-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathkdgauss.m
36 lines (27 loc) · 1.02 KB
/
kdgauss.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
%KDGAUSS Derivative of Gaussian kernel
%
% K = KDGAUSS(SIGMA) is a 2-dimensional derivative of Gaussian kernel (WxW)
% of width (standard deviation) SIGMA and centered within the matrix K
% whose half-width H = 3xSIGMA and W=2xH+1.
%
% K = KDGAUSS(SIGMA, H) as above but the half-width is explictly specified.
%
% Notes::
% - This kernel is the horizontal derivative of the Gaussian, dG/dx.
% - The vertical derivative, dG/dy, is K'.
% - This kernel is an effective edge detector.
%
% See also KGAUSS, KDOG, KLOG, ISOBEL, ICONV.
% Copyright 2022-2023 Peter Corke, Witold Jachimczyk, Remo Pillat
function m = kdgauss(sigma, w)
if nargin == 1,
w = ceil(3*sigma);
end
ww = 2*w + 1;
[x,y] = meshgrid(-w:w, -w:w);
% This should properly be
% m = -x/sigma^4 /(2*pi) .* exp( -(x.^2 + y.^2)/2/sigma^2);
% but the effect of the error is simply to scale the result by sigma^2.
%
% Too many results in the book depend on this...
m = -x/sigma^2 /(2*pi) .* exp( -(x.^2 + y.^2)/2/sigma^2);