-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathProgram.cs
93 lines (79 loc) · 3.12 KB
/
Program.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
// good resources
// https://opensearch.org/blog/improving-document-retrieval-with-sparse-semantic-encoders/
// https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v1
//
// run with
// text-embeddings-router --model-id opensearch-project/opensearch-neural-sparse-encoding-v1 --pooling splade
using System.Net.Http.Json;
using System.Text;
using System.Text.Json;
class ApiElement
{
public required int index { get; set; }
public required float value { get; set; }
}
class Program
{
static async Task Main()
{
var connString = "Host=localhost;Database=pgvector_example";
var dataSourceBuilder = new NpgsqlDataSourceBuilder(connString);
dataSourceBuilder.UseVector();
await using var dataSource = dataSourceBuilder.Build();
var conn = dataSource.OpenConnection();
await using (var cmd = new NpgsqlCommand("CREATE EXTENSION IF NOT EXISTS vector", conn))
{
await cmd.ExecuteNonQueryAsync();
}
conn.ReloadTypes();
await using (var cmd = new NpgsqlCommand("DROP TABLE IF EXISTS documents", conn))
{
await cmd.ExecuteNonQueryAsync();
}
await using (var cmd = new NpgsqlCommand("CREATE TABLE documents (id bigserial PRIMARY KEY, content text, embedding sparsevec(30522))", conn))
{
await cmd.ExecuteNonQueryAsync();
}
string[] input = {
"The dog is barking",
"The cat is purring",
"The bear is growling"
};
var embeddings = await FetchEmbeddings(input);
for (int i = 0; i < input.Length; i++)
{
await using (var cmd = new NpgsqlCommand("INSERT INTO documents (content, embedding) VALUES ($1, $2)", conn))
{
cmd.Parameters.AddWithValue(input[i]);
cmd.Parameters.AddWithValue(new SparseVector(embeddings[i], 30522));
await cmd.ExecuteNonQueryAsync();
}
}
var query = "forest";
var queryEmbeddings = await FetchEmbeddings(new string[] { query });
await using (var cmd = new NpgsqlCommand("SELECT content FROM documents ORDER BY embedding <#> $1 LIMIT 5", conn))
{
cmd.Parameters.AddWithValue(new SparseVector(queryEmbeddings[0], 30522));
await using (var reader = await cmd.ExecuteReaderAsync())
{
while (await reader.ReadAsync())
{
Console.WriteLine((string)reader.GetValue(0));
}
}
}
}
private static async Task<Dictionary<int, float>[]> FetchEmbeddings(string[] inputs)
{
var url = "http://localhost:3000/embed_sparse";
var data = new
{
inputs = inputs
};
var client = new HttpClient();
using HttpResponseMessage response = await client.PostAsJsonAsync(url, data);
response.EnsureSuccessStatusCode();
var apiResponse = await response.Content.ReadFromJsonAsync<ApiElement[][]>();
return apiResponse!.Select(v => v.ToDictionary(e => e.index, e => e.value)).ToArray();
}
}