-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_classroom.py
96 lines (74 loc) · 3.71 KB
/
run_classroom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
from argparse import ArgumentParser
from multiprocessing import Process, active_children
from time import sleep
from common import parse_clients_args
from missions.classroom import Classroom
def agent_factory(name, role, clients, agent_type, steps, mission, action_space, mode):
from missions.classroom import ClassroomEnvironment, ClassroomStateBuilder
from malmo_rl.agents.abstract_agent import AbstractAgent
clients = parse_clients_args(clients)
recording_dir = 'records/{}'.format(mission.mission_name)
if not os.path.exists(recording_dir):
os.makedirs(recording_dir)
recording_path = os.path.join(recording_dir, '{}.tgz'.format(name))
state_builder = ClassroomStateBuilder(width=32, height=32, grayscale=True)
env = ClassroomEnvironment(action_space, mission.mission_name, mission.mission_xml, clients, state_builder,
role=role, recording_path=recording_path)
if 'Observer' in name:
agent_type = 'observer'
agent = AbstractAgent(name, env, agent_type, grayscale=state_builder.grayscale, width=state_builder.width,
height=state_builder.height)
print(name + ' initialized.')
weights_filename = 'weights/{}/{}_{}'.format(mission.mission_name, agent_type, name)
if mode == 'training':
agent.fit(env, steps)
agent.save(weights_filename)
else:
agent.load(weights_filename)
agent.test(env, nb_episodes=10)
def run_experiment(agents_def):
assert len(agents_def) >= 1, 'Not enough agents (required: >= 1, got: %d)' \
% len(agents_def)
for agent in agents_def:
p = Process(target=agent_factory, kwargs=agent)
p.daemon = True
p.start()
try:
# wait until all agents are finished
while len(active_children()) > 0:
sleep(0.1)
except KeyboardInterrupt:
print('Caught control-c - shutting down.')
if __name__ == '__main__':
arg_parser = ArgumentParser('Malmo experiment')
arg_parser.add_argument('--ms-per-tick', type=int, default=50,
help='Malmo running speed')
arg_parser.add_argument('--clients', default='clients.txt',
help='.txt file with client(s) IP addresses')
arg_parser.add_argument('--steps', type=int, default=1000000,
help='Number of steps to train for')
arg_parser.add_argument('--action-space', default='discrete',
help='Action space to use (discrete, continuous)')
arg_parser.add_argument('--agents', default=['random'], nargs='+',
help='Agent(s) to use (default is 1 Random agent)')
arg_parser.add_argument('--mode', default='training',
help='Training or testing mode')
args = arg_parser.parse_args()
ms_per_tick = args.ms_per_tick
clients = args.clients
steps = args.steps
action_space = args.action_space
agents = args.agents
mode = args.mode
mission = Classroom(ms_per_tick)
mission_agent_names = mission.agent_names
assert len(agents) == len(mission_agent_names), '1 agent must be specified for each mission agent name'
clients = open(clients, 'r').read().splitlines()
print('Clients: {}'.format(clients))
assert len(clients) >= len(mission_agent_names), '1 Malmo client for each agent must be specified in clients.txt'
# Setup agents
agents_def = [{'name': agent_name, 'role': idx, 'clients': clients, 'agent_type': agents[idx], 'steps': steps,
'mission': mission, 'action_space': action_space, 'mode': mode}
for idx, agent_name in enumerate(mission_agent_names)]
run_experiment(agents_def)