13126 +case -0.21558 -0.12124 0.05104 -1.0042 0.11426 -1.0545 0.31161 -0.022932 -0.089511 -0.034249 +tanks -0.27714 -0.19358 0.15383 -0.96794 0.59145 -1.0232 0.52408 0.015189 -0.18396 -0.13722 +"You -0.36109 0.037503 0.077384 -0.81445 -0.58514 -0.75906 0.41245 -0.0055023 -0.38252 0.27519 +If -0.29336 -0.078326 -0.023694 -0.89329 -0.38684 -0.77139 0.33765 0.068822 -0.23169 0.23285 +accept -0.15804 -0.22481 0.079074 -0.83507 0.0013924 -1.0224 0.49693 0.27896 -0.18544 0.070565 +week. -0.23583 -0.11154 0.093785 -1.0395 0.097095 -0.74529 0.41449 -0.011722 -0.31721 0.24879 +yacht -0.13359 -0.056216 0.28246 -0.86754 0.24431 -1.0462 0.56034 0.078065 -0.15967 0.027042 +receiving -0.18568 -0.19509 0.20359 -0.8793 0.040725 -0.95688 0.3492 0.18718 -0.21646 0.018865 +complex -0.27979 -0.20965 0.24597 -0.94615 0.11754 -0.85075 0.4135 0.11823 -0.18139 0.10872 +bomb -0.10411 -0.16758 0.027894 -1.0043 0.68615 -0.91996 0.59801 -0.17001 -0.11265 0.029732 +Islands 0.055929 -0.073953 0.089914 -0.98044 0.40534 -0.93344 0.52493 0.17405 -0.2064 0.14249 +nine -0.092495 -0.01118 0.22485 -1.0003 0.88985 -1.2477 0.49838 0.12774 -0.051487 -0.48241 +companies -0.18152 -0.18917 0.22312 -0.85622 0.056556 -0.93547 0.46695 0.18621 -0.24087 0.085655 +Rafter -0.38032 0.070217 0.086042 -0.96352 -0.19821 -0.90648 0.49956 -0.001303 -0.31352 0.15224 +front -0.24326 -0.077296 0.20992 -0.90475 -0.092187 -0.86735 0.41712 0.15823 -0.16778 0.25111 +population -0.50601 -0.19196 0.10535 -0.7761 0.1146 -1.0252 0.52991 0.15474 -0.13684 0.060423 +confident -0.24342 -0.31847 0.26516 -0.94511 0.12772 -0.8851 0.38657 0.19577 -0.10378 0.11863 +industry. -0.38611 -0.033498 0.04676 -0.89376 -0.12277 -0.9335 0.47413 0.060874 -0.19488 0.051604 +tour -0.22967 -0.033846 0.16736 -0.90689 -0.3228 -0.86314 0.43663 0.046934 -0.34227 0.14822 +Suharto -0.24116 -0.1497 0.069632 -0.99369 0.16442 -0.92596 0.47624 -0.030149 -0.1259 0.1019 +tomorrow. -0.12844 -0.063605 0.11452 -0.88008 -0.01359 -0.9403 0.44478 0.2316 -0.2995 0.089737 +Hobart -0.043345 -0.06854 0.18042 -0.99022 0.30043 -0.93527 0.54179 0.080807 -0.22913 -0.0052467 +yesterday, -0.24837 0.047107 0.070702 -0.89129 0.36037 -0.98175 0.671 0.0075154 -0.24511 -0.020356 +2,000 -0.060149 0.045672 0.04958 -0.92051 -0.3615 -0.87124 0.47828 0.18592 -0.39622 0.15934 +wicket -0.10815 0.3282 -0.048706 -0.92659 0.14362 -0.96174 0.6269 0.13785 -0.51049 -0.13903 +Reid -0.42345 -0.13997 0.12807 -0.84637 -0.38389 -0.78013 0.37707 0.08608 -0.19094 0.15275 +cabinet -0.51716 0.067514 0.12552 -0.9087 0.49022 -1.0966 0.54915 -0.089107 -0.054725 -0.30751 +provide -0.15278 -0.24973 0.16126 -0.98997 -0.21103 -0.76852 0.35432 0.21726 -0.33472 0.3697 +Richard -0.20802 -0.19244 0.17873 -0.94466 0.021598 -0.93777 0.41304 0.037062 -0.22068 0.15586 +share -0.086957 -0.23213 0.39035 -1.0906 0.10842 -0.72498 0.25639 0.076963 -0.26053 0.20299 +Hewitt -0.15998 -0.0096643 0.087519 -0.93864 -0.0011411 -0.87672 0.5044 0.16864 -0.36648 0.17587 +federal -0.28263 -0.29288 0.22994 -0.85214 0.06155 -1.0086 0.45926 0.17111 -0.12936 0.048581 +ever -0.38852 -0.040496 0.18186 -0.84779 0.11522 -0.97393 0.47106 -0.12381 -0.12139 0.069396 +tribal -0.40427 -0.20428 0.14494 -0.90537 0.092135 -0.83685 0.43331 -0.029453 -0.20316 0.086098 +country -0.46126 -0.22923 0.20224 -0.93519 0.028441 -0.87746 0.40873 0.12325 -0.18586 0.1082 +changed -0.27061 -0.23506 0.30103 -0.96906 -0.1871 -0.8849 0.22815 0.098739 -0.12629 0.2929 +starting -0.30591 -0.14842 0.045408 -0.88547 -0.10373 -0.86482 0.4751 0.059188 -0.25864 0.044166 +5,000 0.0012201 0.032442 -0.0054541 -0.9087 0.054951 -0.94923 0.46876 0.23447 -0.37541 -0.034613 +stage -0.2685 -0.26042 0.19196 -0.90154 0.15439 -0.93922 0.38876 0.05271 -0.20931 0.11808 +survey -0.068021 0.099633 0.14039 -0.91497 0.19726 -0.90641 0.52173 0.081349 -0.35895 -0.0089281 +absolutely -0.46804 -0.23809 0.14699 -0.95181 -0.1983 -0.86208 0.35705 0.084608 -0.27237 0.15851 +small -0.34361 -0.16832 0.17509 -0.93314 0.14324 -0.98891 0.43486 -0.013861 -0.064008 0.16603 +offices -0.18445 -0.099133 0.099574 -0.94606 0.59011 -1.1729 0.59228 -0.020341 0.012397 -0.098159 +global -0.42663 -0.18687 0.0884 -0.87023 0.11399 -0.91431 0.50815 0.0091142 -0.19424 0.1397 +nearly -0.2713 -0.088893 0.13328 -0.94283 0.27597 -0.9861 0.47448 -0.024321 -0.32087 -0.11705 +French -0.51021 -0.11283 0.034828 -0.87723 0.48862 -1.1731 0.55609 -0.14416 0.018067 -0.1416 +ministers -0.77847 -0.20559 0.04935 -0.89388 0.51098 -1.1126 0.58615 -0.26023 0.087819 -0.0047207 +secretary -0.40332 -0.13563 0.095235 -0.89046 -0.052473 -0.85771 0.49431 -0.084074 -0.11483 0.083349 +area. -0.069575 -0.1074 0.32267 -1.0579 0.074068 -0.7113 0.38478 0.023557 -0.25413 0.30862 +House -0.52806 -0.18135 0.26993 -1.1003 0.094986 -0.86281 0.36131 -0.048165 -0.020116 0.1606 +proposals -0.36694 -0.28187 0.27781 -0.93572 -0.45139 -0.71488 0.33804 0.18409 -0.24178 0.39308 +Steve -0.27019 0.21753 -0.072046 -0.91778 -0.060812 -0.91587 0.52003 -0.040411 -0.2842 -0.072086 +powers -0.29463 -0.19813 0.28684 -1.014 0.080471 -0.81738 0.36285 -0.052792 -0.21976 0.16303 +helicopter -0.25687 -0.064613 0.045338 -0.90035 0.38695 -1.0113 0.43999 0.0056159 -0.22388 -0.028703 +total -0.19574 -0.19443 0.19962 -0.90192 0.12229 -0.94611 0.41304 0.18708 -0.24157 0.10976 +well, -0.24042 -0.0048114 -0.10428 -0.98395 -0.24487 -0.74945 0.50611 -0.11992 -0.48088 0.26573 +terror -0.37502 -0.19371 0.22344 -0.89512 0.26076 -0.94791 0.40102 -0.02156 -0.27957 -0.12665 +list -0.31649 -0.10805 0.088525 -0.87109 0.39583 -0.94694 0.56579 -0.020434 -0.30059 -0.091529 +wickets -0.11094 0.25547 -0.028393 -0.98382 0.37106 -0.98481 0.64935 0.016147 -0.50319 -0.18784 +confidence -0.38178 -0.29464 0.069465 -1.0372 0.24086 -0.91127 0.42344 -0.060514 -0.059409 0.12219 +post -0.071096 -0.1008 0.19798 -0.95918 -0.16612 -0.8353 0.488 0.29332 -0.38116 0.10752 +base -0.21322 -0.1371 0.27562 -1.0178 -0.35491 -0.63268 0.34969 0.21059 -0.25413 0.38995 +commander -0.45147 -0.16981 0.063563 -0.87107 0.21224 -1.0843 0.49199 -0.015571 -0.080977 -0.022907 +increase -0.15533 -0.07075 0.19984 -0.90473 0.1906 -0.91756 0.4335 0.14786 -0.24569 0.043626 +moved -0.19785 -0.14604 0.12517 -1.0153 0.57268 -1.129 0.28721 -0.077822 0.065845 -0.14377 +Rural 0.10639 -0.29489 0.43193 -0.96248 -0.42105 -0.75275 0.23308 0.4188 -0.44515 0.33611 +Highway -0.25074 -0.13236 0.077874 -0.98353 0.16993 -0.94955 0.51033 -0.038909 -0.21028 0.021032 +overall -0.21224 -0.16805 0.365 -0.90428 -0.059735 -0.94327 0.37135 0.30456 -0.23009 0.17049 +coming -0.29379 -0.19742 0.12593 -0.80605 -0.24166 -0.93986 0.44044 0.10291 -0.2298 0.12655 +Tony -0.39816 -0.23335 0.021897 -0.85312 0.39238 -1.0179 0.43609 0.026345 -0.12991 -0.16952 +time, -0.26195 -0.045255 0.054461 -0.91151 0.019257 -0.91574 0.43555 0.0052445 -0.21838 0.060998 +Perth. -0.10565 -0.0084844 0.14234 -1.0362 0.054377 -0.90548 0.46144 0.083715 -0.19048 0.058815 +rights -0.20597 -0.081837 0.23318 -0.95121 0.41999 -1.0853 0.54029 0.19495 -0.12341 -0.20142 +Pacific -0.36132 -0.22185 0.15185 -0.91572 0.11814 -0.98048 0.49792 0.085878 -0.12503 0.16658 +Simon -0.11685 -0.038896 0.079094 -0.84486 -0.31179 -0.8822 0.37843 0.17594 -0.24671 0.21485 +fellow -0.45967 -0.043865 0.13649 -0.96167 0.12351 -0.86724 0.40706 -0.046775 -0.1364 -0.08718 +force, -0.34743 -0.29381 0.050942 -0.95045 0.59266 -1.2173 0.36728 0.035491 -0.18104 -0.20573 +freeze -0.49273 -0.15795 0.18215 -0.92833 0.079104 -0.90847 0.41997 0.11126 -0.19785 -0.084013 +damaged 0.0012511 -0.030074 0.25001 -0.92128 -0.0029533 -0.96183 0.34022 0.3789 -0.33441 0.096431 +mean -0.4804 -0.16951 0.048943 -0.8598 -0.24383 -0.88889 0.42948 -0.0015202 -0.15628 0.17191 +tennis -0.24646 -0.071839 0.15165 -0.98835 0.22813 -0.84679 0.51183 0.010715 -0.28158 0.15038 +him. -0.27782 -0.08642 0.096749 -0.80777 -0.36018 -0.76288 0.38563 0.046946 -0.23796 0.26555 +threat -0.26372 -0.050867 0.14379 -1.0282 0.031866 -0.79964 0.37458 -0.098354 -0.31621 0.17716 +significant -0.1301 -0.2203 0.23583 -0.98073 -0.03564 -0.90559 0.40939 0.090843 -0.18276 0.19704 +car -0.095605 0.10722 -0.013124 -0.82008 0.068251 -0.88256 0.50676 0.27472 -0.32002 -0.062105 +criticism -0.38729 -0.087101 0.10936 -0.88617 0.10806 -0.92521 0.51285 0.040669 -0.13519 0.046207 +anti-Taliban -0.56867 -0.17994 0.062338 -0.94939 0.29974 -0.98646 0.44749 -0.12485 -0.060586 -0.10028 +India. -0.44284 -0.081479 0.32682 -0.89064 0.10462 -0.9727 0.4773 -0.0348 -0.15041 -0.12865 +quickly -0.19946 -0.062956 0.1154 -0.90002 -0.20247 -0.82015 0.49506 0.11739 -0.27552 0.22045 +accident -0.20306 -0.20297 0.27341 -0.86218 -0.085632 -0.95416 0.39384 0.30935 -0.23489 0.046771 +months. -0.14498 0.0096728 0.084306 -0.88581 0.18665 -1.0543 0.50127 0.21423 -0.37771 -0.1417 +places -0.28233 -0.016887 0.11459 -0.98382 0.16488 -0.99112 0.47978 -0.0063082 -0.24797 0.044266 +hearings -0.072585 -0.033269 0.033601 -0.92202 0.20151 -0.98647 0.45259 0.17178 -0.35125 -0.016036 +control. -0.068946 -0.18804 0.15451 -0.96441 0.13366 -0.85439 0.44594 0.25796 -0.29269 0.21424 +began -0.50454 -0.24755 0.12876 -0.91359 0.13738 -0.95903 0.47035 -0.066543 -0.18543 0.0047818 +hour 0.045793 0.092578 0.14008 -0.95575 -0.041559 -0.93366 0.37378 0.18275 -0.45589 -0.011432 +airport -0.092699 -0.1598 0.17511 -0.98575 0.21607 -0.82413 0.43506 0.063688 -0.17872 0.20286 +management -0.30659 -0.33859 0.14841 -0.85527 0.066927 -0.95052 0.4215 0.204 -0.13698 0.074181 +areas. -0.051095 -0.24853 0.46468 -1.0684 0.18378 -0.69016 0.43616 0.13457 -0.18965 0.33674 +confirm -0.43539 -0.32098 0.1932 -1.0501 0.14579 -0.792 0.37887 -0.013652 -0.033518 0.20015 +direct -0.082884 -0.18384 0.26525 -0.93763 0.065223 -0.92336 0.21136 0.23335 -0.21433 -0.011837 +crackdown -0.33707 -0.15978 0.19845 -0.96674 0.18365 -0.92571 0.43693 0.018279 -0.18878 0.032471 +everything -0.28963 -0.19187 0.12756 -0.86967 -0.39614 -0.72188 0.42214 0.060443 -0.25329 0.29818 +Laden, -0.92949 -0.26304 0.38363 -1.1598 0.41546 -0.88893 0.15614 -0.41996 0.010165 -0.21182 +March -0.38713 0.086237 0.15301 -0.86982 -0.33435 -0.78235 0.48544 0.094351 -0.31309 0.13725 +Attorney-General -0.25057 -0.19638 0.18944 -0.93629 -0.090629 -0.86499 0.42347 0.20342 -0.21998 0.22308 +Endeavour -0.22169 -0.092432 0.035077 -0.8808 0.029427 -0.86335 0.45579 0.044855 -0.27194 0.15782 +Pakistan's -0.92088 -0.49816 0.079493 -1.014 0.8061 -1.2665 0.45884 -0.23544 0.10661 -0.39567 +Ian -0.3708 -0.067236 0.096163 -0.93513 0.45945 -1.062 0.56056 -0.14612 -0.066785 -0.0086675 +Bank, -0.26307 -0.19509 0.17071 -1.0483 0.64624 -1.0057 0.50766 -0.13061 -0.14266 -0.067282 +space -0.24785 0.031023 -0.20854 -0.93185 0.16903 -0.94983 0.57514 0.011342 -0.29523 0.03631 +remains -0.27094 0.020081 0.089926 -0.99737 0.34499 -0.91512 0.50734 0.072577 -0.15759 -0.05245 +explosives -0.36031 -0.15429 0.078313 -0.92549 0.08738 -0.9409 0.45157 0.0516 -0.18237 0.033363 +east -0.19675 0.12544 0.10072 -1.019 0.81313 -1.0884 0.62149 0.11888 -0.29042 -0.42242 +25 0.11895 -0.056397 0.090409 -1.0446 0.10077 -0.95928 0.33355 0.070212 -0.30139 0.21796 +battle -0.27846 -0.070352 0.15079 -0.98463 -0.38279 -0.72243 0.37669 -0.068275 -0.2686 0.37715 +Jason -0.187 -0.015456 0.11623 -0.84792 0.19114 -1.0272 0.57475 0.18859 -0.29507 -0.12471 +Lockett -0.46609 -0.11666 0.14205 -0.89711 -0.25063 -0.81773 0.36452 0.064722 -0.31159 0.10607 +capital -0.22541 -0.12107 0.028604 -0.9452 0.57696 -1.1292 0.53787 -0.050462 -0.10325 -0.17973 +ahead -0.24124 -0.16768 0.13893 -0.91959 0.26864 -0.91944 0.44784 0.040978 -0.18457 0.11707 +Party -0.23333 -0.12322 0.061631 -0.94488 0.12722 -0.97368 0.53133 0.095747 -0.20035 0.10882 +didn't -0.37202 -0.12961 0.099155 -0.96571 0.32674 -1.1425 0.39862 -0.089292 -0.15754 -0.16824 +storms -0.13308 -0.07898 0.3656 -1.0861 -0.076813 -0.763 0.3458 0.080008 -0.2326 0.2837 +signed -0.2608 -0.26592 0.21975 -1.0783 0.43314 -0.98418 0.34998 -0.14913 -0.069144 -0.058183 +January -0.57483 -0.064061 -0.0063107 -0.88573 0.20769 -1.0344 