-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy path03_train_hybrid.py
424 lines (367 loc) · 15 KB
/
03_train_hybrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import os
import importlib
import argparse
import sys
import pathlib
import pickle
import numpy as np
from time import strftime
from shutil import copyfile
import gzip
import torch
import utilities
from utilities import log, _loss_fn, _distillation_loss, _compute_root_loss
from utilities_hybrid import HybridDataset as Dataset, load_batch
def pretrain(model, dataloader):
"""
Pre-normalizes a model (i.e., PreNormLayer layers) over the given samples.
Parameters
----------
model : model.BaseModel
A base model, which may contain some model.PreNormLayer layers.
dataloader : torch.utils.data.DataLoader
Dataset to use for pre-training the model.
Return
------
number of PreNormLayer layers processed.
"""
model.pre_train_init()
i = 0
while True:
for batch in dataloader:
root_g, node_g, node_attr = [map(lambda x:x if x is None else x.to(device) , y) for y in batch]
root_c, root_ei, root_ev, root_v, root_n_cs, root_n_vs, *_ = root_g
g_c, g_ei, g_ev, g_v, g_n_cs, g_n_vs, candss = node_g
cand_features, n_cands, best_cands, cand_scores, weights = node_attr
batched_states = (root_c, root_ei, root_ev, root_v, root_n_cs, root_n_vs, candss, cand_features, None)
if not model.pre_train(batched_states):
break
res = model.pre_train_next()
if res is None:
break
else:
layer = res
i += 1
return i
def process(model, teacher, dataloader, top_k, optimizer=None):
"""
Executes a forward and backward pass of model over the dataset.
Parameters
----------
model : model.BaseModel
A base model, which may contain some model.PreNormLayer layers.
teacher : model.BaseModel
A pretrained model when args.no_e2e is True, and an expert model when it is True.
dataloader : torch.utils.data.DataLoader
Dataset to use for training the model.
top_k : list
list of `k` (int) to estimate for accuracy using these many candidates
optimizer : torch.optim
optimizer to use for SGD. No gradient computation takes place if its None.
Return
------
mean_loss : np.float
mean loss of model on data in dataloader
mean_kacc : np.array
computed accuracy for `top_k` candidates
"""
mean_loss = 0
mean_kacc = np.zeros(len(top_k))
n_samples_processed = 0
accum_iter = 0
for batch in dataloader:
root_g, node_g, node_attr = [map(lambda x:x if x is None else x.to(device) , y) for y in batch]
root_c, root_ei, root_ev, root_v, root_n_cs, root_n_vs, root_cands, root_n_cands = root_g
node_c, node_ei, node_ev, node_v, node_n_cs, node_n_vs, candss = node_g
cand_features, n_cands, best_cands, cand_scores, weights = node_attr
cands_root_v = None
# use teacher
with torch.no_grad():
if teacher is not None:
if args.no_e2e:
root_v, _ = teacher((root_c, root_ei, root_ev, root_v, root_n_cs, root_n_vs))
cands_root_v = root_v[candss]
# KD - get soft targets
if args.distilled:
_, soft_targets = teacher((node_c, node_ei, node_ev, node_v, node_n_cs, node_n_vs))
soft_targets = torch.unsqueeze(torch.gather(input=torch.squeeze(soft_targets, 0), dim=0, index=candss), 0)
soft_targets = model.pad_output(soft_targets, n_cands) # apply padding now
batched_states = (root_c, root_ei, root_ev, root_v, root_n_cs, root_n_vs, candss, cand_features, cands_root_v)
batch_size = n_cands.shape[0]
weights /= batch_size # sum loss
if optimizer:
optimizer.zero_grad()
var_feats, logits, film_parameters = model(batched_states) # eval mode
logits = model.pad_output(logits, n_cands) # apply padding now
# node loss
if args.distilled:
loss = _distillation_loss(logits, soft_targets, best_cands, weights, T, alpha)
else:
loss = _loss_fn(logits, best_cands, weights)
# AT loss
if args.at != "":
loss += args.beta_at * _compute_root_loss(args.at, model, var_feats, root_n_vs, root_cands, root_n_cands, batch_size, root_cands_separation)
# regularization
if (
args.l2 > 0
and film_parameters is not None
):
beta_norm = (1-film_parameters[:, :, 0]).norm()
gamma_norm = film_parameters[:, :, 1].norm()
loss += args.l2 * (beta_norm + gamma_norm)
loss.backward()
accum_iter += 1
if accum_iter % accum_steps == 0:
optimizer.step()
accum_iter = 0
else:
