-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathexample.py
29 lines (22 loc) · 1.01 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from openai import OpenAI
from pgvector.psycopg import register_vector
import psycopg
conn = psycopg.connect(dbname='pgvector_example', autocommit=True)
conn.execute('CREATE EXTENSION IF NOT EXISTS vector')
register_vector(conn)
conn.execute('DROP TABLE IF EXISTS documents')
conn.execute('CREATE TABLE documents (id bigserial PRIMARY KEY, content text, embedding vector(1536))')
input = [
'The dog is barking',
'The cat is purring',
'The bear is growling'
]
client = OpenAI()
response = client.embeddings.create(input=input, model='text-embedding-3-small')
embeddings = [v.embedding for v in response.data]
for content, embedding in zip(input, embeddings):
conn.execute('INSERT INTO documents (content, embedding) VALUES (%s, %s)', (content, embedding))
document_id = 1
neighbors = conn.execute('SELECT content FROM documents WHERE id != %(id)s ORDER BY embedding <=> (SELECT embedding FROM documents WHERE id = %(id)s) LIMIT 5', {'id': document_id}).fetchall()
for neighbor in neighbors:
print(neighbor[0])