0.50173 -0.12499 -0.15397 -0.094807 +hopes -0.073326 0.014969 0.3224 -1.0171 -0.37621 -0.62876 0.36393 0.094118 -0.30377 0.4029 +private -0.38831 -0.14378 0.084549 -0.86793 -0.35893 -0.8119 0.42237 0.17419 -0.30477 0.311 +suspended -0.39136 -0.18597 0.041544 -1.016 0.60437 -1.0746 0.45986 -0.19855 -0.054115 -0.17317 +Shaun -0.32093 0.16317 -0.096377 -0.8842 -0.11604 -0.91614 0.56229 -0.06852 -0.32679 0.12307 +payment -0.25827 -0.31973 0.22182 -0.92272 -0.039587 -0.92623 0.39454 0.29695 -0.13683 0.10222 +remaining -0.26889 -0.12486 0.17687 -0.96169 0.25128 -0.94744 0.46965 0.082772 -0.19431 -0.088614 +Harrison's -0.34397 -0.081245 0.11922 -1.0049 0.15445 -0.9469 0.45309 -0.040188 -0.12697 -0.017896 +wanted -0.32708 -0.23356 0.15721 -0.94677 0.11878 -1.0302 0.33616 0.0061313 -0.05673 -0.076851 +gas -0.21353 -0.17003 0.30298 -0.98714 -0.040188 -0.75639 0.33372 -0.027209 -0.23979 0.20234 +wind -0.038783 0.23472 0.17419 -0.94069 -0.49704 -0.72763 0.40959 0.13712 -0.47081 0.33106 +land -0.028609 -0.018359 0.18715 -0.90246 0.045488 -0.98513 0.44541 0.24472 -0.21424 0.13154 +Americans -0.14396 -0.053435 0.091117 -0.97989 0.13175 -0.92375 0.50287 0.10374 -0.3305 0.049118 +market -0.25229 0.091016 0.12493 -0.82617 -0.36877 -0.84742 0.43253 0.21714 -0.35559 0.13219 +wounded -0.3291 -0.25446 0.083525 -1.0483 0.48991 -1.0708 0.47048 -0.087657 -0.073512 -0.02871 +provisional -0.28291 -0.14185 0.011425 -0.79579 0.055761 -0.99861 0.54567 0.1421 -0.211 0.1105 +measures -0.19868 -0.14164 0.28929 -0.90265 0.025215 -0.83739 0.41811 0.21035 -0.22273 0.10311 +added. -0.42632 -0.17106 0.12843 -0.92895 0.14204 -0.93931 0.47269 -0.059101 -0.11808 0.034853 +mission -0.61278 -0.16954 0.00067001 -0.76193 0.061803 -1.0087 0.46712 0.021911 -0.038718 0.030982 +wake -0.093672 0.055472 -0.019713 -0.92111 -0.11022 -0.97104 0.41747 0.10263 -0.27675 0.12806 +airline's -0.22412 -0.12503 0.25227 -0.95896 -0.059966 -0.86024 0.36567 0.09931 -0.19185 0.11832 +secret -0.458 -0.081446 0.11812 -0.8207 -0.17783 -0.88348 0.52513 -0.024678 -0.096435 0.16607 +Ruddock -0.34777 -0.029505 0.024112 -0.80824 0.11575 -0.93498 0.55054 0.086513 -0.1592 0.066195 +happened -0.31539 -0.17737 0.071333 -0.97106 0.22044 -0.94565 0.44359 -0.12155 -0.070321 0.088699 +rise -0.22078 0.016361 0.085381 -0.98863 -0.15084 -0.74209 0.47434 -0.081044 -0.16355 0.23253 +Sharon's -0.61083 0.081367 -0.020081 -0.89849 0.25259 -1.1607 0.51477 -0.4268 0.058208 -0.059512 +strategic -0.31828 -0.19848 0.17038 -0.9227 0.442 -0.9679 0.50203 -0.0076138 -0.17986 0.068369 +keep -0.10788 0.1237 -0.035003 -0.9761 0.023099 -0.89026 0.50539 0.036025 -0.34625 0.13666 +minister -0.81028 -0.045458 -0.015941 -0.78384 0.2495 -1.1529 0.58248 -0.26326 0.068149 0.055324 +sea -0.46396 -0.26388 0.2936 -0.98634 0.18721 -0.75769 0.46366 -0.25523 0.073609 0.27053 +Ray -0.074281 0.020983 0.096088 -1.0812 0.33056 -0.99169 0.58882 0.044375 -0.27237 -0.017101 +visit -0.33539 0.0099953 -0.054178 -0.83477 0.19101 -1.1189 0.42853 -0.007317 -0.099517 -0.107 +Road -0.084933 0.036377 0.27574 -1.0054 0.31223 -1.025 0.5488 0.036382 -0.2599 -0.061547 +peacekeepers -0.34258 -0.21414 0.063549 -0.93751 0.19598 -0.98197 0.48825 0.0060761 -0.1863 0.087055 +fleeing -0.37017 -0.16615 0.032975 -0.90687 0.22861 -1.0308 0.37704 0.0089835 -0.22146 -0.16206 +claim -0.26934 -0.15062 0.2185 -0.92438 0.093081 -0.92261 0.46575 0.047964 -0.29593 0.061419 +community. -0.21125 -0.31741 0.27287 -0.93479 -0.087283 -0.80433 0.36473 0.28058 -0.22082 0.25785 +Europe -0.15524 -0.028875 0.12736 -0.87264 -0.29675 -0.82058 0.43141 0.14404 -0.3574 0.22175 +avoid -0.3159 -0.13116 0.092537 -0.91962 -0.14937 -0.86592 0.46207 0.038993 -0.22333 0.14456 +twice -0.19078 -0.0097596 -0.043195 -0.95156 -0.10547 -0.86528 0.45012 0.16861 -0.29833 0.23977 +Space -0.26798 0.02642 -0.27477 -0.87406 0.37457 -0.97373 0.58072 -0.059426 -0.21291 0.014392 +heading -0.30503 -0.19067 0.11591 -0.93072 0.29625 -1.0378 0.44472 0.10656 -0.27961 -0.19525 +seeking -0.31141 -0.2143 0.011891 -0.88491 -0.19062 -0.82044 0.4387 -0.062761 -0.24948 0.24342 +research -0.32235 -0.12943 0.19902 -0.92469 -0.032494 -0.85794 0.36539 0.10344 -0.26879 0.15296 +expects -0.17921 -0.14698 0.018943 -0.98205 -0.01159 -0.88842 0.38572 0.051161 -0.20906 0.17928 +it," -0.096694 -0.12084 0.1939 -1.0227 0.013426 -0.71415 0.44316 0.05587 -0.36245 0.27634 +anyone -0.14831 -0.28917 0.18073 -0.96224 0.08969 -1.0285 0.30375 0.036478 -0.11385 -0.0055106 +central -0.26683 -0.14607 0.26665 -0.72907 0.043762 -0.99392 0.51015 0.39524 -0.17656 0.024895 +Ansett -0.40758 0.071663 -0.021865 -0.97622 0.14376 -1.0178 0.55423 0.025754 -0.23671 -0.11201 +resume -0.2187 -0.054911 0.15343 -0.9123 -0.1972 -0.87511 0.37848 0.14455 -0.24542 0.20312 +helped -0.51121 -0.19425 0.082131 -1.0081 0.43923 -1.1074 0.32046 -0.10208 -0.030773 -0.17206 +supporters -0.38632 -0.10143 0.1101 -1.0007 0.31006 -0.84494 0.48594 -0.042092 -0.17304 0.014432 +women 0.062876 -0.046723 0.040559 -1.0124 0.23266 -1.0332 0.48577 0.17471 -0.25969 0.121 +Nauru -0.30785 -0.11305 0.076707 -0.97418 0.019464 -0.79503 0.38329 -0.092909 -0.2986 0.085795 +nothing -0.10046 -0.26032 0.2425 -0.96312 -0.45507 -0.6761 0.31895 0.033381 -0.3226 0.35858 +school -0.34002 -0.14079 0.17584 -0.94491 -0.032758 -0.86983 0.4427 0.1536 -0.13169 0.20775 +started -0.10147 -0.15964 0.25274 -0.98902 -0.00099649 -0.82592 0.40647 0.064374 -0.25575 0.18136 +Force -0.5079 -0.25116 0.06707 -0.91445 0.017578 -0.89055 0.43581 0.033313 -0.10564 0.07492 +negotiating -0.22875 -0.10236 0.016135 -0.93902 0.1019 -0.97418 0.47083 0.13294 -0.3142 -0.034064 +terrorism -0.3095 -0.16914 0.23158 -0.8955 0.14668 -0.97299 0.43941 0.13505 -0.27607 -0.068449 +include -0.3025 -0.13224 0.062704 -0.87496 0.17456 -0.96419 0.46202 0.036182 -0.23544 -0.11814 +issued -0.16907 0.062066 0.13286 -0.93521 -0.03815 -0.85031 0.36243 0.24582 -0.17024 0.062843 +finished -0.35034 -0.14011 0.069695 -1.0225 0.30062 -1.0641 0.44014 0.024424 -0.13101 -0.032742 +Some -0.0099117 -0.061962 0.16397 -0.87882 -0.35958 -0.73887 0.56596 0.35597 -0.39751 0.26644 +operating -0.33804 -0.14838 -0.063496 -0.88383 0.38855 -1.0461 0.57688 0.090779 -0.27263 -0.19365 +whole -0.25506 -0.21451 0.22861 -0.94329 -0.2153 -0.81776 0.36984 0.018867 -0.24345 0.20418 +son -0.34367 -0.12143 -0.30906 -0.8543 0.24156 -1.0248 0.59752 -0.26618 -0.1898 0.14002 +crisis -0.28756 -0.073788 0.18835 -0.94887 -0.066948 -0.88405 0.40472 0.088737 -0.24188 0.017432 +bomber -0.19771 -0.11944 -0.1017 -0.94034 0.73826 -1.2021 0.55556 -0.29073 -0.034958 -0.1653 +saw -0.25176 0.00058522 0.12581 -0.95181 -0.56601 -0.74178 0.27863 0.078124 -0.32676 0.34685 +accompanied -0.23652 -0.11722 0.15679 -0.91396 0.24583 -1.1026 0.46984 0.14369 -0.20654 -0.088014 +bowling -0.23753 0.10104 -0.10521 -0.89953 0.093848 -1.0557 0.55039 0.049629 -0.286 -0.23985 +circumstances -0.24159 -0.13832 0.22577 -1.0123 -0.014924 -0.705 0.44815 0.094114 -0.27955 0.1786 +added -0.39582 -0.20179 0.18945 -1.0291 0.60074 -1.0893 0.4444 -0.14892 0.037658 -0.16329 +severe -0.4236 -0.24805 0.24307 -1.0071 -0.0098305 -0.86059 0.38742 0.055473 -0.097104 0.26985 +closed -0.1375 -0.094965 0.16604 -0.95943 0.46679 -1.093 0.47617 0.036413 -0.14127 -0.1315 +there, -0.23426 -0.23311 0.20568 -1.0534 -0.69502 -0.4636 0.26911 -0.031192 -0.30147 0.63743 +employees -0.053637 -0.15401 0.26868 -0.92355 -0.18449 -0.77002 0.42827 0.27962 -0.35416 0.27443 +Victorian -0.21411 -0.093511 0.1154 -0.93202 0.029805 -0.89468 0.40768 0.10296 -0.28345 0.1034 +condition -0.39908 -0.34224 0.27793 -0.94165 0.15307 -0.91617 0.39146 0.23894 -0.17391 0.1092 +almost -0.21181 -0.14618 0.14846 -0.90683 -0.283 -0.71038 0.36562 0.20319 -0.32717 0.21449 +ballot -0.2257 -0.12386 0.15275 -0.92709 -0.38533 -0.68577 0.35565 0.095352 -0.21546 0.40701 +pulled -0.13349 -0.16285 0.30139 -1.0546 0.34589 -0.96727 0.35756 -0.079435 -0.0053248 0.082715 +action, -0.61402 -0.28428 0.10996 -0.95448 -0.058881 -0.8188 0.33729 0.11333 -0.14163 0.15422 +sides -0.12322 0.033408 0.051573 -0.88149 -0.018843 -0.99042 0.42088 0.043824 -0.32997 -0.04907 +400 -0.41921 -0.17601 0.22295 -0.76943 -0.9355 -0.50706 0.30725 0.19276 -0.27032 0.49706 +reduce -0.30168 -0.076541 -0.036801 -0.86058 -0.19464 -0.90828 0.47634 0.19276 -0.17134 0.20792 +Earlier, -0.34794 0.023292 0.075406 -0.84766 0.15437 -0.99986 0.49732 -0.050574 -0.22073 -0.038666 +families -0.28825 -0.14532 0.16689 -0.92058 -0.13739 -0.78522 0.39078 -0.0039667 -0.14736 0.15144 +winning -0.06874 0.10324 -0.016348 -0.98934 -0.053567 -0.95126 0.46299 0.063867 -0.5229 -0.13015 +resolution -0.31964 -0.17339 0.17081 -0.8143 -0.12043 -0.96715 0.44535 0.41145 -0.26246 0.052698 +smoke -0.26105 -0.14285 0.11699 -0.98785 -0.27744 -0.8044 0.35207 0.056853 -0.23205 0.31568 +office -0.218 -0.14524 -0.037394 -0.85397 0.37119 -1.1472 0.56784 -0.041094 0.015932 0.028657 +receive -0.23989 -0.21716 0.34527 -0.91211 -0.23018 -0.80992 0.24342 0.29718 -0.22186 0.27324 +destroyed -0.046881 -0.092095 0.24425 -1.0475 0.45445 -1.0208 0.50193 0.10671 -0.19005 -0.011066 +continued -0.35375 -0.13996 0.16789 -1.0129 0.37804 -1.0076 0.43033 0.20117 -0.089802 -0.060949 +paid -0.44553 -0.24882 0.05324 -0.84873 0.10563 -1.0162 0.44625 -0.11117 0.0057727 0.037079 +virus -0.25906 -0.14378 0.026083 -0.96655 -0.25376 -0.8274 0.44257 -0.033073 -0.13939 0.28351 +rest -0.14087 -0.24237 0.08868 -0.86292 0.12032 -0.92578 0.42126 0.35075 -0.26013 0.14123 +flames -0.079384 -0.057751 0.22134 -0.99779 -0.12274 -0.77179 0.44596 0.15104 -0.36885 0.13729 +Government's -0.35662 -0.36318 0.17055 -0.91577 0.23494 -0.97414 0.53677 0.186 -0.10494 0.067981 +carry -0.36108 0.022253 0.025248 -0.95315 -0.020318 -0.8818 0.44329 -0.11946 -0.25438 0.028633 +lower -0.54397 -0.03934 0.066307 -0.89938 -0.020153 -0.9651 0.46286 -0.13729 -0.082547 0.28365 +knew -0.2977 0.02006 0.044883 -0.95161 -0.12807 -0.83868 0.43772 -0.015755 -0.39014 0.017092 +charge -0.044502 -0.19017 0.23235 -0.93397 0.17141 -1.0606 0.26509 0.14126 -0.18608 0.073823 +cars -0.20463 -0.10096 0.020315 -0.98449 0.22193 -0.92139 0.51828 -0.020477 -0.17681 0.033465 +themselves -0.27441 -0.19666 0.094191 -0.94752 0.011452 -0.82052 0.43824 -0.084641 -0.19891 0.2043 +built -0.05453 -0.20536 0.23449 -0.87066 0.0043947 -0.87834 0.4078 0.15113 -0.27461 0.18582 +traditional -0.31808 -0.14846 0.10253 -0.77127 0.21081 -1.0488 0.5409 0.2533 -0.21733 -0.030549 +reach -0.44067 -0.070178 0.19759 -0.81569 -0.47873 -0.84046 0.42358 0.2951 -0.2969 0.25419 +heart -0.090321 -0.17419 0.20768 -0.92797 0.18419 -0.91507 0.45489 0.14948 -0.29072 0.040668 +W 0.072293 -0.22586 0.2214 -0.95216 0.099508 -0.79726 0.35051 0.078391 -0.34478 0.17774 +bit -0.37841 -0.14545 0.16727 -1.1463 0.81219 -1.125 0.36784 -0.13697 0.10096 -0.38367 +I've -0.14223 0.086352 0.035407 -1.0594 0.028174 -0.87599 0.4268 0.071434 -0.23468 0.065687 +alongside -0.35098 -0.1316 0.11102 -0.99051 0.19609 -0.92738 0.4183 -0.061194 -0.21929 -0.036609 +24 0.031811 -0.038653 0.16645 -0.90522 0.06096 -0.7654 0.39738 0.035196 -0.34309 0.28498 +Karzai -0.31044 -0.17659 0.09338 -0.94382 0.16063 -0.955 0.48382 0.070387 -0.24624 0.10667 +determined -0.39606 -0.12691 0.11161 -0.90735 0.063893 -1.0105 0.41939 0.03563 -0.13198 0.068664 +served -0.31224 -0.1469 0.13778 -0.99746 0.56113 -1.0421 0.45573 -0.11786 -0.032157 -0.034298 +negotiations -0.24608 -0.22317 0.10986 -0.9195 0.14543 -0.93048 0.43894 0.26543 -0.34712 0.051059 +disappointed -0.36286 -0.17775 0.10179 -0.95963 0.29768 -1.024 0.45008 -0.078212 -0.10802 -0.015059 +million. -0.55679 -0.27167 0.15737 -0.88907 0.096537 -1.0085 0.39062 0.045772 -0.07645 0.030597 +5 -0.12427 0.14708 -0.01595 -0.81057 0.21726 -1.0829 0.6152 0.3897 -0.15517 0.0022669 +hold -0.37219 -0.10254 0.074666 -1.0612 -0.07405 -0.90405 0.45018 0.0064788 -0.11655 0.22733 +vote -0.64369 -0.17007 0.024417 -0.93574 -0.092902 -0.94459 0.54972 -0.12877 -0.11921 0.0079356 +nations -0.46773 -0.40285 0.086514 -0.84019 0.45642 -1.03 0.53014 0.32809 -0.30576 -0.03859 +voted -0.38662 -0.17358 0.070854 -0.95296 0.01016 -0.96932 0.41977 -0.067503 -0.032331 0.007658 +City -0.15933 -0.054625 -0.16483 -0.91163 0.3106 -1.0914 0.41468 -0.16155 -0.20879 0.021867 +attacked -0.18449 -0.040412 0.064541 -1.2025 1.1638 -1.3294 0.41003 -0.30483 0.020549 -0.56813 +approach -0.31461 -0.27648 0.10962 -0.91722 0.018954 -0.86706 0.39329 -0.02701 -0.202 0.22297 +resolve -0.3028 -0.13288 0.23066 -0.88434 -0.37935 -0.84542 0.42759 0.29187 -0.31587 0.16513 +region, -0.43459 -0.081776 0.20824 -0.97695 0.065396 -0.91439 0.40789 0.10106 -0.1185 0.03497 +stopped -0.45032 -0.19204 0.24023 -0.98554 0.14211 -0.917 0.3598 -0.08316 -0.10664 -0.0010918 +recorded -0.30823 -0.098121 0.14835 -0.89809 0.33321 -1.0245 0.4314 0.073016 -0.13257 -0.15369 +facility -0.3068 -0.10924 0.11019 -1.0301 0.048937 -0.88394 0.35113 -0.0053479 -0.17994 0.1186 +seekers. -0.42313 -0.39104 0.10196 -0.92719 0.033158 -0.72428 0.49647 -0.058764 -0.12636 0.32512 +Andy -0.4128 -0.086311 0.067352 -0.93239 0.0876 -1.046 0.39893 -0.0093731 -0.030056 -0.063049 +Team -0.13118 0.083289 0.27665 -0.98178 0.24685 -1.0792 0.53747 0.19225 -0.1943 -0.18648 +they're -0.26309 -0.20177 0.16846 -0.99154 -0.19031 -0.78186 0.40193 0.048799 -0.25378 0.31591 +Argentina's -0.38195 -0.069379 0.077963 -0.86022 0.37379 -1.0591 0.51619 0.073333 -0.11085 -0.10816 +operation -0.45542 -0.28483 0.031488 -0.85024 0.36917 -1.0292 0.56994 0.27726 -0.20864 -0.020713 +1 -0.061946 -0.036152 0.088015 -0.94501 -0.56587 -0.69479 0.33479 0.057671 -0.39652 0.54583 +company's -0.24646 -0.25499 0.12094 -0.8555 -0.065341 -0.87628 0.4523 0.11422 -0.23467 0.20347 +above -0.28101 -0.062013 0.3105 -0.96122 0.42124 -0.9899 0.41511 0.071726 -0.21365 -0.13909 +Zimbabwe -0.19476 -0.041701 0.14611 -0.90516 -0.14532 -0.86157 0.48187 0.11272 -0.32375 0.21594 +lost -0.39719 -0.26721 0.35998 -1.033 -0.022575 -0.68873 0.37287 0.052676 -0.30927 0.21901 +business -0.34458 -0.21672 0.054013 -0.89455 0.43415 -1.0089 0.56624 -0.071759 -0.13534 -0.0083832 +Four -0.18358 -0.19732 0.13511 -0.92191 -0.021036 -0.79206 0.3596 -0.030203 -0.32091 0.19374 +Airlines -0.2057 -0.18542 0.25906 -0.86197 -0.21638 -0.78212 0.42764 0.14729 -0.29109 0.19843 +potential -0.13066 -0.045827 0.19466 -0.88089 0.11807 -1.0111 0.46835 0.29623 -0.22057 0.011827 +treated -0.11018 -0.10551 0.28109 -0.95026 0.094927 -0.93671 0.37664 0.17521 -0.24142 0.098328 +Another -0.14594 -0.33391 0.35765 -1.0676 0.011197 -0.74568 0.34726 -0.013992 -0.19294 0.28499 +little -0.186 -0.083573 0.19209 -1.0366 -0.41438 -0.70943 0.33344 0.066882 -0.24142 0.41275 +tape -0.16302 0.10371 0.14223 -1.0517 -0.060557 -0.82127 0.36696 0.13335 -0.34453 0.074391 +lung -0.29184 0.0063357 0.070592 -0.87495 0.083939 -1.0114 0.55092 0.11732 -0.23754 -0.0058427 +fell -0.37211 0.012797 0.082664 -1.0298 0.13061 -0.93115 0.46598 -0.10459 -0.30063 -0.10094 +greater -0.21466 0.0079097 0.25273 -0.95012 -0.054123 -0.80416 0.44873 0.032628 -0.24437 0.34358 +done -0.014793 -0.0067683 0.086637 -0.97805 -0.033787 -0.92564 0.40541 0.02535 -0.19899 0.024775 +out. -0.50085 -0.27089 0.22356 -0.92793 -0.30325 -0.74575 0.29876 0.02653 -0.15032 0.28228 +organisation -0.34536 -0.10234 0.087125 -0.87965 0.15625 -0.92826 0.50642 0.15174 -0.2366 0.08671 +suspect -0.31396 -0.15012 0.17595 -1.0813 0.14394 -0.76811 0.37105 -0.17661 -0.23903 0.048445 +sentence -0.44284 -0.21888 0.052154 -0.90839 0.26553 -0.95631 0.56531 0.080551 -0.10793 -0.038337 +ask -0.34655 -0.11991 0.10353 -0.88798 0.2319 -1.0485 0.52059 0.19465 -0.28768 -0.14825 +incident -0.28375 -0.29921 0.1971 -0.86209 0.067924 -0.95959 0.4549 0.20993 -0.16057 0.085392 +Williams, -0.39511 -0.083276 0.081542 -0.97308 0.1662 -0.90865 0.4451 -0.083423 -0.24119 -0.028967 +3,000 -0.19204 -0.10646 -0.066139 -1.0132 -0.034052 -0.84198 0.47702 -0.044811 -0.21841 0.096795 +greatest -0.044005 -0.039616 0.16731 -0.97915 0.11921 -0.90514 0.52257 0.15667 -0.41196 0.20309 +Affairs -0.31136 -0.050722 0.026881 -0.87813 0.12223 -0.99836 0.53118 -0.032373 -0.19953 -0.037852 +freeze. -0.40264 -0.1233 0.077674 -0.86703 -0.018707 -0.86975 0.42649 0.14071 -0.21533 0.056504 +Doug -0.35976 -0.12714 0.11614 -0.90225 -0.14585 -0.85466 0.44812 -0.090822 -0.21548 0.21651 +Washington, -0.21142 0.11706 0.04237 -1.0057 0.17401 -0.93255 0.48629 0.046844 -0.30952 -0.08279 +spokeswoman -0.34143 -0.12734 0.20297 -0.95821 0.30567 -1.0166 0.45681 0.073869 -0.12169 -0.105 +appears -0.25347 -0.17913 0.09815 -0.98478 0.077997 -0.87975 0.39589 -0.024444 -0.1752 0.1295 +custody -0.38955 -0.10267 0.06916 -0.8303 0.18757 -1.0082 0.46587 -0.060263 -0.22609 -0.062007 +battling -0.11528 -0.076738 0.16785 -0.95093 -0.11965 -0.85803 0.47492 0.13973 -0.37859 0.062873 +giant -0.19474 -0.19235 0.12134 -0.95219 -0.040241 -0.88972 0.45739 0.019493 -0.1236 0.22679 +clearly -0.26136 -0.092334 0.22652 -0.97505 0.044356 -0.87222 0.45145 -0.10398 -0.31415 0.071187 +related -0.15942 -0.098811 0.056044 -0.88749 0.39262 -1.0702 0.53376 0.13411 -0.21892 -0.090192 +grant -0.2401 -0.14062 0.23954 -0.9333 0.071514 -0.91665 0.45179 0.081185 -0.11462 0.067239 +Perth -0.11122 0.03106 0.056859 -1.0016 0.31666 -0.97628 0.5172 -0.039563 -0.18637 -0.090776 +ceremony -0.14673 -0.22008 0.19464 -0.8457 -0.14645 -0.84613 0.456 0.33116 -0.29061 0.20251 +read -0.42176 -0.10929 0.18953 -0.92471 -0.1598 -0.78806 0.49239 -0.010597 -0.19399 0.16819 +nice -0.23009 -0.043847 -0.044621 -0.85689 -0.28957 -0.8679 0.40117 0.060147 -0.23787 0.36475 +charges -0.13571 -0.20754 0.25891 -0.91337 0.020319 -0.92752 0.29293 0.10693 -0.18216 0.11836 +singles -0.32386 0.072627 0.089566 -1.0061 0.0050874 -0.99319 0.54827 -0.032294 -0.22585 -0.050169 +tough -0.51517 0.01907 -0.059756 -0.91604 0.012925 -0.99575 0.56298 -0.19045 -0.12457 0.042528 +pilot -0.17787 -0.21168 0.19167 -1.0186 0.092057 -0.87213 0.42648 0.12392 -0.22186 0.18636 +Interlaken -0.31132 -0.028992 0.12936 -0.77558 -0.010251 -0.95471 0.45878 0.085206 -0.32529 -0.035028 +program -0.3165 -0.194 0.043699 -0.90067 -0.09108 -0.88954 0.41511 0.01183 -0.21771 0.11704 +possibility -0.17417 -0.22635 0.20271 -1.0031 0.16762 -0.94624 0.34064 0.076236 -0.21006 0.0031932 +finding -0.30603 -0.036248 0.20905 -0.89751 -0.20761 -0.84353 0.45065 0.054111 -0.33882 0.0029376 +now, -0.14095 -0.023827 0.24233 -0.97745 -0.30549 -0.70309 0.36732 -0.0015611 -0.35641 0.29118 +tomorrow -0.088968 -0.047691 0.21455 -0.88194 -0.08835 -0.9363 0.43395 0.30085 -0.30457 0.15748 +unity -0.3308 -0.27777 0.24292 -0.88044 0.088659 -0.96242 0.39934 0.30319 -0.17101 0.09274 +volunteers -0.26174 -0.057436 0.089196 -0.96116 0.074692 -0.85164 0.4566 -0.0054521 -0.20545 0.028282 +Assa -0.28009 -0.15646 0.12637 -0.92162 0.1677 -0.92001 0.53836 0.060919 -0.24258 -0.024064 +created -0.080767 0.047301 0.21443 -0.88478 0.14305 -0.98661 0.42311 0.14744 -0.27115 -0.017732 +wall -0.099802 -0.014132 0.060633 -0.85707 -0.038637 -0.96233 0.37083 0.19281 -0.28115 0.16652 +coach -0.16856 -0.29836 0.23797 -0.90876 -0.11726 -0.84583 0.42414 0.1564 -0.25516 0.15827 +recovery -0.20675 -0.18212 0.19319 -0.89779 -0.064241 -0.85309 0.38424 0.17494 -0.21933 0.17171 +Switzerland -0.079992 -0.13598 0.18184 -0.92639 0.054323 -0.93894 0.37569 0.18704 -0.28502 0.12325 +enter -0.45322 -0.01919 0.18559 -0.79178 0.14156 -1.0558 0.60923 0.11858 -0.19179 -0.02854 +doubt -0.32574 0.053422 0.0062525 -0.9487 -0.018581 -0.97107 0.45578 -0.15671 -0.24103 -0.0065333 +cause -0.50551 -0.12227 0.088099 -1.0827 0.016891 -0.88276 0.37197 -0.12661 -0.062636 0.15792 +crowd -0.40782 -0.23396 0.12535 -1.0146 0.051628 -0.88484 0.3862 -0.14947 -0.070023 0.21455 +students -0.19614 -0.093446 0.18796 -1.0112 0.32153 -0.915 0.4746 0.072986 -0.18092 0.036884 +yachts -0.10043 -0.13598 0.28857 -0.93148 0.16356 -0.94541 0.56432 0.17456 -0.27281 0.16088 +mountain -0.5485 -0.088163 0.27787 -1.0609 0.43525 -0.9536 0.4235 -0.0033296 -0.087574 -0.17432 +oil -0.49401 0.027284 0.086111 -0.77788 -0.26105 -0.89366 0.44204 0.070293 -0.21487 -0.035968 +names -0.12431 -0.10413 0.14273 -0.95384 0.0011781 -0.79293 0.37917 -0.00022532 -0.25695 0.13455 +Eve 0.026754 0.033638 0.13392 -0.94275 -0.146 -0.70248 0.46788 0.14457 -0.42444 0.19181 +boats -0.0297 -0.14933 0.3111 -1.04 0.14434 -0.76292 0.42072 0.15491 -0.32255 0.20952 +Philip -0.19464 -0.10752 0.22174 -0.94747 0.077592 -0.9701 0.41533 0.13309 -0.25159 -0.020048 +While -0.32228 -0.12627 0.1897 -0.89911 0.094805 -0.92193 0.48529 0.14728 -0.31592 0.074455 +property -0.24023 -0.26967 0.17315 -0.96327 -0.46607 -0.69738 0.31227 0.11607 -0.24229 0.4851 +River. -0.2681 -0.16975 0.18522 -0.90112 -0.08442 -0.99434 0.40489 0.13814 -0.1938 0.15909 +acting -0.53013 -0.14158 -0.054806 -0.86516 -0.18841 -0.89288 0.42395 0.0077935 -0.24085 -0.023856 +attacks, -0.26184 -0.064943 0.076111 -1.135 1.1445 -1.2878 0.43577 -0.25375 -0.021592 -0.66229 +80 0.19687 -0.0052728 0.11849 -0.99997 -0.26229 -0.74572 0.24241 0.16065 -0.50429 0.38195 +them," -0.12137 -0.21374 0.13169 -1.0482 -0.045658 -0.7064 0.35385 -0.059479 -0.23442 0.25225 +verdict -0.37523 -0.14589 0.21297 -0.90034 0.0082628 -0.88882 0.44354 -0.023509 -0.11883 0.14185 +together -0.41599 -0.11771 0.11297 -0.89298 -0.35122 -0.78593 0.44979 -0.018914 -0.2029 0.32439 +apparently -0.28669 -0.14803 0.16608 -0.90586 -0.11703 -0.78704 0.45045 0.14256 -0.27331 0.16938 +aboard -0.22315 -0.15286 0.22083 -0.9105 0.11552 -0.92815 0.47306 0.053682 -0.17567 0.17077 +area, 0.060098 -0.28676 0.48758 -1.1426 -0.19647 -0.58428 0.30434 0.084059 -0.22395 0.62962 +affected -0.31576 -0.14433 0.15533 -0.90465 0.35061 -1.0104 0.42994 0.02733 -0.076688 -0.10059 +reveal -0.29761 -0.14128 0.13282 -0.90104 -0.13577 -0.93424 0.41919 0.13418 -0.17131 0.14438 +Firefighters -0.14621 -0.1608 0.39446 -1.0887 0.32588 -0.87854 0.47296 0.21558 -0.23373 0.026986 +squad -0.11952 0.19318 0.11819 -1.0138 0.35206 -0.94827 0.57597 0.016621 -0.25446 -0.094914 +swept -0.254 -0.38474 0.3558 -0.89072 -0.2463 -0.79614 0.21236 0.2282 -0.14143 0.40372 +played -0.12248 -0.10612 0.044413 -0.99036 0.062518 -0.93714 0.40971 0.03221 -0.22713 0.076656 +agreed -0.47498 -0.17392 0.11952 -0.93832 0.12854 -1.0205 0.44601 0.026194 -0.083695 -0.075291 +hope -0.20079 -0.22468 0.37713 -1.0259 -0.34884 -0.56551 0.30759 0.068423 -0.3139 0.42521 +Hicks, -0.49856 -0.19744 0.00187 -0.99613 0.52396 -1.0283 0.50948 -0.19591 0.031717 -0.14309 +ready -0.30419 -0.20335 0.17166 -0.85772 -0.46007 -0.75412 0.38355 0.1726 -0.12917 0.40266 +department -0.29198 -0.26417 0.19732 -0.83206 0.12443 -1.0298 0.50087 0.37477 -0.10588 -0.0049605 +doubles -0.18303 0.085722 0.041611 -0.91097 -0.12315 -0.87427 0.58882 0.046346 -0.31335 0.081859 +Gillespie -0.21623 0.065488 0.036796 -0.91373 0.032026 -0.98446 0.523 0.035139 -0.25906 0.014605 +scored -0.17742 0.027689 0.062962 -0.92025 0.35127 -1.0697 0.48265 0.086444 -0.25782 -0.10568 +conflict -0.10585 -0.21113 0.17809 -0.99384 0.22581 -0.88548 0.41597 0.18941 -0.15521 0.13629 +dropped -0.32043 -0.087391 0.11451 -0.94564 0.29418 -1.0107 0.48245 0.031455 -0.16764 -0.093651 +years, -0.0011375 -0.20937 0.11103 -0.99005 0.27352 -0.91087 0.54879 0.21073 -0.28111 0.15536 +Fatah -0.42844 -0.21625 0.049941 -0.90511 0.30765 -1.0389 0.42033 -0.096833 -0.06178 -0.086817 +Friedli -0.31514 -0.2202 0.13265 -0.9082 0.12679 -0.93712 0.36831 0.074354 -0.084924 0.047795 +old -0.69719 -0.18566 0.070685 -1.0067 0.10258 -0.97605 0.44238 -0.1796 -0.052982 0.089902 +Transport -0.15508 -0.11403 0.15107 -0.92124 0.092459 -0.8699 0.4467 0.1271 -0.29248 0.15401 +agency -0.30065 -0.21441 0.035038 -0.91231 0.56437 -1.0848 0.57941 0.034436 -0.11448 -0.15499 +follows -0.017571 0.10862 0.0052477 -0.90609 0.073521 -1.0277 0.5345 0.17643 -0.28208 0.019561 +streets -0.16264 -0.015076 0.17619 -0.93528 0.30503 -0.97626 0.52447 0.13421 -0.26039 0.029433 +debt -0.29361 0.01649 0.11836 -0.9269 -0.1014 -0.8797 0.37439 -0.051927 -0.20218 0.14944 +factions -0.66215 -0.3437 