-
Notifications
You must be signed in to change notification settings - Fork 157
/
Copy pathtrain_ppo_ale.py
334 lines (308 loc) · 9.99 KB
/
train_ppo_ale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"""An example of training PPO against OpenAI Gym Atari Envs.
This script is an example of training a PPO agent on Atari envs.
To train PPO for 10M timesteps on Breakout, run:
python train_ppo_ale.py
To train PPO using a recurrent model on a flickering Atari env, run:
python train_ppo_ale.py --recurrent --flicker --no-frame-stack
"""
import argparse
import functools
import numpy as np
import torch
from torch import nn
import pfrl
from pfrl import experiments, utils
from pfrl.agents import PPO
from pfrl.policies import SoftmaxCategoricalHead
from pfrl.wrappers import atari_wrappers
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--env", type=str, default="BreakoutNoFrameskip-v4", help="Gym Env ID."
)
parser.add_argument(
"--gpu", type=int, default=0, help="GPU device ID. Set to -1 to use CPUs only."
)
parser.add_argument(
"--num-envs",
type=int,
default=8,
help="Number of env instances run in parallel.",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 32)")
parser.add_argument(
"--outdir",
type=str,
default="results",
help=(
"Directory path to save output files."
" If it does not exist, it will be created."
),
)
parser.add_argument(
"--steps", type=int, default=10**7, help="Total time steps for training."
)
parser.add_argument(
"--max-frames",
type=int,
default=30 * 60 * 60, # 30 minutes with 60 fps
help="Maximum number of frames for each episode.",
)
parser.add_argument("--lr", type=float, default=2.5e-4, help="Learning rate.")
parser.add_argument(
"--eval-interval",
type=int,
default=100000,
help="Interval (in timesteps) between evaluation phases.",
)
parser.add_argument(
"--eval-n-runs",
type=int,
default=10,
help="Number of episodes ran in an evaluation phase.",
)
parser.add_argument(
"--demo",
action="store_true",
default=False,
help="Run demo episodes, not training.",
)
parser.add_argument(
"--load",
type=str,
default="",
help=(
"Directory path to load a saved agent data from"
" if it is a non-empty string."
),
)
parser.add_argument(
"--log-level",
type=int,
default=20,
help="Logging level. 10:DEBUG, 20:INFO etc.",
)
parser.add_argument(
"--render",
action="store_true",
default=False,
help="Render env states in a GUI window.",
)
parser.add_argument(
"--monitor",
action="store_true",
default=False,
help=(
"Monitor env. Videos and additional information are saved as output files."
),
)
parser.add_argument(
"--update-interval",
type=int,
default=128 * 8,
help="Interval (in timesteps) between PPO iterations.",
)
parser.add_argument(
"--batchsize",
type=int,
default=32 * 8,
help="Size of minibatch (in timesteps).",
)
parser.add_argument(
"--epochs",
type=int,
default=4,
help="Number of epochs used for each PPO iteration.",
)
parser.add_argument(
"--log-interval",
type=int,
default=10000,
help="Interval (in timesteps) of printing logs.",
)
parser.add_argument(
"--recurrent",
action="store_true",
default=False,
help="Use a recurrent model. See the code for the model definition.",
)
parser.add_argument(
"--flicker",
action="store_true",
default=False,
help=(
"Use so-called flickering Atari, where each"
" screen is blacked out with probability 0.5."
),
)
parser.add_argument(
"--no-frame-stack",
action="store_true",
default=False,
help=(
"Disable frame stacking so that the agent can only see the current screen."
),
)
parser.add_argument(
"--checkpoint-frequency",
type=int,
default=None,
help="Frequency at which agents are stored.",
)
args = parser.parse_args()
import logging
logging.basicConfig(level=args.log_level)
# Set a random seed used in PFRL.
utils.set_random_seed(args.seed)
