diff --git a/gensim/similarities/docsim.py b/gensim/similarities/docsim.py index 4dc16a8b10..78ad034cd2 100755 --- a/gensim/similarities/docsim.py +++ b/gensim/similarities/docsim.py @@ -901,8 +901,7 @@ class SoftCosineSimilarity(interfaces.SimilarityABC): >>> query = 'graph trees computer'.split() # make a query >>> sims = docsim_index[dictionary.doc2bow(query)] # calculate similarity of query to each doc from bow_corpus - Check out `Tutorial Notebook - `_ + Check out `the Gallery `_ for more examples. """ @@ -993,9 +992,8 @@ def __str__(self): class WmdSimilarity(interfaces.SimilarityABC): """Compute negative WMD similarity against a corpus of documents. - See :class:`~gensim.models.keyedvectors.KeyedVectors` for more information. - Also, tutorial `notebook - `_ for more examples. + Check out `the Gallery `_ + for more examples. When using this code, please consider citing the following papers: diff --git a/gensim/similarities/termsim.py b/gensim/similarities/termsim.py index 5eb02fb0fc..8f39e9b36c 100644 --- a/gensim/similarities/termsim.py +++ b/gensim/similarities/termsim.py @@ -423,8 +423,7 @@ class SparseTermSimilarityMatrix(SaveLoad): >>> >>> word_embeddings = cholesky(similarity_matrix.matrix).L() # obtain word embeddings from similarity matrix - Check out `Tutorial Notebook - `_ + Check out `the Gallery `_ for more examples. Parameters