0.0784 -0.91268 0.086813 -0.84447 0.43038 0.10023 -0.11111 0.12388 +dozens -0.020118 -0.041503 -0.0025768 -0.944 0.048652 -0.88489 0.45687 0.10902 -0.31275 0.12495 +Hundreds -0.18794 -0.071425 0.086088 -1.0112 0.47302 -1.0115 0.48967 0.04175 -0.17609 -0.1515 +capital, -0.12553 -0.055046 0.031502 -1.019 0.64319 -1.1797 0.51824 0.0011017 -0.14031 -0.23638 +fierce -0.32886 -0.061441 -0.0085193 -0.97711 0.18292 -0.86985 0.49664 -0.058466 -0.14711 0.11091 +Sunday -0.2073 -0.0074925 0.04898 -0.92262 0.16386 -1.0042 0.49381 -0.054376 -0.23898 -0.070552 +2001 -0.34211 -0.11376 0.19554 -0.89605 0.34288 -0.93222 0.43281 0.0060886 -0.18179 -0.055397 +attempting -0.20869 -0.03348 -0.12391 -0.94975 0.37949 -1.0764 0.48798 -0.10882 -0.1925 -0.18612 +races -0.012184 0.16111 0.060192 -0.99748 0.41683 -1.0134 0.55748 0.12327 -0.26316 -0.13532 +prior -0.39419 -0.24487 0.17659 -0.9468 0.046177 -0.91649 0.39508 -0.010464 -0.17617 0.29622 +Japanese -0.24729 -0.2236 0.2223 -0.88269 0.19642 -0.9013 0.48408 0.14182 -0.19541 -0.016586 +domestic -0.090836 -0.11496 0.22062 -0.94755 -0.021954 -0.86699 0.48926 0.26807 -0.34971 0.16311 +Internet -0.44494 -0.081498 0.22393 -0.86936 0.25624 -1.0817 0.53033 0.019088 -0.15582 -0.081715 +spread -0.34286 0.0085029 0.12235 -0.96069 -0.014924 -0.85794 0.43675 -0.0030413 -0.14867 0.16879 +create -0.16881 0.0015007 0.25886 -0.89012 -0.22962 -0.83982 0.39156 0.25736 -0.3609 0.21564 +playing -0.30897 -0.044987 -0.018034 -0.89053 -0.18541 -0.96471 0.48865 -0.052599 -0.31886 -0.044458 +growing 0.019896 -0.049953 0.18254 -0.98348 -0.16335 -0.84057 0.47503 0.18023 -0.3839 0.12714 +scheduled -0.3439 -0.11101 0.15367 -0.98378 0.19435 -1.0042 0.41828 0.024073 -0.067868 -0.007766 +factory -0.45105 -0.087521 0.030059 -0.97854 -0.027822 -1.0114 0.44714 -0.057401 -0.21847 0.092436 +knowledge -0.3498 -0.13386 0.19503 -0.9762 0.07868 -0.96534 0.3975 -0.048246 -0.17176 0.031962 +save -0.38017 -0.23925 0.33928 -0.94021 -0.35619 -0.73018 0.26854 -0.049871 -0.066799 0.41109 +holiday -0.17117 0.021268 0.12256 -0.95257 0.54454 -0.99889 0.51952 0.066868 -0.25515 -0.20265 +Timor -0.086932 -0.14251 0.27041 -0.80165 0.1293 -0.96345 0.48208 0.44571 -0.29487 0.001174 +Thursday -0.16804 0.032178 0.17198 -0.89441 0.064809 -0.94998 0.5231 0.14831 -0.32066 -0.046057 +recent -0.14141 -0.21349 0.34583 -0.80142 0.047077 -0.96236 0.44747 0.59265 -0.15062 0.12291 +revealed -0.311 -0.1451 0.11148 -0.9362 0.070507 -1.0092 0.43316 0.023024 -0.12374 0.015503 +rain -0.71506 0.070684 0.009715 -0.93109 0.32285 -0.98704 0.52257 -0.17777 -0.1588 -0.21132 +Professor -0.34146 -0.047432 0.047709 -0.85468 -0.34078 -0.80689 0.38297 0.011803 -0.29741 0.29715 +"But -0.23533 -0.072159 0.11926 -0.96619 -0.25722 -0.77987 0.46747 -0.052188 -0.22124 0.32704 +statement. -0.25781 -0.23333 0.21852 -1.0081 0.55942 -1.0465 0.4925 -0.026883 -0.06044 -0.095841 +Solomon -0.1112 -0.17747 0.30167 -0.94309 0.1185 -0.95132 0.39373 0.2722 -0.16205 0.048385 +organisations -0.31664 -0.15481 0.086478 -0.91277 0.24868 -0.91472 0.51023 0.1276 -0.26093 0.067923 +runs -0.081029 0.15482 0.10812 -0.95525 0.16914 -0.87168 0.50043 0.24514 -0.40289 -0.089365 +respond -0.12951 -0.13325 0.25617 -0.99682 -0.036371 -0.84081 0.34943 0.22771 -0.22782 0.15075 +Michael -0.27256 -0.1403 0.14789 -0.84897 0.11625 -0.89961 0.44581 -0.021928 -0.093597 0.08034 +When -0.3826 -0.067863 0.1181 -0.95835 -0.24689 -0.80123 0.4205 -0.12366 -0.28273 0.26885 +40 -0.080944 -0.030479 0.48167 -1.0393 -0.23531 -0.65996 0.23723 0.1509 -0.12914 0.17171 +Hayden -0.26217 0.13508 0.056591 -1.0181 0.060048 -0.92058 0.46848 -0.06749 -0.26086 -0.062866 +attack. -0.2187 -0.054543 0.15759 -1.1832 0.91744 -1.218 0.35545 -0.205 -0.083368 -0.48719 +Earlier -0.35822 0.034622 0.045342 -0.84545 0.2501 -1.0562 0.53407 -0.14539 -0.2124 -0.041862 +Indonesia -0.13118 0.068667 0.079238 -0.90011 -0.074519 -0.92243 0.52518 0.13945 -0.25327 0.099072 +Sarah -0.29148 -0.083626 0.10898 -0.96221 0.095324 -0.90043 0.48371 0.16895 -0.13041 0.13251 +detain -0.35919 -0.070197 0.25744 -0.8393 0.011666 -0.98708 0.45426 0.19846 -0.17789 0.032611 +Neil -0.4231 0.11533 0.060575 -0.94699 -0.31259 -0.88055 0.5079 0.012363 -0.18818 0.047914 +states 0.035746 -0.23303 0.46542 -1.061 0.50206 -0.87712 0.40336 0.011969 -0.23725 0.047316 +4,000 -0.062591 0.016686 -0.018896 -0.91001 -0.16483 -0.83083 0.41536 0.25611 -0.34508 0.053079 +things -0.051032 -0.15411 0.11416 -0.91539 -0.13999 -0.74606 0.36922 0.042876 -0.36282 0.21292 +toll -0.051031 -0.074063 -0.050378 -0.81443 -0.16458 -0.86624 0.50923 0.13427 -0.31809 0.16723 +you're -0.059447 -0.12139 0.1556 -1.0472 -0.35454 -0.73766 0.27145 0.065707 -0.33578 0.33058 +felt -0.43935 -0.029357 0.056699 -1.0074 -0.012995 -0.77477 0.40277 -0.15507 -0.20878 0.065392 +deployed 0.053162 -0.1647 0.22864 -0.97735 0.35141 -0.99622 0.42883 0.28513 -0.2113 0.045679 +Hamas, -0.33651 -0.27008 0.13846 -0.95793 0.30384 -0.96349 0.42221 0.066626 -0.14882 0.029652 +gun -0.19859 -0.12881 -0.085064 -0.77327 -0.15347 -1.0126 0.51969 -0.022194 -0.37624 -0.040505 +Senior -0.22561 -0.12378 0.17376 -0.97379 0.44761 -0.99742 0.52638 -0.025954 -0.082844 -0.089523 +plan -0.40868 -0.099606 0.13781 -0.87832 0.010708 -0.91702 0.48558 -0.034796 -0.17617 0.13689 +elected -0.13135 0.04798 0.14718 -0.88991 0.044746 -0.96795 0.40639 0.12036 -0.23581 -0.0068139 +government, -0.27946 -0.2585 0.1293 -0.85924 0.25008 -1.0282 0.60002 0.2802 -0.16703 0.092715 +north. 0.11999 0.082092 0.12268 -1.0197 0.096272 -0.83958 0.56722 0.2645 -0.31074 0.18826 +tailenders -0.37816 -0.044353 -0.0033328 -0.92389 0.26644 -1.0267 0.46643 -0.02207 -0.17795 -0.20222 +B-52 -0.33645 -0.14164 -0.034415 -1.0395 0.44756 -0.93329 0.52896 -0.1543 -0.19566 -0.048659 +advice -0.019011 -0.080755 0.13782 -1.0027 -0.14265 -0.75955 0.37166 0.25948 -0.27782 0.3537 +continues -0.31877 -0.08533 0.23952 -1.0301 0.1736 -0.92963 0.4279 0.22104 -0.16045 0.032999 +Lording -0.44379 -0.31877 -0.02095 -0.89717 0.27762 -1.0258 0.49945 -0.15816 -0.072751 -0.17291 +body -0.27807 -0.043922 -0.064788 -0.85849 0.4291 -1.0043 0.5301 -0.15222 -0.14431 -0.10526 +died. -0.28004 -0.15246 -0.050408 -0.89943 0.25872 -1.1047 0.51751 0.027965 -0.16932 0.011267 +Melbourne, -0.16467 -0.0016058 0.15283 -0.917 -0.25817 -0.83193 0.39381 0.033862 -0.38796 0.1885 +activity -0.4133 -0.23608 0.042298 -0.90558 0.024862 -0.93733 0.37843 0.10265 -0.13713 0.092931 +Krishna -0.37526 -0.19429 0.26769 -0.98535 0.13161 -0.93223 0.42722 -0.041666 -0.18585 0.028535 +crossed -0.070605 -0.052971 0.25836 -1.0456 0.26535 -1.0064 0.47807 0.18456 -0.31118 -0.08613 +described -0.21603 -0.1074 0.13553 -0.93613 0.040677 -0.93754 0.39861 0.10401 -0.22784 0.060417 +suffered -0.24294 -0.18708 0.019853 -0.95508 0.11403 -0.92028 0.46586 -0.0031084 -0.14647 0.12232 +500 -0.10623 0.18396 -0.090181 -1.01 0.1596 -0.86083 0.49228 0.10059 -0.22581 -0.014477 +militants. -0.45571 -0.19868 0.017953 -0.93778 0.71889 -1.1236 0.51809 -0.12618 -0.058003 -0.21578 +rescue -0.26812 -0.02935 0.10839 -0.92493 -0.17213 -0.96675 0.37002 0.15285 -0.25694 0.13041 +walk -0.22773 0.038052 -0.11351 -0.80286 0.32745 -1.1318 0.54419 0.0089137 -0.22752 -0.081451 +That -0.1364 -0.029955 0.15664 -0.88105 -0.49632 -0.69868 0.40827 0.12486 -0.43356 0.32152 +diplomatic -0.25385 -0.12728 0.056069 -0.94035 0.0083836 -0.90342 0.41262 -0.015823 -0.21035 0.12273 +directors -0.077749 -0.14422 0.21524 -0.95906 -0.036602 -0.91827 0.31253 0.2058 -0.25 0.12023 +concern -0.30573 -0.29248 0.31705 -0.99877 0.075426 -0.84557 0.39936 0.22679 -0.052918 0.24857 +Ricky -0.53879 -0.0035531 0.062384 -1.0496 0.017301 -0.8555 0.45923 -0.17582 -0.26331 -0.021441 +attacking -0.19124 -0.011663 0.046328 -1.0701 0.61407 -1.1884 0.46141 -0.13146 -0.16939 -0.36588 +handed -0.32916 -0.28368 0.13324 -1.0037 0.43082 -1.022 0.45323 -0.087054 -0.061207 -0.075076 +edge -0.030324 0.011877 0.20697 -0.91813 0.29694 -1.065 0.38935 0.097339 -0.26136 -0.037787 +weekend. -0.24846 -0.18026 0.12221 -0.98336 0.063706 -0.77877 0.3955 -0.036036 -0.26551 0.25798 +why -0.54003 -0.17741 0.15215 -0.98643 0.38637 -1.0131 0.40792 -0.3226 -0.1438 0.0090477 +country. -0.33879 -0.12475 0.19287 -0.88116 0.034972 -0.88351 0.47031 0.21101 -0.26327 0.064972 +promised -0.33058 -0.19621 0.14678 -0.87526 0.24515 -1.0454 0.45322 0.11116 -0.14254 -0.030859 +Radio -0.40828 -0.053057 0.12387 -0.9347 0.2561 -0.9069 0.5037 -0.12057 -0.10187 -0.042171 +According -0.40444 -0.16357 0.086887 -0.89811 0.32539 -1.0539 0.52773 -0.041895 -0.20015 -0.28409 +investigating -0.17936 -0.11615 0.037612 -0.88204 0.20279 -1.0224 0.50793 0.16582 -0.24511 -0.019877 +Sydney's 0.26561 0.12441 0.31024 -1.0951 0.18804 -0.78061 0.58081 0.22754 -0.37633 0.18482 +civil -0.27172 -0.091949 0.087172 -1.0009 0.018191 -0.81623 0.45942 0.026575 -0.21189 0.17785 +Ministry -0.67236 -0.23749 0.14073 -0.8914 0.29613 -1.0714 0.49386 -0.16486 0.15936 0.069926 +Pakistan. -0.862 -0.55687 0.208 -1.0142 0.66765 -1.1684 0.38819 -0.14924 0.07302 -0.32486 +blaze -0.45721 -0.094917 0.039373 -1.0435 0.53644 -1.008 0.48946 -0.11726 -0.058373 -0.1909 +form -0.34916 -0.017953 -0.015494 -0.90177 0.14814 -1.154 0.44586 0.098764 -0.18015 -0.20346 +showed -0.29118 -0.22855 0.27023 -1.0458 0.11953 -0.83314 0.3252 -0.025419 -0.054188 0.13709 +field -0.18158 -0.17807 0.31801 -0.99627 -0.10492 -0.7835 0.45081 0.068907 -0.17304 0.29566 +period -0.24461 -0.075453 -0.0059673 -0.87738 0.42241 -1.0123 0.52005 0.092256 -0.21545 -0.044755 +action. -0.65352 -0.39539 0.19935 -0.9616 -0.052078 -0.81066 0.31832 0.10863 -0.05101 0.15773 +threatened -0.28797 -0.095794 0.1904 -0.98768 0.20751 -0.9698 0.3816 -0.079589 -0.1922 0.073733 +game -0.19809 -0.0086769 -0.066625 -0.93597 -0.36786 -0.73464 0.42883 0.018447 -0.48203 0.24025 +open -0.30496 0.025563 -0.024002 -0.92346 0.24914 -1.0943 0.49335 -0.27707 -0.17528 -0.25764 +shows -0.24444 0.016777 0.12173 -0.95246 0.04824 -0.87266 0.541 0.10345 -0.3015 -0.0094383 +hospital. -0.0014781 -0.058618 0.13286 -0.97958 0.23553 -0.93121 0.53765 0.15109 -0.27042 0.060958 +largest -0.20056 -0.048746 0.099227 -0.95552 0.37308 -1.0641 0.49084 0.073491 -0.37554 -0.077533 +responsible -0.11128 -0.14981 0.22246 -0.95417 -0.051653 -0.87557 0.35739 0.17158 -0.29181 0.14 +completed -0.18283 -0.13835 0.19334 -0.96165 0.41236 -1.0265 0.48639 0.18093 -0.17365 -0.083775 +Authorities -0.28478 -0.16736 0.17012 -0.96326 0.24699 -0.84565 0.52337 0.086151 -0.21086 0.11229 +fall -0.18331 0.060063 0.11881 -0.83354 -0.49483 -0.83717 0.39998 0.16868 -0.24348 0.3259 +"I'm -0.26948 0.045758 0.030334 -0.99897 -0.078027 -0.95211 0.43937 -0.12327 -0.20389 0.049463 +planes -0.29143 -0.1056 0.22846 -0.94404 0.17902 -0.94397 0.40442 -0.061847 -0.11728 0.084152 +met -0.26377 0.069661 0.043273 -0.88494 0.002914 -0.90562 0.42216 0.063408 -0.097371 0.0045662 +2002 -0.45596 -0.17479 0.17879 -0.90017 0.19999 -0.89563 0.49938 -0.14118 -0.2134 -0.051498 +Crean -0.2852 -0.10927 0.11987 -0.80172 -0.63576 -0.77574 0.4467 0.17397 -0.37047 0.30685 +representing -0.24022 -0.0811 0.083087 -0.86165 -0.11595 -0.91291 0.43206 0.24796 -0.25011 -0.0014316 +review -0.18524 -0.067561 0.19797 -0.94368 -0.17154 -0.85699 0.47081 0.13944 -0.23968 0.2017 +Yallourn -0.47021 -0.021575 0.01116 -0.8892 0.058852 -0.92951 0.53884 -0.036631 -0.16029 0.057955 +quarter -0.44592 -0.039945 0.034074 -0.86233 -0.051805 -0.92575 0.52607 0.010688 -0.26031 0.076642 +speech -0.63462 -0.20998 0.072527 -0.98417 0.35921 -1.0013 0.41784 -0.19271 -0.071603 -0.13002 +secure -0.32391 -0.19069 0.12847 -1.0189 0.5232 -1.0481 0.49084 -0.11453 -0.058657 0.059392 +meeting. -0.46792 -0.037851 -0.09161 -0.91255 0.31235 -1.1162 0.48363 -0.11875 -0.094529 -0.10114 +Territory -0.26832 -0.19567 0.073029 -0.90753 -0.10559 -0.89834 0.38328 0.092238 -0.24663 0.17531 +light -0.12712 -0.16921 0.18333 -0.9921 0.54441 -1.1114 0.51773 0.15336 -0.12766 -0.21983 +Adelaide. -0.025989 0.085196 0.11826 -0.84865 -0.073398 -0.90715 