# Set different random seeds for different subprocesses.
# If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
# If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
assert process_seeds.max() < 2**32
args.outdir = experiments.prepare_output_dir(args, args.outdir)
print("Output files are saved in {}".format(args.outdir))
def make_env(idx, test):
# Use different random seeds for train and test envs
process_seed = int(process_seeds[idx])
env_seed = 2**32 - 1 - process_seed if test else process_seed
env = atari_wrappers.wrap_deepmind(
atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
episode_life=not test,
clip_rewards=not test,
flicker=args.flicker,
frame_stack=False,
)
env.seed(env_seed)
if args.monitor:
env = pfrl.wrappers.Monitor(
env, args.outdir, mode="evaluation" if test else "training"
)
if args.render:
env = pfrl.wrappers.Render(env)
return env
def make_batch_env(test):
vec_env = pfrl.envs.MultiprocessVectorEnv(
[
functools.partial(make_env, idx, test)
for idx, env in enumerate(range(args.num_envs))
]
)
if not args.no_frame_stack:
vec_env = pfrl.wrappers.VectorFrameStack(vec_env, 4)
return vec_env
sample_env = make_batch_env(test=False)
print("Observation space", sample_env.observation_space)
print("Action space", sample_env.action_space)
n_actions = sample_env.action_space.n
obs_n_channels = sample_env.observation_space.low.shape[0]
del sample_env
def lecun_init(layer, gain=1):
if isinstance(layer, (nn.Conv2d, nn.Linear)):
pfrl.initializers.init_lecun_normal(layer.weight, gain)
nn.init.zeros_(layer.bias)
else:
pfrl.initializers.init_lecun_normal(layer.weight_ih_l0, gain)
pfrl.initializers.init_lecun_normal(layer.weight_hh_l0, gain)
nn.init.zeros_(layer.bias_ih_l0)
nn.init.zeros_(layer.bias_hh_l0)
return layer
if args.recurrent:
model = pfrl.nn.RecurrentSequential(
lecun_init(nn.Conv2d(obs_n_channels, 32, 8, stride=4)),
nn.ReLU(),
lecun_init(nn.Conv2d(32, 64, 4, stride=2)),
nn.ReLU(),
lecun_init(nn.Conv2d(64, 64, 3, stride=1)),
nn.ReLU(),
nn.Flatten(),
lecun_init(nn.Linear(3136, 512)),
nn.ReLU(),
lecun_init(nn.GRU(num_layers=1, input_size=512, hidden_size=512)),
pfrl.nn.Branched(
nn.Sequential(
lecun_init(nn.Linear(512, n_actions), 1e-2),
SoftmaxCategoricalHead(),
),
lecun_init(nn.Linear(512, 1)),
),
)
else:
model = nn.Sequential(
lecun_init(nn.Conv2d(obs_n_channels, 32, 8, stride=4)),
nn.ReLU(),
lecun_init(nn.Conv2d(32, 64, 4, stride=2)),
nn.ReLU(),
lecun_init(nn.Conv2d(64, 64, 3, stride=1)),
nn.ReLU(),
nn.Flatten(),
lecun_init(nn.Linear(3136, 512)),
nn.ReLU(),
pfrl.nn.Branched(
nn.Sequential(
lecun_init(nn.Linear(512, n_actions), 1e-2),
SoftmaxCategoricalHead(),
),
lecun_init(nn.Linear(512, 1)),
),
)
opt = torch.optim.Adam(model.parameters(), lr=args.lr, eps=1e-5)
def phi(x):
# Feature extractor
return np.asarray(x, dtype=np.float32) / 255
agent = PPO(
model,
opt,
gpu=args.gpu,
phi=phi,
update_interval=args.update_interval,
minibatch_size=args.batchsize,
epochs=args.epochs,
clip_eps=0.1,
clip_eps_vf=None,
standardize_advantages=True,
entropy_coef=1e-2,
recurrent=args.recurrent,
max_grad_norm=0.5,
)
if args.load:
agent.load(args.load)
if args.demo:
eval_stats = experiments.eval_performance(
env=make_batch_env(test=True),
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
)
print(
"n_runs: {} mean: {} median: {} stdev: {}".format(
args.eval_n_runs,
eval_stats["mean"],
eval_stats["median"],
eval_stats["stdev"],
)
)
else:
step_hooks = []
# Linearly decay the learning rate to zero
def lr_setter(env, agent, value):
for param_group in agent.optimizer.param_groups:
param_group["lr"] = value
step_hooks.append(
experiments.LinearInterpolationHook(args.steps, args.lr, 0, lr_setter)
)
experiments.train_agent_batch_with_evaluation(
agent=agent,
env=make_batch_env(False),
eval_env=make_batch_env(True),
outdir=args.outdir,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
checkpoint_freq=args.checkpoint_frequency,
eval_interval=args.eval_interval,
log_interval=args.log_interval,
save_best_so_far_agent=False,
step_hooks=step_hooks,
)
if __name__ == "__main__":
main()