-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOFDM.asv
206 lines (164 loc) · 5.45 KB
/
OFDM.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
clear
clc
%% Simulation parameters
% Modulation method: BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM
mod_method = 'BPSK'
% IFFT/FFT size
n_fft = 64;
% Size of cyclic prefix extension
n_cpe = 16;
% Target SNR (dB)
snr = 20;
% Number of channel taps (1 = no channel)
n_taps = 8;
%Channel estimation method; none, LS
ch_est_method = 'LS';
% Option to save plot to file
save_file = 0;
% Calculate modulation order from modulation method
mod_methods = {'BPSK', 'QPSK', '8PSK', '16QAM', '32QAM', '64QAM'};
mod_order = find(ismember(mod_methods, mod_method));
%% Input data to binary stream
im = imread('mypic1.bmp');
im_bin = dec2bin(im(:))';
% Each element in the column in represented in binary, hence the matrix is
% of order mXn. After which it is transposed, so each column represents the
% original data in binary. An
%The column stores the value of the N-bit blocks of data
im_bin = im_bin(:); %Packed into a column. It's a waterfall stream now!
% Binary stream to symbol
% Parse binary stream into mod_order bit symbols
% Pads input signal to appropriate length
sym_rem = mod(mod_order-mod(length(im_bin), mod_order), mod_order); %remaining symbols?/symbol places empty?
padding = repmat('0', sym_rem, 1);
im_bin_padded = [im_bin; padding]; %symbol added in the image matrix
cons_data = reshape(im_bin_padded, mod_order, length(im_bin_padded)/mod_order)';
cons_sym_id = bin2dec(cons_data);
%% Symbol modulation
% BPSK
if mod_order ==1
mod_ind = 2^(mod_order - 1);
n = 0:pi/mod_ind:2*pi-pi/mod_ind; %from (x : steps of : till y)
in_phase = cos(n);
quadrature = sin(n);
symbol_book = (in_phase + quadrature*1i)';
end
% Phase shift keying about unit circle
if mod_order == 2 || mod_order == 3
mod_ind = 2^(mod_order - 1);
n = 0:pi/mod_ind:2*pi-pi/mod_ind;
in_phase = cos(n+pi/4);
quadrature = sin(n+pi/4);
symbol_book = (in_phase + quadrature*1i)';
end
% 16QAM, 64QAM modulation
if mod_order == 4 || mod_order == 6
mod_ind = sqrt(2^mod_order);
in_phase = repmat(linspace(-1, 1, mod_ind), mod_ind, 1);
quadrature = repmat(linspace(-1, 1, mod_ind)', 1, mod_ind);
symbol_book = in_phase(:) + quadrature(:)*1i;
end
% 32QAM modulation
% Generates 6x6 constellation and removes corners
if mod_order == 5
mod_ind = 6;
in_phase = repmat(linspace(-1, 1, mod_ind), mod_ind, 1);
quadrature = repmat(linspace(-1, 1, mod_ind)', 1, mod_ind);
symbol_book = in_phase(:) + quadrature(:)*1i;
symbol_book = symbol_book([2:5 7:30 32:35]);
end
% Modulate data according to symbol_book
X = symbol_book(cons_sym_id + 1);
%% Use IFFT to move to time domain
% Pad input signal to appropriate length
fft_rem = mod(n_fft-mod(length(X), n_fft), n_fft);
X_padded = [X;zeros(fft_rem,1)];
X_blocks = reshape(X_padded, n_fft, length(X_padded)/n_fft);
x = ifft(X_blocks);
% Add cyclic prefix extension and shift from parallel to serial
x_cpe = [x(end-n_cpe+1:end,:);x];
x_s = x_cpe(:);
%% Add AWGN
% Calculate data power
data_pwr = mean(abs(x_s.^2));
% Add noise to channel
noise_pwr = data_pwr/10^(snr/10);
noise = normrnd(0, sqrt(noise_pwr/2),size(x_s)) + normrnd(0, sqrt(noise_pwr/2), size(x_s))*1i;
x_s_noise = x_s + noise;
%Measure SNR
snr_meas = 10*log10(mean(abs(x_s.^2))/mean(abs(noise.^2)));
%% Apply fading channel
g = exp(-(0:n_taps-1));
g = g/norm(g);
x_s_noise_fading = conv(x_s_noise, g, 'same');
%% Use FFT to move to frequency domain
% Remove cyclic prefix extension and shift from serial to parallel
x_p = reshape(x_s_noise_fading, n_fft + n_cpe, length(x_s_noise_fading)/(n_fft + n_cpe));
x_p_cpr = x_p(n_cpe +1: end,:);
% Move to frequency domain
X_hat_blocks = fft(x_p_cpr);
%%Estimate channel
if n_taps > 1
switch(ch_est_method)
case 'none'
case 'LS'
G = X_hat_blocks(:,1)./X_blocks(:,1);
X_hat_blocks = X_hat_blocks./repmat(G,1,size(X_hat_blocks,2));
end
end
%% Symbol demodulation
% Remove fft padding
X_hat = X_hat_blocks(:);
X_hat = X_hat(1:end-fft_rem);
%% Recover data from modulated symbols
rec_syms = knnsearch([real(symbol_book) imag(symbol_book)], [real(X_hat) imag(X_hat)]) -1;
% Parse to binary stream & remove symbol padding
rec_syms_cons = dec2bin(rec_syms);
rec_im_bin = reshape(rec_syms_cons', numel(rec_syms_cons),1);
rec_im_bin = rec_im_bin(1:end-sym_rem);
ber = sum(abs(rec_im_bin - im_bin))/length(im_bin);
% Recover image
rec_im = reshape(rec_im_bin,8,numel(rec_im_bin)/8);
rec_im = uint8(bin2dec(rec_im'));
rec_im = reshape(rec_im,size(im));
%% Generate plots
% Transmit constellation
subplot(2,2,1);
plot(X,'x','linewidth',2,'markersize',10);
xlim([-2 2]);
ylim([-2 2]);
xlabel('In Phase');
ylabel('Quadrature');
if n_taps > 1
title(sprintf('\\bfTransmit Constellation\n\\rm%s Modulation\nMultipath Channel Taps: %d',mod_method,n_taps));
else
title(sprintf('\\bfTransmit Constellation\n\\rm%s Modulation',mod_method));
end
grid on;
% Recovered constellation
subplot(2,2,2);
plot(X_hat(1:500:end),'x','markersize',3);
xlim([-2 2]);
ylim([-2 2]);
xlabel('In Phase');
ylabel('Quadrature');
if n_taps > 1
title(sprintf('\\bfReceived Constellation\n\\rmMeasured SNR: %.2f dB\nChannel Estimation: %s',snr_meas,ch_est_method));
else
title(sprintf('\\bfReceived Constellation\n\\rmMeasured SNR: %.2f dB',snr_meas));
end
grid on;
% Original image
subplot(2,2,3);
imshow(im);
title('\bfTransmit Image');
% Recovered image
subplot(2,2,4);
imshow(rec_im);
title(sprintf('\\bfRecovered Image\n\\rmBER: %.2g',ber));
%Position figure
set(gcf, 'Position',[680 287 698 691]);
% Save figure
if save_file
print(sprintf('Plots/%s_%.Offft_%.0fcpe_%.0fdB_%.0ftaps_%s',mod_method,n_cpe,snr,n_taps,ch_est_method),'-dmeta');
end