0.44745 0.21695 -0.47422 -0.03469 +month, -0.12487 -0.077932 0.027586 -0.85013 0.3364 -1.0947 0.47631 0.14132 -0.23213 -0.13515 +it. -0.16097 -0.0027678 0.30021 -0.9826 -0.52734 -0.59736 0.39112 0.12545 -0.3951 0.3784 +well," -0.35334 -0.018732 -0.051846 -0.95604 -0.12878 -0.79389 0.45722 -0.23372 -0.32752 0.14005 +hoped -0.37201 -0.2701 0.36301 -1.0897 0.35876 -0.81422 0.26953 -0.10798 -0.030669 0.067099 +"That -0.16934 -0.0016635 0.11367 -0.94955 -0.065852 -0.852 0.42582 -0.0042309 -0.21283 0.10859 +voice -0.21974 -0.20248 0.1113 -0.92958 -0.18162 -0.78683 0.37163 0.098087 -0.13725 0.30602 +Strip, -0.17654 -0.14265 0.1576 -0.99836 0.57331 -1.0703 0.49526 0.014806 -0.078684 -0.062875 +rival -0.18643 -0.082184 0.053126 -0.83016 -0.29496 -0.8513 0.42921 0.22511 -0.28777 0.25562 +documents -0.037684 -0.091584 0.076233 -0.89734 0.43422 -0.98438 0.59961 0.22531 -0.33378 -0.066055 +conducted -0.1383 -0.037729 0.1417 -0.98767 0.069707 -0.88731 0.42623 0.12239 -0.22512 0.12653 +became -0.16751 -0.17281 0.14356 -0.95021 -0.21699 -0.76155 0.39371 0.10439 -0.30135 0.30855 +Three -0.11491 0.034153 0.1029 -0.96994 0.15153 -1.0152 0.51004 0.23708 -0.35258 0.01072 +drug -0.10335 -0.22204 0.27887 -0.78724 -0.11928 -0.83802 0.3648 0.28033 -0.3473 0.27315 +Channel -0.40403 -0.22723 0.099833 -0.91948 0.12351 -0.99368 0.40838 0.0019438 -0.04688 0.12416 +adequate -0.28001 -0.064033 0.2613 -0.96333 0.078272 -0.93512 0.45222 0.20864 -0.27414 0.020279 +winner -0.24263 0.052 0.17734 -1.0189 -0.040712 -0.94032 0.45878 -0.046781 -0.27556 0.16295 +Gary -0.22597 0.027422 0.087171 -0.88541 -0.061774 -0.90493 0.45046 0.10433 -0.25775 0.069412 +Costello -0.38752 -0.17864 0.023341 -0.99545 0.33056 -1.0319 0.4482 -0.083534 -0.10498 -0.01931 +Mohammad -0.39264 -0.03019 0.11398 -0.87596 0.088261 -0.86994 0.4628 -0.085696 -0.2002 0.055633 +month. -0.079094 -0.062628 0.086861 -0.85169 0.093903 -1.0001 0.42942 0.21574 -0.27447 -0.018415 +Hospital -0.069514 -0.17098 0.17142 -0.91389 0.21038 -0.94193 0.48858 0.10507 -0.16306 0.061756 +worked -0.3658 -0.18651 0.16302 -1.0202 0.20734 -0.93103 0.45036 -0.045388 0.011548 0.033307 +No -0.06644 0.047094 -0.0072464 -0.97361 0.35235 -1.0128 0.65638 0.1251 -0.27042 0.074347 +Home -0.19708 -0.16752 0.23055 -0.91908 -0.28299 -0.78355 0.37316 0.28967 -0.33267 0.1164 +finally -0.2225 0.023568 0.042913 -0.88631 -0.21756 -0.87086 0.41333 0.12565 -0.24964 0.24162 +system -0.32424 -0.11447 0.022804 -0.86424 0.41032 -1.087 0.59199 0.05113 -0.16408 -0.029677 +low -0.42441 0.058064 0.24926 -0.94843 -0.41338 -0.72884 0.31984 -0.049308 -0.14088 0.27766 +people. -0.12527 -0.067296 0.039527 -0.90466 0.085485 -0.90647 0.50767 0.094092 -0.33578 0.091639 +tell -0.32064 -0.16263 0.1469 -1.0216 -0.58306 -0.65198 0.35841 0.054218 -0.3 0.40143 +separate -0.27425 -0.12546 -0.021667 -0.87955 0.1923 -0.97197 0.5305 0.075712 -0.20981 0.095925 +Rumsfeld -0.20524 -0.15714 0.14062 -1.0314 0.0023828 -0.79159 0.43273 -0.032572 -0.2126 0.21579 +Timor's -0.14788 -0.19963 0.31471 -0.94354 0.028989 -0.85614 0.43924 0.35624 -0.2247 0.097835 +assisting -0.42728 -0.074091 -0.084522 -0.8508 0.32864 -1.0608 0.50128 -0.053758 -0.16812 -0.19792 +regional -0.38529 -0.035004 0.15997 -0.77454 0.25105 -1.0563 0.52642 0.19416 -0.086911 -0.093535 +real -0.36399 -0.25527 0.23231 -0.85246 -0.43477 -0.81053 0.37251 0.24543 -0.21747 0.35087 +travelled -0.30306 -0.11726 0.12499 -0.88953 0.034301 -0.99596 0.39319 0.059334 -0.14803 0.070926 +personnel -0.24849 -0.16882 0.1015 -1.0017 0.31558 -1.0015 0.45331 -0.048916 -0.13477 0.066244 +ability -0.27173 -0.19358 0.049492 -0.99239 0.61827 -1.1174 0.4664 -0.022641 -0.1291 -0.19477 +shopping -0.084733 0.028369 0.081703 -0.91519 0.18997 -0.90579 0.52277 0.094239 -0.38535 -0.065638 +offered -0.28105 -0.32388 0.079595 -0.95111 0.095603 -0.92738 0.43216 0.026027 -0.059018 0.13014 +well." -0.31512 -0.066211 0.095542 -0.90755 -0.52851 -0.67737 0.41563 0.076345 -0.40165 0.30207 +republic -0.29533 -0.10822 0.024253 -0.89019 -0.13072 -0.883 0.40501 0.12325 -0.22216 0.1724 +tragedy. -0.2544 -0.075438 0.20771 -0.87111 -0.17515 -0.9306 0.40912 0.14662 -0.34255 0.01546 +Sharon, -0.54722 0.14504 -0.09222 -0.86272 0.29718 -1.2241 0.55062 -0.51179 0.04589 -0.062425 +waiting -0.33496 -0.061463 -0.06793 -0.86166 -0.10127 -0.94691 0.42146 0.071077 -0.2626 -0.007498 +Health -0.12165 -0.15446 0.21313 -0.90986 -0.06678 -0.81807 0.35183 0.025407 -0.17704 0.19281 +track -0.33687 -0.28419 0.27461 -0.85502 0.094422 -0.93155 0.43375 0.019345 -0.14151 0.15344 +problems -0.23635 -0.057152 0.13733 -0.96691 -0.28434 -0.78862 0.46773 0.060729 -0.28674 0.3308 +seriously -0.29599 -0.20022 0.10944 -0.90622 0.39272 -1.011 0.52848 -0.049441 -0.11413 0.075811 +Illawarra -0.12312 -0.10931 0.231 -0.94276 -0.040194 -0.88484 0.44864 0.1819 -0.33259 0.13047 +Virgin -0.43737 -0.059672 0.022511 -0.87982 0.25952 -1.0294 0.55749 0.038893 -0.22717 -0.13892 +television -0.40775 -0.15439 0.0078305 -0.89733 0.12706 -1.0102 0.4374 -0.1198 -0.047093 0.11185 +hours, -0.16732 -0.082988 0.24497 -1.0274 -0.028222 -0.85568 0.27882 0.06291 -0.27767 0.13924 +south-west -0.032608 -0.049815 0.19882 -1.0478 0.52558 -0.92695 0.59419 0.12515 -0.38462 0.03899 +Mohammed -0.43229 -0.12045 0.13958 -0.96673 0.4586 -1.025 0.45631 -0.13927 -0.044081 -0.13244 +Washington. -0.28267 0.034559 0.095128 -1.0139 0.13886 -0.91053 0.44615 0.050118 -0.28358 -0.058168 +"His -0.40711 -0.089346 0.022946 -0.9222 -0.045735 -0.92028 0.47429 -0.021138 -0.25581 -0.011387 +landed -0.22248 -0.17765 0.11213 -0.9833 0.64399 -1.1873 0.47176 -0.053128 -0.032894 -0.17665 +individuals -0.30371 -0.097623 0.12036 -0.86899 -0.12237 -0.91775 0.39886 0.080975 -0.15119 0.13273 +resistance -0.61039 -0.31171 0.15754 -0.96852 0.24458 -0.94637 0.43058 0.0090633 -0.098713 -0.037902 +Mayor -0.27184 -0.093265 0.19896 -0.9807 -0.039304 -0.88642 0.3541 0.054288 -0.12868 0.012767 +criminal -0.2211 -0.12247 0.23261 -0.85552 0.067805 -0.98377 0.47484 0.19956 -0.25257 0.014181 +representation -0.37881 -0.21401 0.17627 -0.88162 0.080312 -0.96165 0.42385 0.2562 -0.16246 0.053188 +His -0.4522 -0.28315 0.15234 -0.87023 0.22684 -0.91788 0.45055 -0.13313 -0.10547 0.12085 +territories -0.32634 -0.23142 0.095182 -0.9543 0.14923 -0.91172 0.4212 -0.0087514 -0.13068 0.099214 +observers -0.28079 -0.11129 0.12121 -0.97759 0.33095 -0.95931 0.50448 -0.056571 -0.13655 0.021243 +Owen -0.40788 -0.0014133 -0.11052 -0.94474 0.53525 -1.2078 0.64991 -0.091348 -0.11122 -0.25833 +sending -0.51309 -0.1859 0.084034 -0.88158 0.019714 -0.9883 0.49863 -0.031452 -0.19263 -0.072645 +26 -0.0006202 0.10724 -0.022284 -0.82976 0.068064 -0.98822 0.51966 0.14629 -0.40722 -0.11155 +Sector -0.31445 -0.17617 0.15852 -0.88677 -0.069458 -0.83895 0.38908 0.031061 -0.23409 0.11124 +embassy -0.26549 -0.017364 0.21213 -0.90806 0.069404 -0.94696 0.49348 0.20868 -0.21777 -0.020424 +shuttle -0.20957 0.014762 0.13739 -1.0199 -0.025479 -0.85309 0.46138 0.04258 -0.29832 0.1862 +ban -0.53768 -0.02236 0.095289 -0.96129 -0.13797 -0.85195 0.39781 -0.14755 -0.08554 0.1538 +ANZ -0.19758 -0.16704 -0.05023 -0.91872 0.364 -0.98109 0.44476 0.053657 -0.14595 -0.0029469 +Ahmed -0.50308 -0.21174 0.097447 -1.0042 0.39655 -1.0429 0.30618 -0.12886 -0.10869 -0.094447 +request -0.1231 -0.036596 0.10909 -0.90715 0.19061 -0.95619 0.52876 0.28876 -0.30993 -0.099247 +unemployment -0.29502 -0.24977 0.1978 -0.94719 -0.065665 -0.86253 0.50078 0.13676 -0.16593 0.23636 +assistance -0.63903 -0.28618 0.075197 -0.9545 0.40815 -0.99153 0.49461 -0.078772 -0.10471 -0.10326 +Launceston -0.37547 -0.0064214 0.051219 -0.89427 -0.067292 -0.87666 0.49713 0.056742 -0.29787 0.077475 +Wayne -0.12187 0.068928 0.017605 -0.99255 0.57536 -1.0356 0.57311 0.14447 -0.252 -0.14248 +Boucher -0.52523 0.025364 -0.026015 -0.98984 0.13125 -0.97817 0.51024 -0.13463 -0.18826 -0.030091 +Indonesian -0.215 0.020276 0.034067 -0.87099 -0.005719 -0.92212 0.52643 0.056346 -0.1973 0.097429 +months, -0.10046 -0.069789 0.10003 -0.9277 0.24753 -1.0747 0.44745 0.18699 -0.26068 -0.08329 +murder -0.42637 -0.24334 0.12645 -0.78126 0.10648 -1.0982 0.47767 0.159 -0.11915 0.041442 +Whiting -0.25833 -0.023759 -0.047414 -0.88992 0.080393 -0.95249 0.46532 0.0084415 -0.28506 -0.07071 +convicted -0.087382 -0.14507 0.21741 -0.97476 0.12423 -0.92747 0.37899 0.18639 -0.23692 0.10655 +positions -0.45257 -0.27477 0.085941 -0.85921 0.18458 -0.953 0.46735 0.14453 -0.21068 0.086495 +ethnic -0.3314 -0.013393 0.139 -0.9376 0.002369 -0.81834 0.44175 -0.056331 -0.19796 0.11059 +About -0.1777 -0.16339 0.3381 -0.82766 0.019878 -0.88386 0.32885 0.3276 -0.32283 0.036568 +success -0.27618 -0.13046 0.098235 -0.9085 0.16715 -0.91378 0.51658 0.01549 -0.19144 0.0049447 +Matthew -0.40921 -0.082844 -0.0025165 -0.93614 0.19289 -0.94652 0.47355 -0.17839 -0.17524 -0.056866 +adding -0.23709 -0.1576 0.04681 -0.92208 0.30419 -1.0458 0.53208 0.030716 -0.21109 -0.13296 +afternoon, -0.54182 -0.15146 0.05249 -0.9633 0.31184 -0.9892 0.51719 -0.082694 -0.16372 -0.015537 +Several -0.13199 -0.30305 0.35307 -0.90982 -0.12317 -0.80691 0.29891 0.17346 -0.16832 0.24398 +doesn't -0.2277 0.012908 0.016402 -1.0144 -0.26756 -0.81014 0.45085 -0.052238 -0.38941 0.2301 +jets -0.1653 -0.18342 0.02247 -1.0515 0.78594 -1.0918 0.5612 -0.070135 -0.12446 -0.12714 +returning -0.22105 0.066884 0.058995 -0.93883 -0.047402 -0.98682 0.4423 0.021276 -0.28428 0.0085229 +Tasmania -0.36636 0.025534 -0.026354 -0.97525 0.6671 -1.1778 0.56041 -0.21786 -0.060114 -0.32723 +eventually -0.060651 -0.05693 0.20574 -0.99548 -0.093327 -0.84715 0.45356 0.16121 -0.27674 0.2399 +turn -0.2635 -0.051435 -0.014098 -0.92409 0.2041 -0.8606 0.59687 -0.1945 -0.073028 0.1483 +leaving -0.23264 -0.1132 0.032918 -0.9093 -0.21705 -0.873 0.42549 -0.048552 -0.30136 0.17416 +City, -0.067429 0.11399 -0.11627 -1.0337 -0.085067 -0.8824 0.47107 -0.10358 -0.38238 0.26292 +blasted -0.033591 -0.078305 0.26092 -0.99451 0.95927 -1.1888 0.50083 0.1436 -0.072922 -0.32647 +ambush. -0.47088 -0.12169 -0.068579 -1.014 0.35499 -1.134 0.47717 -0.22519 -0.063657 -0.10275 +walked -0.18161 -0.14404 0.088765 -0.92529 0.35004 -1.1199 0.35355 0.093609 -0.069034 -0.17966 +infected -0.19348 -0.038659 0.12921 -0.8858 0.38597 -1.0568 0.47456 0.073278 -0.12294 -0.08691 +connection -0.40445 -0.24466 0.095035 -0.90027 0.12359 -0.97314 0.44386 0.1951 -0.14262 0.12853 +throughout -0.31055 -0.063748 0.18935 -0.97882 0.030535 -0.94017 0.38571 0.063454 -0.20595 0.050733 +"We've -0.18621 -0.073269 0.12786 -1.0151 -0.29615 -0.82385 0.37146 0.077991 -0.22902 0.20631 +aware -0.093168 -0.26167 0.33907 -1.0078 -0.09483 -0.78338 0.28706 0.091563 -0.22648 0.2203 +initial -0.20161 -0.2792 0.020668 -0.88278 0.2253 -1.0335 0.48082 0.21186 -0.14592 0.14193 +batsmen -0.21912 -0.096826 0.10785 -1.0118 -0.1907 -0.75203 0.45697 0.12281 -0.31518 0.22863 +publicly -0.26759 -0.13199 0.13334 -0.93198 -0.064618 -0.82329 0.39054 0.032715 -0.24503 0.17005 +hijacked -0.27263 -0.11454 0.064381 -1.0713 0.32305 -1.0128 0.45111 -0.11007 -0.085915 0.031842 +hotel -0.13685 -0.15678 0.12426 -0.89428 0.094665 -0.9525 0.50199 0.049709 -0.19466 0.1286 +manager -0.36589 -0.28577 0.16006 -0.89964 -0.051954 -0.89808 0.35038 0.068212 -0.22981 0.23828 +News -0.13397 0.038487 0.11931 -0.95999 0.2688 -0.82699 0.51309 0.16196 -0.29672 -0.090084 +whereabouts -0.26045 -0.23654 0.29012 -0.94527 0.10056 -0.86472 0.39543 0.13834 -0.21111 0.14724 +SES -0.060015 -0.093493 0.14755 -0.89576 0.27132 -1.0017 0.37142 0.29515 -0.23319 -0.054476 +passed -0.23991 -0.14631 0.1053 -0.92571 0.079771 -1.0391 0.35249 0.041943 -0.10139 0.010671 +retired -0.10288 -0.21485 0.22882 -1.0209 0.22266 -0.86894 0.30943 0.031934 -0.069143 0.091702 +Cabinet -0.39858 0.091476 0.20836 -0.95545 0.50144 -1.0545 0.51298 0.020529 -0.18466 -0.28999 +Hopman -0.23384 0.056702 0.13752 -0.88843 0.11919 -1.0044 0.50717 0.089605 -0.27833 0.026196 +Colin -0.50858 -0.30501 0.20478 -0.90787 0.047238 -0.85429 0.46799 -0.025284 -0.1396 