with torch.no_grad():
var_feats, logits, film_parameters = model(batched_states) # eval mode
logits = model.pad_output(logits, n_cands) # apply padding now
# node loss
if args.distilled:
loss = _distillation_loss(logits, soft_targets, best_cands, weights, T, alpha)
else:
loss = _loss_fn(logits, best_cands, weights)
# AT loss
if args.at != "":
loss += args.beta_at * _compute_root_loss(args.at, model, var_feats, root_n_vs, root_cands, root_n_cands, batch_size, root_cands_separation)
# regularization
if (
args.l2 > 0
and film_parameters is not None
):
beta_norm = (1-film_parameters[:, :, 0]).norm()
gamma_norm = film_parameters[:, :, 1].norm()
loss += args.l2 * (beta_norm + gamma_norm)
true_scores = model.pad_output(torch.reshape(cand_scores, (1, -1)), n_cands)
true_bestscore = torch.max(true_scores, dim=-1, keepdims=True).values
true_scores = true_scores.cpu().numpy()
true_bestscore = true_bestscore.cpu().numpy()
kacc = []
for k in top_k:
pred_top_k = torch.topk(logits, k=k).indices.cpu().numpy()
pred_top_k_true_scores = np.take_along_axis(true_scores, pred_top_k, axis=1)
kacc.append(np.mean(np.any(pred_top_k_true_scores == true_bestscore, axis=1)))
kacc = np.asarray(kacc)
mean_loss += loss.detach_().item() * batch_size
mean_kacc += kacc * batch_size
n_samples_processed += batch_size
mean_loss /= n_samples_processed
mean_kacc /= n_samples_processed
return mean_loss, mean_kacc
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'problem',
help='MILP instance type to process.',
choices=['setcover', 'cauctions', 'facilities', 'indset'],
)
parser.add_argument(
'-m', '--model',
help='model to be trained.',
type=str,
default='film',
)
parser.add_argument(
'-s', '--seed',
help='Random generator seed.',
type=utilities.valid_seed,
default=0,
)
parser.add_argument(
'-g', '--gpu',
help='CUDA GPU id (-1 for CPU).',
type=int,
default=0,
)
parser.add_argument(
'--data_path',
help='name of the folder',
type=str,
default="data/samples/",
)
parser.add_argument(
'--no_e2e',
help='if training is with a pretrained GCNN.',
action="store_true"
)
parser.add_argument(
'--distilled',
help='if distillation should be used',
action="store_true"
)
parser.add_argument(
'--at',
help='type of auxiliary task',
type=str,
default='',
choices=['ED', 'MHE', '']
)
parser.add_argument(
'--beta_at',
help='weight for at loss function',
type=float,
default=0,
)
parser.add_argument(
'--l2',
help='regularization film weights',
type=float,
default=0.0
)
args = parser.parse_args()
if (
args.model in ['concat', 'film']
and args.no_e2e
):
args.model = f"{args.model}-pre"
### HYPER PARAMETERS ###
max_epochs = 1000
epoch_size = 312
batch_size = 32
accum_steps = 1 # step() is called after batch_size * accum_steps samples
pretrain_batch_size = 128
valid_batch_size = 128
lr = 0.001
patience = 15
early_stopping = 30
top_k = [1, 3, 5, 10]
num_workers = 5
teacher_model = "baseline_torch" # used only if args.distilled or args.no_e2e is True
T = 2 # used only if args.distilled is True
alpha = 0.9 # used only if args.distilled is True
root_cands_separation=False
if args.problem == "facilities":
# facilities have larger problem size (LPs have 10000 variables)
# these settings are chosen so that training is feasible in considerable time (about 6-12 hours)
lr = 0.005
epoch_size=312*3
batch_size = 16
accum_steps = 2
patience=10
early_stopping=20
pretrain_batch_size = 64
valid_batch_size = 32
root_cands_separation=True
num_workers=7
problem_folders = {
'setcover': '500r_1000c_0.05d',
'cauctions': '100_500',
'facilities': '100_100_5',
'indset': '750_4',
}
# DIRECTORY NAMING
modeldir = f"{args.model}"
if args.distilled:
modeldir = f"{args.model}_distilled"
if args.at != "":
modeldir = f"{modeldir}_{args.at}_{args.beta_at}"
if args.l2 > 0:
modeldir = f"{modeldir}_l2_{args.l2}"
running_dir = f"trained_models/{args.problem}/{modeldir}/{args.seed}"
os.makedirs(running_dir)
### LOG ###
logfile = os.path.join(running_dir, 'log.txt')
log(f"max_epochs: {max_epochs}", logfile)
log(f"epoch_size: {epoch_size}", logfile)
log(f"batch_size: {batch_size}", logfile)
log(f"pretrain_batch_size: {pretrain_batch_size}", logfile)
log(f"valid_batch_size : {valid_batch_size }", logfile)
