-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
54 lines (43 loc) · 1.87 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
## Define all the layers of this CNN, the only requirements are:
## 1. This network takes in a square (same width and height), grayscale image as input
## 2. It ends with a linear layer that represents the keypoints
## it's suggested that you make this last layer output 136 values, 2 for each of the 68 keypoint (x, y) pairs
# As an example, you've been given a convolutional layer, which you may (but don't have to) change:
# 1 input image channel (grayscale), 64 output channels/feature maps, 3x3 square convolution kernel
self.conv1 = nn.Conv2d(1, 32, 3)
self.pool1= nn.MaxPool2d(2,2)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 64, 3)
self.pool2= nn.MaxPool2d(2,2)
self.bn2 = nn.BatchNorm2d(64)
self.conv3 = nn.Conv2d(64, 128, 3)
self.pool3 = nn.MaxPool2d(2,2)
self.bn3 = nn.BatchNorm2d(128)
self.drop3 = nn.Dropout2d(0.2)
self.conv4 = nn.Conv2d(128, 256, 3)
self.pool4 = nn.MaxPool2d(2,2)
self.bn4 = nn.BatchNorm2d(256)
self.drop4 = nn.Dropout2d(0.1)
self.fc1= nn.Linear(36864,1024)
self.drop5=nn.Dropout(0.2)
self.fc2= nn.Linear(1024,512)
self.fc3= nn.Linear(512,136)
def forward(self, x):
x= F.selu(self.bn1(self.pool1(self.conv1(x))))
x= F.selu(self.bn2(self.pool2(self.conv2(x))))
x= F.selu(self.bn3(self.pool3(self.conv3(x))))
x= self.drop3(x)
x= F.selu(self.bn4(self.pool4(self.conv4(x))))
x= self.drop4(x)
x= x.view(x.size(0), -1)
x= F.selu(self.fc1(x))
x= self.drop5(x)
x= self.fc2(x)
x= self.fc3(x)
return x