0.16909 +France -0.54875 -0.027401 -0.014226 -0.98142 0.30926 -0.9169 0.4647 -0.08488 -0.13867 -0.093333 +halt -0.37949 -0.19086 0.26888 -0.95092 0.20975 -0.81348 0.34532 -0.10359 -0.094048 0.11118 +Seles 0.021606 0.14334 0.18284 -1.0069 0.073838 -0.83509 0.57831 -0.015797 -0.31883 0.055868 +leadership -0.5245 -0.24842 -0.041373 -1.0035 0.40459 -1.0631 0.41643 -0.17426 0.05289 0.0039623 +presence -0.36084 -0.15133 -0.003308 -0.88257 -0.002605 -0.84002 0.43271 0.06422 -0.1509 0.1411 +bringing -0.16257 0.07094 -0.063496 -0.89058 -0.066668 -0.98277 0.55783 0.071073 -0.42444 -0.11064 +Ford -0.68731 -0.17513 -0.0084982 -0.83995 0.29547 -0.92423 0.58389 -0.28806 0.0021562 -0.033388 +ashes -0.035294 -0.048422 0.2007 -0.92284 -0.29905 -0.77588 0.41888 0.1914 -0.34667 0.23776 +temporary -0.42203 -0.19107 0.047354 -0.95904 0.21416 -0.96639 0.50933 -0.055362 -0.12741 0.052021 +HIV -0.24905 -0.21377 0.063751 -0.87832 -0.084386 -0.8413 0.44261 0.065612 -0.28955 0.21276 +male -0.42632 -0.037384 -0.011601 -0.80641 -0.23765 -0.79392 0.52739 -0.072474 -0.31588 0.17107 +delivered -0.27494 -0.27154 0.20049 -1.0283 0.34314 -1.0314 0.3781 0.068735 -0.10579 0.013449 +stay -0.40191 -0.46309 0.35015 -0.9483 0.43225 -0.89636 0.38019 -0.093341 -0.069494 -0.028059 +place, -0.42016 -0.094504 0.0081534 -0.91748 -0.071619 -0.95206 0.38292 -0.062778 -0.26259 0.074912 +authority -0.44484 -0.28295 0.072215 -0.97754 0.1083 -0.90135 0.47309 0.044972 -0.11922 0.18977 +whatever -0.35706 -0.091354 0.2386 -0.86837 -0.083266 -0.82038 0.40701 -0.12165 -0.25287 0.18153 +Premier -0.42991 -0.093934 0.14489 -0.9427 0.30017 -1.0132 0.45915 -0.14094 -0.052598 -0.05255 +Washington -0.1942 0.075839 0.079679 -1.0062 0.12136 -0.92512 0.45686 0.092941 -0.31464 -0.073134 +farmers -0.30328 -0.25586 0.25466 -0.96498 0.20236 -0.90681 0.33278 -0.020502 -0.032443 0.074924 +hearing -0.11652 -0.12713 0.13908 -0.89716 0.094548 -1.017 0.4162 0.2249 -0.3312 -0.083326 +disaster -0.41233 0.0090258 -0.012068 -0.89477 0.23141 -1.0535 0.51601 -0.090431 -0.11046 -0.053681 +Hare -0.31633 -0.23029 0.39142 -1.0579 -0.029476 -0.71293 0.28781 -0.037969 -0.14417 0.06339 +fair -0.2138 -0.1823 0.13421 -0.87633 -0.31357 -0.84075 0.35768 0.028203 -0.20797 0.24274 +28-year-old -0.26208 -0.20888 0.14721 -0.98162 0.19933 -0.90627 0.47913 0.070672 -0.13381 0.10318 +manslaughter -0.18954 -0.10245 0.15641 -0.90749 0.046472 -0.9511 0.47872 0.17989 -0.25487 0.052103 +Services 0.099523 -0.10298 0.32188 -1.0072 -0.14518 -0.6677 0.39707 0.38495 -0.33886 0.32082 +Emergency -0.18084 -0.069069 0.13063 -0.93422 0.3176 -1.0159 0.53012 0.11359 -0.19818 -0.063753 +relationship -0.4527 -0.31467 0.065602 -0.83727 0.16268 -0.9873 0.51063 0.17667 -0.17547 0.1002 +allegedly -0.15841 -0.11791 0.23173 -0.95427 -0.064483 -0.95716 0.24609 0.25144 -0.18054 0.16803 +happy -0.24261 -0.14874 0.16108 -0.9851 0.16835 -0.88154 0.46359 0.049752 -0.27116 0.092684 +tensions -0.27807 -0.2446 0.1275 -0.95882 0.08456 -0.87565 0.43105 0.16766 -0.21819 0.15439 +Arafat, -0.69495 0.00283 -0.11653 -0.87107 0.30845 -1.1002 0.55539 -0.46929 0.13194 -0.013451 +actor -0.5157 -0.28967 0.11812 -0.93227 -0.35857 -0.7746 0.2859 -0.082813 -0.23848 0.29371 +seemed -0.61388 -0.29496 0.10962 -1.0043 0.36095 -1.0873 0.38044 -0.22345 0.087789 -0.058102 +headed -0.50502 -0.2573 0.24772 -1.059 0.37391 -1.0235 0.31954 -0.065931 0.0087435 -0.0023838 +injuring -0.098241 -0.11688 0.064764 -0.8593 0.32638 -1.1317 0.5642 0.29006 -0.33966 -0.19568 +Neville -0.3259 -0.14089 0.040579 -0.91155 -0.02612 -0.84816 0.50193 0.010655 -0.14942 0.21091 +self-rule -0.40224 -0.15451 0.073701 -0.99873 0.14058 -0.97193 0.49833 -0.06536 -0.13114 0.10273 +we'll -0.411 -0.18358 -0.045442 -0.91371 -0.66867 -0.69162 0.34793 -0.038717 -0.17974 0.46947 +faces -0.17063 0.026559 0.13962 -0.97514 0.50471 -1.0292 0.54584 0.04527 -0.0085925 -0.078847 +aged -0.13331 -0.10156 0.20415 -0.92413 0.15444 -1.1066 0.30317 0.19216 -0.11349 -0.18242 +sign -0.38234 -0.12628 0.19185 -0.98366 0.16336 -0.84411 0.39789 -0.18097 -0.10779 -0.035669 +Jenin -0.27241 -0.039568 0.088355 -0.93481 0.50369 -1.0301 0.52204 -0.0096526 -0.18061 -0.17257 +Nablus -0.21391 -0.096137 0.018651 -0.98315 0.424 -1.0754 0.55246 -0.10657 -0.15748 -0.0084811 +concerns -0.35554 -0.28261 0.25285 -1.0106 -0.065398 -0.85027 0.4072 0.16369 -0.094971 0.29612 +service -0.044501 -0.19176 0.15741 -0.92203 0.041666 -0.79793 0.44268 0.23301 -0.1867 0.33057 +today's -0.34094 -0.15605 0.092894 -0.92911 0.1317 -0.9693 0.45755 0.017209 -0.14467 0.078745 +Mt 0.14151 -0.042268 0.20287 -0.93268 -0.25601 -0.64688 0.41099 0.23649 -0.32969 0.38915 +industry -0.534 -0.085994 0.025382 -0.84774 -0.11158 -0.92475 0.44758 0.0081253 -0.13622 0.046628 +terrorism. -0.31517 -0.12548 0.21477 -0.88978 0.24459 -0.98603 0.47557 0.087711 -0.26356 -0.10607 +often -0.52879 -0.14935 0.10029 -0.93974 0.1651 -0.9411 0.55918 -0.21536 -0.11227 0.10149 +night, 0.12298 -0.12941 0.36066 -0.93444 0.41968 -0.88449 0.4654 0.53798 -0.2872 -0.05315 +escalating -0.33829 -0.12703 0.015898 -0.83725 0.11901 -0.99878 0.52081 0.13393 -0.21464 -0.051598 +previous -0.282 -0.10094 -0.0079603 -0.88312 -0.060852 -0.93805 0.51915 0.10054 -0.25168 0.20141 +Island 0.013039 -0.059081 -0.038447 -0.94126 0.53201 -0.99614 0.5743 0.16496 -0.13518 0.12471 +levels -0.2053 -0.10492 0.20118 -0.9795 0.18489 -0.82919 0.42957 -0.077108 -0.13166 0.16859 +India's -0.51326 -0.10508 0.24936 -0.87206 0.38369 -1.0817 0.53512 -0.1711 -0.03881 -0.21276 +Antarctic -0.36612 -0.26796 0.16656 -0.99177 0.060273 -0.91185 0.41627 0.03005 -0.18043 0.18036 +"Every -0.33802 -0.1243 0.14369 -0.95371 -0.4448 -0.73827 0.37005 0.016855 -0.21363 0.35746 +extremists -0.24011 -0.086676 0.028766 -0.94564 0.35898 -1.0907 0.5522 0.07233 -0.22499 -0.05126 +locked -0.31102 -0.084622 0.083962 -0.94166 0.34729 -1.0238 0.37482 0.023288 -0.14446 -0.017709 +unable -0.17401 -0.066264 0.08375 -0.90282 -0.22468 -0.90443 0.47118 0.043548 -0.3112 0.19806 +treatment -0.27478 -0.30204 0.32846 -0.8659 -0.31595 -0.77731 0.37383 0.39064 -0.25039 0.26144 +increased -0.20034 -0.16535 0.21299 -0.95197 0.36574 -0.97734 0.40417 0.030496 -0.12069 -0.042252 +Qantas' -0.66562 -0.27424 0.20254 -0.93174 0.015123 -0.89357 0.37683 -0.083202 0.031141 -0.024249 +choosing -0.3108 -0.05691 0.059514 -0.92087 0.021155 -0.94624 0.46132 -0.060476 -0.22563 -0.024965 +Manufacturing -0.36459 -0.03665 0.12481 -0.80146 -0.04296 -0.95224 0.47252 0.065796 -0.23579 -0.080454 +Park -0.27228 -0.24721 0.18172 -1.0477 0.061452 -0.88541 0.34821 0.10405 -0.1182 0.15918 +pace -0.51173 -0.056871 -0.25776 -0.95248 0.57897 -1.1676 0.55508 -0.091836 -0.093863 -0.16639 +intelligence -0.48843 -0.18543 0.0017036 -0.99733 0.25789 -1.0857 0.47285 -0.1039 -0.082249 -0.045634 +Peres -0.064541 -0.088503 0.16119 -0.905 0.18264 -1.007 0.52766 0.23608 -0.25072 -0.0042925 +Saturday -0.20459 0.043622 0.021364 -0.91458 0.15444 -0.97015 0.59302 0.020509 -0.24214 0.02135 +allowed -0.14503 -0.055127 0.15819 -0.98083 0.27823 -1.0507 0.3977 0.12058 -0.069834 0.064531 +follow -0.020472 0.067402 0.083804 -0.92167 0.10125 -0.98843 0.51323 0.22062 -0.24816 0.065072 +food -0.16719 -0.21457 -0.032412 -0.91796 0.3043 -0.98733 0.44674 -0.0045141 -0.095009 0.0023948 +effort -0.33103 -0.19333 0.16564 -0.95268 -0.005989 -0.90712 0.40634 0.14172 -0.12277 0.14287 +contested -0.1816 -0.074223 0.16935 -1.0212 0.25551 -0.98821 0.47956 0.14203 -0.19689 0.063591 +course -0.35694 -0.093528 0.16327 -0.92286 -0.52557 -0.70208 0.25882 0.007853 -0.29627 0.31276 +focus -0.094077 -0.063998 0.084013 -0.9035 0.35784 -1.0862 0.42149 0.072761 -0.20467 -0.10303 +staying -0.32977 -0.26031 0.20705 -0.92262 -0.15255 -0.90498 0.39614 0.0032056 -0.31511 0.0019217 +questions -0.30184 -0.17847 0.037072 -0.9023 0.20693 -0.9822 0.4992 0.17968 -0.24761 0.016212 +Child 0.015704 -0.10886 0.20551 -0.90874 0.032916 -1.0135 0.40535 0.16044 -0.18068 0.1597 +Austar -0.36952 -0.13053 0.075797 -0.84449 0.016521 -0.84864 0.5294 0.071495 -0.28827 0.068427 +trade -0.15353 -0.076031 0.26592 -0.97467 -0.03202 -0.86541 0.34478 0.050255 -0.34897 0.12444 +lack -0.28125 -0.049111 0.12849 -0.858 0.024126 -0.87174 0.43113 0.075511 -0.28163 0.027479 +document -0.097176 -0.17444 0.14257 -0.85602 0.30242 -0.96306 0.56906 0.25605 -0.2711 -0.016344 +explanation -0.38645 -0.18002 0.055084 -0.86557 0.18408 -0.97789 0.48657 0.18924 -0.18177 0.083669 +Sultan -0.41645 -0.16765 0.21599 -1.0014 0.30501 -1.0955 0.46808 0.10096 -0.14567 -0.054145 +reduced -0.21167 -0.080213 0.11708 -0.94597 -0.17172 -0.89563 0.39573 0.26074 -0.2101 0.15443 +violent -0.11532 -0.13904 0.23495 -0.86285 0.3395 -1.0167 0.46774 0.32004 -0.18438 -0.10924 +understanding -0.36627 -0.18224 0.14645 -0.93409 0.068406 -0.91532 0.43653 0.039594 -0.22393 -0.033249 +farm -0.2685 -0.094387 0.36153 -1.0836 0.22668 -0.88753 0.28388 0.019861 -0.054735 -0.082909 +Lord -0.44769 -0.071266 -0.13184 -0.99477 0.64386 -1.1481 0.62058 -0.35432 0.088442 -0.19185 +nearby -0.21346 -0.21208 0.0129 -0.97925 0.22082 -0.93188 0.49707 0.01654 -0.27514 0.09273 +Toowoomba -0.11086 -0.016608 0.12698 -0.98588 0.18283 -0.93644 0.51906 0.27584 -0.1859 0.068254 +redundancy -0.37279 -0.2126 0.13548 -0.92321 0.20175 -0.91295 0.37839 0.091666 -0.15195 -0.016421 +credit -0.04897 0.00094891 0.18637 -0.93684 0.2433 -1.0365 0.50859 0.28308 -0.33012 -0.1834 +entitlements -0.22865 -0.17366 0.25398 -0.95994 0.25625 -0.97027 0.48133 0.29908 -0.17171 0.0098023 +paying -0.27379 -0.21393 0.14191 -0.81481 -0.31424 -0.86041 0.34354 0.12124 -0.28744 0.086008 +Stuart -0.32065 -0.045169 0.047934 -0.93749 -0.01232 -0.94264 0.55829 0.019187 -0.23201 0.012652 +administrators -0.38915 -0.10678 0.10779 -0.90749 0.15211 -0.9458 0.49626 -0.0076005 -0.15467 0.13405 +150 -0.10669 0.052089 -0.080921 -0.99111 0.28881 -0.88495 0.50056 0.040523 -0.24744 -0.046004 +technology -0.3845 -0.1054 0.095591 -0.89516 -0.023254 -0.88988 0.44832 -0.036531 -0.17773 0.062035 +holding -0.30153 -0.1088 0.12251 -0.9244 0.088088 -0.93542 0.44833 0.070584 -0.22506 -0.058827 +normal -0.33125 -0.08666 0.21988 -0.91425 -0.26755 -0.74247 0.3954 0.059246 -0.2519 0.29009 +Amin -0.67553 -0.21073 0.21461 -1.0165 -0.20907 -0.78149 0.34416 -0.081891 -0.18986 0.18107 +Adam -0.44946 -0.048925 0.12921 -0.91341 -0.258 -0.85795 0.404 0.10336 -0.19082 0.18 +crashed -0.28983 -0.19277 0.28008 -1.0251 0.36846 -1.0111 0.34961 0.023464 -0.10933 -0.062239 +natural -0.07196 -0.27232 0.38912 -0.98727 -0.1257 -0.81443 0.29644 0.32534 -0.29026 0.20611 +begin -0.67268 -0.064473 -0.036203 -1.0396 0.39318 -1.0634 0.52304 -0.39897 -0.10272 -0.20808 +Up -0.12987 -0.31596 0.37794 -0.92846 0.34058 -0.87118 0.55491 0.18954 -0.065122 0.20761 +celebrations -0.35697 -0.24729 0.14783 -0.91635 0.17408 -0.84252 0.47401 0.19342 -0.26351 0.14232 +reject -0.36215 -0.083687 0.019168 -0.88026 -0.34821 -0.80624 0.35637 0.060272 -0.22834 0.17106 +options -0.43006 -0.32979 0.099825 -0.8432 0.28397 -0.94099 0.45111 0.18693 -0.12492 0.077929 +single -0.36768 -0.0077289 0.12405 -0.89668 -0.13589 -0.91868 0.43771 0.023178 -0.19012 0.020062 +handling -0.19383 -0.086433 0.073078 -0.84088 -0.022429 -0.96951 0.52248 0.18913 -0.26988 -0.062818 +match. -0.10931 0.18295 -0.0038214 -0.83137 -0.24983 -0.95995 0.53487 0.20493 -0.49541 -0.1036 +summit -0.31419 0.0098797 0.035068 -0.96421 0.14451 -1.0258 0.50231 -0.018111 -0.23626 -0.029974 +talks. -0.35229 -0.15515 0.07993 -0.99309 0.11575 -0.89788 0.43005 0.018662 -0.17911 0.030351 +All -0.82992 -0.12558 0.23378 -0.8514 -0.078518 -0.93991 0.46519 -0.30953 0.013705 0.18509 +settlement -0.34912 -0.2379 0.10761 -0.96062 0.31773 -1.0578 0.52877 0.033297 -0.049265 -0.010945 +searching -0.24236 -0.17512 0.17781 -0.95078 -0.16358 -0.74868 0.38088 0.085915 -0.27398 0.19703 +dollars -0.35512 -0.096205 0.13233 -1.0636 0.25495 -0.91864 0.53955 -0.11415 -0.17314 -0.015355 +guess -0.27593 -0.11835 0.12093 -0.93565 -0.078513 -0.84341 0.43357 0.059761 -0.35287 0.10868 +Kieren -0.28648 -0.052006 0.019997 -0.93716 0.048119 -1.0201 0.5268 -0.082165 -0.20706 0.12905 +23 -0.21086 -0.057727 -0.088208 -0.96071 0.56566 -1.1161 0.58002 -0.23208 -0.13051 -0.046464 +Bonn -0.63015 -0.090793 -0.010465 -0.89356 0.37004 -1.1065 0.49491 -0.13038 -0.12322 -0.18684 +... -0.43566 -0.18061 0.06388 -0.86017 0.013587 -0.82546 0.47717 -0.017943 -0.095205 0.12177 +prepare -0.27096 -0.23845 0.17099 -0.88899 -0.17308 -0.79854 0.33358 0.18857 -0.27852 0.22166 +champion -0.37096 -0.075525 0.033513 -0.87721 0.032021 -1.0175 0.42515 0.086005 -0.22466 0.0095515 +Pollock -0.17072 0.075854 0.034762 -0.99117 0.025959 -0.84027 0.51192 0.054958 -0.34076 0.13271 +television. -0.44044 -0.21914 0.064641 -0.95829 0.15258 -0.9742 0.43971 -0.15748 -0.021531 0.11953 +begun -0.44643 -0.063631 0.062254 -0.89464 -0.26594 -0.77289 0.43425 -0.022602 -0.29919 0.059812 +coast -0.096154 -0.098287 0.25499 -0.86603 0.41534 -0.9861 0.60581 0.24712 -0.30546 -0.11746 +leave -0.48798 -0.14912 0.15468 -1.0082 0.28873 -0.94628 0.46997 -0.14209 0.015677 0.16177 +St -0.15052 -0.038151 0.074615 -0.94029 0.62285 -0.93937 0.64598 0.084345 -0.21029 -0.10022 +Sydney. 