log(f"lr: {lr}", logfile)
log(f"patience : {patience }", logfile)
log(f"early_stopping : {early_stopping }", logfile)
log(f"top_k: {top_k}", logfile)
log(f"problem: {args.problem}", logfile)
log(f"gpu: {args.gpu}", logfile)
log(f"seed {args.seed}", logfile)
log(f"e2e: {not args.no_e2e}", logfile)
log(f"KD: {args.distilled}", logfile)
log(f"AT: {args.at} beta={args.beta_at}", logfile)
log(f"l2: {args.l2}", logfile)
### NUMPY / TORCH SETUP ###
if args.gpu == -1:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
device = torch.device("cpu")
else:
os.environ['CUDA_VISIBLE_DEVICES'] = f'{args.gpu}'
device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu")
rng = np.random.RandomState(args.seed)
torch.manual_seed(rng.randint(np.iinfo(int).max))
### SET-UP DATASET ###
problem_folder = problem_folders[args.problem]
train_files = list(pathlib.Path(f"{args.data_path}/{args.problem}/{problem_folder}/train").glob('sample_*.pkl'))
valid_files = list(pathlib.Path(f"{args.data_path}/{args.problem}/{problem_folder}/valid").glob('sample_*.pkl'))
log(f"{len(train_files)} training samples", logfile)
log(f"{len(valid_files)} validation samples", logfile)
train_files = [str(x) for x in train_files]
valid_files = [str(x) for x in valid_files]
valid_data = Dataset(valid_files, args.data_path)
valid_data = torch.utils.data.DataLoader(valid_data, batch_size=valid_batch_size,
shuffle = False, num_workers = num_workers, collate_fn = load_batch)
pretrain_files = [f for i, f in enumerate(train_files) if i % 10 == 0]
pretrain_data = Dataset(pretrain_files, args.data_path)
pretrain_data = torch.utils.data.DataLoader(pretrain_data, batch_size=pretrain_batch_size,
shuffle = False, num_workers = num_workers, collate_fn = load_batch)
### MODEL LOADING ###
sys.path.insert(0, os.path.abspath(f'models/{args.model}'))
import model
importlib.reload(model)
distilled_model = model.Policy()
del sys.path[0]
distilled_model.to(device)
### TEACHER MODEL LOADING ###
teacher = None
if (
args.distilled
or args.no_e2e
):
sys.path.insert(0, os.path.abspath(f'models/{teacher_model}'))
import model
importlib.reload(model)
teacher = model.GCNPolicy()
del sys.path[0]
teacher.restore_state(f"trained_models/{args.problem}/{teacher_model}/{args.seed}/best_params.pkl")
teacher.to(device)
teacher.eval()
model = distilled_model
### TRAINING LOOP ###
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, patience=patience, verbose=True)
best_loss = np.inf
for epoch in range(max_epochs + 1):
log(f"EPOCH {epoch}...", logfile)
if (
epoch == 0
and not args.no_e2e
):
n = pretrain(model=model, dataloader=pretrain_data)
log(f"PRETRAINED {n} LAYERS", logfile)
else:
# bugfix: tensorflow's shuffle() seems broken...
epoch_train_files = rng.choice(train_files, epoch_size * batch_size * accum_steps, replace=True)
train_data = Dataset(epoch_train_files, args.data_path)
train_data = torch.utils.data.DataLoader(train_data, batch_size=batch_size,
shuffle = False, num_workers = num_workers, collate_fn = load_batch)
train_loss, train_kacc = process(model, teacher, train_data, top_k, optimizer)
log(f"TRAIN LOSS: {train_loss:0.3f} " + "".join([f" acc@{k}: {acc:0.3f}" for k, acc in zip(top_k, train_kacc)]), logfile)
# TEST
valid_loss, valid_kacc = process(model, teacher, valid_data, top_k, None)
log(f"VALID LOSS: {valid_loss:0.3f} " + "".join([f" acc@{k}: {acc:0.3f}" for k, acc in zip(top_k, valid_kacc)]), logfile)
if valid_loss < best_loss:
plateau_count = 0
best_loss = valid_loss
model.save_state(os.path.join(running_dir, 'best_params.pkl'))
log(f" best model so far", logfile)
else:
plateau_count += 1
if plateau_count % early_stopping == 0:
log(f" {plateau_count} epochs without improvement, early stopping", logfile)
break
if plateau_count % patience == 0:
lr *= 0.2
log(f" {plateau_count} epochs without improvement, decreasing learning rate to {lr}", logfile)
scheduler.step(valid_loss)
model.restore_state(os.path.join(running_dir, 'best_params.pkl'))
valid_loss, valid_kacc = process(model, teacher, valid_data, top_k, None)
log(f"BEST VALID LOSS: {valid_loss:0.3f} " + "".join([f" acc@{k}: {acc:0.3f}" for k, acc in zip(top_k, valid_kacc)]), logfile)