diff --git a/gensim/models/ldamodel.py b/gensim/models/ldamodel.py index afb0e035c9..c623814fe0 100755 --- a/gensim/models/ldamodel.py +++ b/gensim/models/ldamodel.py @@ -378,8 +378,9 @@ def __init__(self, corpus=None, num_topics=100, id2word=None, Can be set to an 1D array of length equal to the number of expected topics that expresses our a-priori belief for the each topics' probability. Alternatively default prior selecting strategies can be employed by supplying a string: - - * 'asymmetric': Uses a fixed normalized asymmetric prior of `1.0 / topicno`. + + * 'symmetric': Default; uses a fixed symmetric prior per topic, + * 'asymmetric': Uses a fixed normalized asymmetric prior of `1.0 / (topic_index + sqrt(topic_no))`, * 'auto': Learns an asymmetric prior from the corpus (not available if `distributed==True`). eta : {float, np.array, str}, optional A-priori belief on word probability, this can be: @@ -536,7 +537,8 @@ def init_dir_prior(self, prior, name): If `name` == 'alpha', then the prior can be: * an 1D array of length equal to the number of expected topics, - * 'asymmetric': Uses a fixed normalized asymmetric prior of `1.0 / topicno`. + * 'symmetric': Uses a fixed symmetric prior per topic, + * 'asymmetric': Uses a fixed normalized asymmetric prior of `1.0 / (topic_index + sqrt(topic_no))`, * 'auto': Learns an asymmetric prior from the corpus. name : {'alpha', 'eta'} Whether the `prior` is parameterized by the alpha vector (1 parameter per topic)