0.26468 0.080405 0.32812 -1.0438 0.026161 -0.72776 0.57149 0.22449 -0.45732 0.20119 +losing -0.30082 -0.14351 0.13768 -0.94164 -0.073193 -0.87297 0.40935 -0.035951 -0.20497 0.083264 +work. -0.33936 -0.20084 0.24815 -1.0307 0.14337 -0.84725 0.4851 0.038437 -0.18419 0.15475 +counts -0.18804 -0.080086 0.15436 -0.93251 0.17173 -0.92948 0.56095 0.42776 -0.34996 0.025217 +26-year-old -0.23247 -0.16833 0.10058 -0.95923 0.12781 -0.89816 0.45605 0.021855 -0.15746 0.094273 +suggested -0.22162 -0.0057453 0.067216 -1.0141 0.46976 -1.0677 0.51246 -0.14477 -0.10022 -0.052623 +projects -0.38763 -0.26072 0.012426 -1.01 0.17994 -0.91495 0.52402 -0.090687 -0.25331 0.078616 +understood -0.39868 -0.13931 0.061138 -0.91247 0.04974 -0.9366 0.44174 -0.038707 -0.21788 0.022325 +various -0.42015 -0.30838 0.073304 -0.85863 0.37029 -1.0839 0.46362 0.028696 -0.00035373 -0.010771 +debate -0.12791 -0.10166 0.26514 -0.92209 0.13826 -0.92997 0.45138 0.26024 -0.26033 0.064546 +Bill -0.39838 -0.033529 0.094462 -0.87625 -0.2477 -0.78666 0.481 0.13671 -0.29902 0.21293 +happens -0.21991 -0.11012 -0.0028922 -0.9438 0.12635 -0.90128 0.55503 0.0095414 -0.22928 0.17408 +Commissioner -0.49284 -0.16213 0.12342 -0.90232 0.031972 -0.97126 0.46812 -0.01738 -0.030934 0.15521 +Deputy -0.36846 -0.16084 0.078157 -0.82351 -0.050522 -0.92733 0.5193 0.07008 -0.23301 0.11732 +civilians -0.26415 -0.15822 0.068405 -0.98221 0.50329 -1.0065 0.52038 -0.038207 -0.18997 -0.052481 +threatening -0.25182 -0.045476 0.10861 -0.89748 0.2866 -1.0112 0.42588 -0.062959 -0.30542 -0.11057 +women's -0.19161 -0.071387 0.19565 -1.0621 0.22142 -1.0313 0.47957 0.15791 -0.22421 0.099062 +containment -0.24544 -0.31776 0.35774 -1.0603 0.27667 -0.94787 0.45011 0.25615 -0.13414 0.083895 +stand -0.32437 -0.29159 0.29872 -0.96611 0.10026 -0.85177 0.31083 0.053036 -0.15696 0.15546 +MacGill -0.31908 0.030595 0.093019 -0.94111 -0.093146 -0.86372 0.49992 0.057094 -0.24437 0.11818 +putting -0.38698 -0.14535 0.03712 -0.90819 0.081707 -0.9084 0.42326 -0.057029 -0.26089 -0.021234 +determine -0.4176 -0.097098 0.14469 -0.93155 0.11262 -1.0324 0.43527 0.012073 -0.099626 0.040556 +Israel. -0.47031 -0.063841 -0.37841 -0.97351 1.1357 -1.3919 0.65755 -0.52246 0.1681 -0.27245 +forecast -0.19474 -0.079622 0.15075 -1.103 0.64718 -1.1086 0.38859 0.13428 -0.16916 -0.21521 +During -0.34549 -0.037444 0.073162 -0.8123 -0.10379 -0.97766 0.4863 0.040554 -0.3512 -0.056979 +bureau -0.18654 -0.084556 0.22349 -0.94008 0.17144 -0.88225 0.50717 0.042983 -0.26211 0.16669 +findings -0.15385 0.024256 0.097106 -0.90701 -0.0062973 -0.87097 0.45966 0.092639 -0.31016 0.048742 +fear -0.13347 -0.033548 0.051886 -1.0621 0.69087 -1.067 0.49215 -0.082951 -0.19496 -0.24658 +data -0.34699 -0.17287 -0.01897 -0.93141 0.24327 -0.91246 0.46874 -0.18289 -0.18046 0.081533 +gone -0.26956 -0.29501 0.25143 -1.0867 0.19435 -0.93538 0.33428 0.0059832 -0.084104 0.060041 +record -0.3523 0.061825 0.089374 -0.8624 0.10975 -0.93357 0.47165 0.088856 -0.19873 -0.037258 +hoping -0.18615 -0.052057 0.080318 -0.91618 0.10148 -0.88347 0.48114 -0.0095034 -0.35875 -0.1065 +Israelis. -0.23908 -0.12511 -0.23259 -1.0042 0.8512 -1.1663 0.54631 -0.34526 -0.007403 -0.12883 +Hamid -0.30894 -0.25919 0.073896 -0.86696 -0.060983 -0.83277 0.46301 0.015398 -0.12849 0.15373 +present -0.28584 -0.21305 0.1917 -0.82763 -0.2293 -0.86695 0.41269 0.28361 -0.18485 0.14715 +live -0.36521 -0.27784 0.21715 -1.0707 0.52157 -1.1198 0.27499 -0.065779 0.10911 -0.14034 +ahead. -0.18178 -0.16656 0.22029 -0.91903 0.26257 -0.96658 0.42367 0.15003 -0.19482 0.13553 +warning -0.057134 -0.10892 0.21894 -0.93471 0.075207 -0.93845 0.32891 0.098712 -0.29838 -0.10296 +trapped -0.39018 -0.17152 0.16364 -0.90232 0.39176 -1.0995 0.41738 -0.031247 -0.14006 -0.14978 +markets -0.22304 0.049703 0.023357 -0.89652 0.028235 -0.93915 0.54958 0.10373 -0.31918 -0.015176 +Sergeant -0.22138 -0.073868 0.18847 -0.89862 -0.12118 -0.88672 0.44595 0.059898 -0.20127 0.20083 +Seven -0.15834 0.012167 0.075471 -0.9344 -0.0060505 -0.87636 0.57467 -0.091161 -0.18515 0.16282 +firm -0.20924 0.13692 0.229 -1.0004 0.087825 -0.74557 0.46068 0.063433 -0.19736 -0.013484 +welcomed -0.33084 -0.13075 -0.031394 -0.933 0.12591 -0.93544 0.43404 -0.0071708 -0.19188 0.02752 +responding -0.27598 -0.17165 0.25794 -0.96352 -0.021708 -0.90139 0.36233 0.13162 -0.20719 0.013575 +law -0.23204 0.098585 0.084543 -0.87951 0.045764 -1.0408 0.39644 0.083872 -0.19391 0.06397 +deputy -0.35117 -0.094578 0.069262 -0.8022 0.21323 -1.0385 0.49627 0.14174 -0.18405 -0.036922 +unidentified -0.21788 -0.19765 0.16739 -0.96515 0.26464 -1.0681 0.45954 0.19657 -0.10865 -0.040348 +clashes -0.18525 -0.090192 0.13899 -0.92914 0.19958 -0.99479 0.48018 0.0076089 -0.22087 0.057853 +ago, -0.12196 -0.25092 0.21986 -0.78537 -0.43743 -0.83485 0.35358 0.5775 -0.36967 0.27372 +replied: -0.53654 -0.30794 0.0668 -0.95327 -0.32244 -0.86974 0.32233 0.0035099 -0.12836 0.27396 +path -0.29637 -0.0050163 -0.09227 -0.91761 0.61522 -1.2084 0.51978 -0.070516 -0.022066 -0.26732 +search -0.33437 -0.14509 0.16727 -0.8863 0.019863 -0.77068 0.47079 0.019677 -0.24613 0.18844 +hundred -0.025627 -0.11448 0.18116 -0.96779 0.2532 -0.93224 0.3929 0.12679 -0.19685 -0.13179 +state. -0.18528 -0.23642 0.26504 -1.0479 0.57506 -1.0035 0.41344 -0.17807 -0.09178 -0.023322 +efforts -0.2879 -0.13298 0.14961 -0.93882 0.13162 -0.93926 0.49649 0.17908 -0.18039 0.022261 +tree -0.13421 0.049938 0.039293 -0.85099 -0.054489 -0.95255 0.48989 0.20728 -0.25372 0.081726 +telephone -0.31696 -0.22565 0.13317 -1.0219 0.2304 -1.0449 0.39416 -0.015374 -0.058222 0.064146 +problem -0.23808 -0.055263 0.21232 -0.94406 -0.52183 -0.69284 0.40925 0.16283 -0.35028 0.39899 +approached -0.3755 -0.24085 0.045111 -0.96186 0.31842 -0.96877 0.4262 -0.091481 -0.06434 0.076188 +chairman -0.24927 -0.10477 0.17401 -0.90386 0.013637 -0.93125 0.41858 0.049651 -0.20749 0.15118 +Afroz -0.3492 -0.11356 0.046444 -0.96179 0.49956 -1.1739 0.50381 -0.029897 -0.15488 -0.24651 +Monday, -0.18335 0.075194 0.19071 -0.85914 -0.074304 -0.8325 0.45894 0.23434 -0.32902 0.11567 +advance -0.35487 -0.13718 0.083065 -1.0344 0.076132 -0.86051 0.39686 0.031053 -0.1538 0.12614 From 58a66c2b6c704d668f86bf7e4c4a59c86beffa4a Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Sat, 20 May 2017 07:41:02 +0530 Subject: [PATCH 08/16] test for loading new fastText format --- gensim/test/test_fasttext_wrapper.py | 33 ++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) diff --git a/gensim/test/test_fasttext_wrapper.py b/gensim/test/test_fasttext_wrapper.py index 75c37c512d..efd0fb6206 100644 --- a/gensim/test/test_fasttext_wrapper.py +++ b/gensim/test/test_fasttext_wrapper.py @@ -35,8 +35,10 @@ def setUp(self): self.ft_path = os.path.join(ft_home, 'fasttext') if ft_home else None self.corpus_file = datapath('lee_background.cor') self.test_model_file = datapath('lee_fasttext') + self.test_new_model_file = datapath('lee_fasttext_new') # Load pre-trained model to perform tests in case FastText binary isn't available in test environment self.test_model = fasttext.FastText.load_fasttext_format(self.test_model_file) + self.test_new_model = fasttext.FastText.load_fasttext_format(self.test_new_model_file) def model_sanity(self, model): """Even tiny models trained on any corpus should pass these sanity checks""" @@ -120,6 +122,37 @@ def testLoadFastTextFormat(self): self.assertEqual(self.test_model.wv.syn0_all.shape, (self.test_model.num_ngram_vectors, model_size)) self.model_sanity(model) + def testLoadFastTextNewFormat(self): + #Test model successfully loaded from fastText (new format) .vec and .bin files + new_model = fasttext.FastText.load_fasttext_format(self.test_new_model_file) + vocab_size, model_size = 1763, 10 + self.assertEqual(self.test_new_model.wv.syn0.shape, (vocab_size, model_size)) + self.assertEqual(len(self.test_new_model.wv.vocab), vocab_size, model_size) + self.assertEqual(self.test_new_model.wv.syn0_all.shape, (self.test_new_model.num_ngram_vectors, model_size)) + + expected_vec_new = [-0.025627, + -0.11448, + 0.18116, + -0.96779, + 0.2532, + -0.93224, + 0.3929, + 0.12679, + -0.19685, + -0.13179] # obtained using ./fasttext print-word-vectors lee_fasttext_new.bin < queries.txt + + + self.assertTrue(numpy.allclose(self.test_new_model["hundred"], expected_vec_new, 0.001)) + self.assertEquals(self.test_new_model.min_count, 5) + self.assertEquals(self.test_new_model.window, 5) + self.assertEquals(self.test_new_model.iter, 5) + self.assertEquals(self.test_new_model.negative, 5) + self.assertEquals(self.test_new_model.sample, 0.0001) + self.assertEquals(self.test_new_model.bucket, 1000) + self.assertEquals(self.test_new_model.wv.max_n, 6) + self.assertEquals(self.test_new_model.wv.min_n, 3) + self.model_sanity(new_model) + def testLoadModelWithNonAsciiVocab(self): model = fasttext.FastText.load_fasttext_format(datapath('non_ascii_fasttext')) self.assertTrue(u'kterĂ˝' in model) From 8ffb2200cbac905c8234bff341df4337aa376b74 Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Mon, 22 May 2017 16:48:58 +0530 Subject: [PATCH 09/16] french PR separated --- gensim/models/wrappers/fasttext.py | 20 +++++++++++--------- gensim/test/test_fasttext_wrapper.py | 1 - 2 files changed, 11 insertions(+), 10 deletions(-) diff --git a/gensim/models/wrappers/fasttext.py b/gensim/models/wrappers/fasttext.py index b2ab246897..0c2e7794f4 100644 --- a/gensim/models/wrappers/fasttext.py +++ b/gensim/models/wrappers/fasttext.py @@ -42,6 +42,8 @@ logger = logging.getLogger(__name__) +FASTTEXT_FILEFORMAT_MAGIC = 793712314 + class FastTextKeyedVectors(KeyedVectors): """ @@ -141,7 +143,6 @@ class FastText(Word2Vec): def initialize_word_vectors(self): self.wv = FastTextKeyedVectors() - self.new_format = False @classmethod def train(cls, ft_path, corpus_file, output_file=None, model='cbow', size=100, alpha=0.025, window=5, min_count=5, @@ -258,11 +259,12 @@ def load_binary_data(self, model_binary_file, encoding='utf8'): self.load_vectors(f) def load_model_params(self, file_handle): - magic, v= self.struct_unpack(file_handle, '@2i') - if magic == 793712314: # newer format + magic, version = self.struct_unpack(file_handle, '@2i') + if magic == FASTTEXT_FILEFORMAT_MAGIC : # newer format self.new_format = True dim, ws, epoch, minCount, neg, _, loss, model, bucket, minn, maxn, _, t = self.struct_unpack(file_handle, '@12i1d') else: # older format + self.new_format = True dim = magic ws = v epoch, minCount, neg, _, loss, model, bucket, minn, maxn, _, t = self.struct_unpack(file_handle, '@10i1d') @@ -298,16 +300,16 @@ def load_dict(self, file_handle, encoding='utf8'): char_byte = file_handle.read(1) word = word_bytes.decode(encoding) count, _ = self.struct_unpack(file_handle, '@qb') - if word in self.wv.vocab: - # skip loading info about words in bin file which are not present in vec file - # handling mismatch in vocab_size in vec and bin files (ref: wiki.fr) - assert self.wv.vocab[word].index == i, 'mismatch between gensim word index and fastText word index' - self.wv.vocab[word].count = count + assert self.wv.vocab[word].index == i, 'mismatch between gensim word index and fastText word index' + self.wv.vocab[word].count = count + + for j in range(pruneidx_size): + _,_ = self.struct_unpack(file_handle,'@2i') def load_vectors(self, file_handle): if self.new_format: - _ = self.struct_unpack(file_handle,'@?') + _ = self.struct_unpack(file_handle, '@?') # bool quant_input in fasttext.cc num_vectors, dim = self.struct_unpack(file_handle, '@2q') # Vectors stored by [Matrix::save](https://github.com/facebookresearch/fastText/blob/master/src/matrix.cc) assert self.vector_size == dim, 'mismatch between model sizes' diff --git a/gensim/test/test_fasttext_wrapper.py b/gensim/test/test_fasttext_wrapper.py index a2ae4a2740..83b9199dab 100644 --- a/gensim/test/test_fasttext_wrapper.py +++ b/gensim/test/test_fasttext_wrapper.py @@ -160,7 +160,6 @@ def testLoadFastTextNewFormat(self): -0.19685, -0.13179] # obtained using ./fasttext print-word-vectors lee_fasttext_new.bin < queries.txt - self.assertTrue(numpy.allclose(self.test_new_model["hundred"], expected_vec_new, 0.001)) self.assertEquals(self.test_new_model.min_count, 5) self.assertEquals(self.test_new_model.window, 5) From 06ac316e6221888c45c3b90d91be267b9015b6c0 Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Mon, 22 May 2017 16:54:15 +0530 Subject: [PATCH 10/16] magic header separated --- gensim/models/wrappers/fasttext.py | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/gensim/models/wrappers/fasttext.py b/gensim/models/wrappers/fasttext.py index 0c2e7794f4..cb50a70a13 100644 --- a/gensim/models/wrappers/fasttext.py +++ b/gensim/models/wrappers/fasttext.py @@ -285,9 +285,7 @@ def load_dict(self, file_handle, encoding='utf8'): vocab_size, nwords, _ = self.struct_unpack(file_handle, '@3i') # Vocab stored by [Dictionary::save](https://github.com/facebookresearch/fastText/blob/master/src/dictionary.cc) assert len(self.wv.vocab) == nwords, 'mismatch between vocab sizes' - if len(self.wv.vocab) != vocab_size: - logger.warnings("If you are loading any model other than pretrained vector wiki.fr, ") - logger.warnings("Please report to gensim or fastText.") + assert len(self.wv.vocab) == vocab_size, 'mismatch between vocab sizes' ntokens= self.struct_unpack(file_handle, '@1q') if self.new_format: pruneidx_size = self.struct_unpack(file_handle, '@q') From 3deb394db84d133a23731db5de90579302d5936e Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Mon, 22 May 2017 17:53:02 +0530 Subject: [PATCH 11/16] changes according to review --- gensim/models/wrappers/fasttext.py | 10 +++++----- gensim/test/test_fasttext_wrapper.py | 4 ++-- 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/gensim/models/wrappers/fasttext.py b/gensim/models/wrappers/fasttext.py index cb50a70a13..d0f54c1b19 100644 --- a/gensim/models/wrappers/fasttext.py +++ b/gensim/models/wrappers/fasttext.py @@ -260,13 +260,13 @@ def load_binary_data(self, model_binary_file, encoding='utf8'): def load_model_params(self, file_handle): magic, version = self.struct_unpack(file_handle, '@2i') - if magic == FASTTEXT_FILEFORMAT_MAGIC : # newer format + if magic == FASTTEXT_FILEFORMAT_MAGIC: # newer format self.new_format = True dim, ws, epoch, minCount, neg, _, loss, model, bucket, minn, maxn, _, t = self.struct_unpack(file_handle, '@12i1d') else: # older format self.new_format = True dim = magic - ws = v + ws = version epoch, minCount, neg, _, loss, model, bucket, minn, maxn, _, t = self.struct_unpack(file_handle, '@10i1d') # Parameters stored by [Args::save](https://github.com/facebookresearch/fastText/blob/master/src/args.cc) self.vector_size = dim @@ -286,7 +286,7 @@ def load_dict(self, file_handle, encoding='utf8'): # Vocab stored by [Dictionary::save](https://github.com/facebookresearch/fastText/blob/master/src/dictionary.cc) assert len(self.wv.vocab) == nwords, 'mismatch between vocab sizes' assert len(self.wv.vocab) == vocab_size, 'mismatch between vocab sizes' - ntokens= self.struct_unpack(file_handle, '@1q') + ntokens = self.struct_unpack(file_handle, '@1q') if self.new_format: pruneidx_size = self.struct_unpack(file_handle, '@q') for i in range(nwords): @@ -301,8 +301,8 @@ def load_dict(self, file_handle, encoding='utf8'): assert self.wv.vocab[word].index == i, 'mismatch between gensim word index and fastText word index' self.wv.vocab[word].count = count - for j in range(pruneidx_size): - _,_ = self.struct_unpack(file_handle,'@2i') + for j in range(pruneidx_size): + _, _ = self.struct_unpack(file_handle, '@2i') def load_vectors(self, file_handle): diff --git a/gensim/test/test_fasttext_wrapper.py b/gensim/test/test_fasttext_wrapper.py index 83b9199dab..38dbec052e 100644 --- a/gensim/test/test_fasttext_wrapper.py +++ b/gensim/test/test_fasttext_wrapper.py @@ -142,7 +142,7 @@ def testLoadFastTextFormat(self): self.model_sanity(model) def testLoadFastTextNewFormat(self): - #Test model successfully loaded from fastText (new format) .vec and .bin files + """ Test model successfully loaded from fastText (new format) .vec and .bin files """ new_model = fasttext.FastText.load_fasttext_format(self.test_new_model_file) vocab_size, model_size = 1763, 10 self.assertEqual(self.test_new_model.wv.syn0.shape, (vocab_size, model_size)) @@ -285,4 +285,4 @@ def testHash(self): if __name__ == '__main__': logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG) - unittest.main() + unittest.main() \ No newline at end of file From b038fdb1094387ed547697f10c7229b86f0ecb95 Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Tue, 23 May 2017 09:28:16 +0530 Subject: [PATCH 12/16] .vec added to flake8 ignore list --- continuous_integration/travis/flake8_diff.sh | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/continuous_integration/travis/flake8_diff.sh b/continuous_integration/travis/flake8_diff.sh index 3dc77a628d..61ec099fef 100755 --- a/continuous_integration/travis/flake8_diff.sh +++ b/continuous_integration/travis/flake8_diff.sh @@ -133,6 +133,6 @@ check_files() { if [[ "$MODIFIED_FILES" == "no_match" ]]; then echo "No file has been modified" else - check_files "$(echo "$MODIFIED_FILES" )" "--ignore=E501,E731,E12,W503 --exclude=*.sh,*.md,*.yml,*.rst,*.ipynb" + check_files "$(echo "$MODIFIED_FILES" )" "--ignore=E501,E731,E12,W503 --exclude=*.sh,*.md,*.yml,*.rst,*.ipynb,*.vec" fi echo -e "No problem detected by flake8\n" From 4f6aa4d660016835caa796afa58a806a4e2f8af1 Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Tue, 23 May 2017 09:36:28 +0530 Subject: [PATCH 13/16] self.new_format mistake corrected --- gensim/models/wrappers/fasttext.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/gensim/models/wrappers/fasttext.py b/gensim/models/wrappers/fasttext.py index d0f54c1b19..9be3e1592c 100644 --- a/gensim/models/wrappers/fasttext.py +++ b/gensim/models/wrappers/fasttext.py @@ -264,7 +264,7 @@ def load_model_params(self, file_handle): self.new_format = True dim, ws, epoch, minCount, neg, _, loss, model, bucket, minn, maxn, _, t = self.struct_unpack(file_handle, '@12i1d') else: # older format - self.new_format = True + self.new_format = False dim = magic ws = version epoch, minCount, neg, _, loss, model, bucket, minn, maxn, _, t = self.struct_unpack(file_handle, '@10i1d') @@ -288,7 +288,7 @@ def load_dict(self, file_handle, encoding='utf8'): assert len(self.wv.vocab) == vocab_size, 'mismatch between vocab sizes' ntokens = self.struct_unpack(file_handle, '@1q') if self.new_format: - pruneidx_size = self.struct_unpack(file_handle, '@q') + pruneidx_size, = self.struct_unpack(file_handle, '@q') for i in range(nwords): word_bytes = b'' char_byte = file_handle.read(1) From 5c09bdf3454852ac7d7a110e22772f79f761e521 Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Tue, 23 May 2017 10:07:28 +0530 Subject: [PATCH 14/16] localBounderror resolved --- gensim/models/wrappers/fasttext.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/gensim/models/wrappers/fasttext.py b/gensim/models/wrappers/fasttext.py index 9be3e1592c..a0564b26a2 100644 --- a/gensim/models/wrappers/fasttext.py +++ b/gensim/models/wrappers/fasttext.py @@ -301,9 +301,9 @@ def load_dict(self, file_handle, encoding='utf8'): assert self.wv.vocab[word].index == i, 'mismatch between gensim word index and fastText word index' self.wv.vocab[word].count = count - for j in range(pruneidx_size): - _, _ = self.struct_unpack(file_handle, '@2i') - + if self.new_format: + for j in range(pruneidx_size): + _, _ = self.struct_unpack(file_handle, '@2i') def load_vectors(self, file_handle): if self.new_format: From 55a2d371110ec287c9503bca9f9fa4d46db3da12 Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Tue, 23 May 2017 15:54:07 +0530 Subject: [PATCH 15/16] unused variable error handled --- gensim/models/wrappers/fasttext.py | 6 +++--- gensim/test/test_fasttext_wrapper.py | 2 +- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/gensim/models/wrappers/fasttext.py b/gensim/models/wrappers/fasttext.py index a0564b26a2..df83cedebb 100644 --- a/gensim/models/wrappers/fasttext.py +++ b/gensim/models/wrappers/fasttext.py @@ -286,7 +286,7 @@ def load_dict(self, file_handle, encoding='utf8'): # Vocab stored by [Dictionary::save](https://github.com/facebookresearch/fastText/blob/master/src/dictionary.cc) assert len(self.wv.vocab) == nwords, 'mismatch between vocab sizes' assert len(self.wv.vocab) == vocab_size, 'mismatch between vocab sizes' - ntokens = self.struct_unpack(file_handle, '@1q') + self.struct_unpack(file_handle, '@1q') # number of tokens if self.new_format: pruneidx_size, = self.struct_unpack(file_handle, '@q') for i in range(nwords): @@ -303,11 +303,11 @@ def load_dict(self, file_handle, encoding='utf8'): if self.new_format: for j in range(pruneidx_size): - _, _ = self.struct_unpack(file_handle, '@2i') + self.struct_unpack(file_handle, '@2i') def load_vectors(self, file_handle): if self.new_format: - _ = self.struct_unpack(file_handle, '@?') # bool quant_input in fasttext.cc + self.struct_unpack(file_handle, '@?') # bool quant_input in fasttext.cc num_vectors, dim = self.struct_unpack(file_handle, '@2q') # Vectors stored by [Matrix::save](https://github.com/facebookresearch/fastText/blob/master/src/matrix.cc) assert self.vector_size == dim, 'mismatch between model sizes' diff --git a/gensim/test/test_fasttext_wrapper.py b/gensim/test/test_fasttext_wrapper.py index 38dbec052e..e41576401d 100644 --- a/gensim/test/test_fasttext_wrapper.py +++ b/gensim/test/test_fasttext_wrapper.py @@ -285,4 +285,4 @@ def testHash(self): if __name__ == '__main__': logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG) - unittest.main() \ No newline at end of file + unittest.main() From aeb05c12816bd62ebb68b406c0644cb383930f5b Mon Sep 17 00:00:00 2001 From: Prakhar Pratyush Date: Tue, 23 May 2017 16:07:41 +0530 Subject: [PATCH 16/16] two space before comment --- gensim/models/wrappers/fasttext.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gensim/models/wrappers/fasttext.py b/gensim/models/wrappers/fasttext.py index df83cedebb..926e994eaf 100644 --- a/gensim/models/wrappers/fasttext.py +++ b/gensim/models/wrappers/fasttext.py @@ -286,7 +286,7 @@ def load_dict(self, file_handle, encoding='utf8'): # Vocab stored by [Dictionary::save](https://github.com/facebookresearch/fastText/blob/master/src/dictionary.cc) assert len(self.wv.vocab) == nwords, 'mismatch between vocab sizes' assert len(self.wv.vocab) == vocab_size, 'mismatch between vocab sizes' - self.struct_unpack(file_handle, '@1q') # number of tokens + self.struct_unpack(file_handle, '@1q') # number of tokens if self.new_format: pruneidx_size, = self.struct_unpack(file_handle, '@q') for i in range(nwords):