-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathFishEyeCamera.m
247 lines (215 loc) · 9.04 KB
/
FishEyeCamera.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
%FishEyeCamera Fish eye camera class
%
% A concrete class a fisheye lense projection camera.
%
% The camera coordinate system is:
%
% 0------------> u, X
% |
% |
% | + (principal point)
% |
% | Z-axis is into the page.
% v, Y
%
% This camera model assumes central projection, that is, the focal point
% is at z=0 and the image plane is at z=f. The image is not inverted.
%
% Methods::
%
% project project world points to image plane
%
% plot plot/return world point on image plane
% hold control hold for image plane
% ishold test figure hold for image plane
% clf clear image plane
% figure figure holding the image plane
% mesh draw shape represented as a mesh
% point draw homogeneous points on image plane
% line draw homogeneous lines on image plane
% plot_camera draw camera
%
% rpy set camera attitude
% move copy of Camera after motion
% center get world coordinate of camera center
%
% delete object destructor
% char convert camera parameters to string
% display display camera parameters
%
% Properties (read/write)::
% npix image dimensions in pixels (2x1)
% pp intrinsic: principal point (2x1)
% f intrinsic: focal length [metres]
% rho intrinsic: pixel dimensions (2x1) [metres]
% T extrinsic: camera pose as homogeneous transformation
%
% Properties (read only)::
% nu number of pixels in u-direction
% nv number of pixels in v-direction
%
% Notes::
% - Camera is a reference object.
% - Camera objects can be used in vectors and arrays
%
% See also Camera.
% Copyright 2022-2023 Peter Corke, Witold Jachimczyk, Remo Pillat
% TODO:
% make a parent imaging class and subclass perspective, fisheye, panocam
% test for points in front of camera and set to NaN if not
% test for points off the image plane and set to NaN if not
% make clipping/test flags
classdef FishEyeCamera < Camera
properties
k % radial distortion vector
projection % projection model
end
properties (SetAccess = private)
end
properties (GetAccess = private, SetAccess = private)
end
properties (GetAccess = private)
end
properties (Dependent = true, SetAccess = private)
end
methods
function cam = FishEyeCamera(varargin)
%FishEyeCamera.FishEyeCamera Create fisheyecamera object
%
% C = FishEyeCamera() creates a fisheye camera with canonic
% parameters: f=1 and name='canonic'.
%
% C = FishEyeCamera(OPTIONS) as above but with specified parameters.
%
% Options::
% 'name',N Name of camera
% 'default' Default camera parameters: 1024x1024, f=8mm,
% 10um pixels, camera at origin, optical axis
% is z-axis, u- and v-axes are parallel to x- and y-
% axes respectively.
% 'projection',M Fisheye model: 'equiangular' (default), 'sine',
% 'equisolid', 'stereographic'
% 'k',K Parameter for the projection model
% 'resolution',N Image plane resolution: NxN or N=[W H].
% 'sensor',S Image sensor size [metres] (2x1)
% 'center',P Principal point (2x1)
% 'pixel',S Pixel size: SxS or S=[W H].
% 'noise',SIGMA Standard deviation of additive Gaussian
% noise added to returned image projections
% 'pose',T Pose of the camera as a homogeneous
% transformation
%
% Notes::
% - If K is not specified it is computed such that the circular imaging region
% maximally fills the square image plane.
%
% See also Camera, CentralCamera, CatadioptricCamera, SphericalCamera.
% invoke the superclass constructor
cam = cam@Camera(varargin{:});
cam.type = 'FishEye';
if nargin == 0,
% default values
cam.type = 'fisheye';
cam.k = 1;
cam.projection = 'equiangular';
cam.name = 'fisheye-default';
else
% process remaining options
opt.k = [];
opt.projection = {'equiangular', 'sine', 'equisolid', 'stereographic'};
opt.default = false;
[opt,args] = tb_optparse(opt, varargin);
cam.projection = opt.projection;
if opt.default
cam.rho = [10e-6, 10e-6]; % square pixels 10um side
cam.npix = [1024, 1024]; % 1Mpix image plane
cam.pp = [512, 512]; % principal point in the middle
cam.limits = [0 1024 0 1024];
cam.name = 'default';
r = min([(cam.npix-cam.pp).*cam.rho, cam.pp.*cam.rho]);
cam.k = 2*r/pi;
n = 0;
end
if isempty(opt.k)
% compute k if not specified, so that hemisphere fits into
% image plane
r = min([(cam.npix-cam.pp).*cam.rho, cam.pp.*cam.rho]);
switch cam.projection
case 'equiangular'
cam.k = r / (pi/2);
case 'sine'
cam.k = r;
case 'equisolid'
cam.k = r / sin(pi/4);
case 'stereographic'
cam.k = r / tan(pi/4);
r = cam.k * tan(theta/2);
otherwise
error('unknown fisheye projection model');
end
else
cam.k = opt.k;
end
end
end
function s = char(c)
s = sprintf('name: %s [%s]', c.name, c.type);
s = strvcat(s, sprintf( ' model: %s', c.projection));
s = strvcat(s, sprintf( ' k: %-11.4g', c.k));
s = strvcat(s, char@Camera(c) );
end
function uv = project(cam, P, varargin)
%FishEyeCamera.project Project world points to image plane
%
% UV = C.project(P, OPTIONS) are the image plane coordinates for the world
% points P. The columns of P (3xN) are the world points and the columns
% of UV (2xN) are the corresponding image plane points.
%
% Options::
% 'pose',T Set the camera pose to the pose T (homogeneous transformation (4x4) or SE3)
% before projecting points to the camera image plane. Temporarily overrides
% the current camera pose C.T.
% 'objpose',T Transform all points by the pose T (homogeneous transformation (4x4) or SE3)
% before projecting them to the camera image plane.
%
% See also CatadioprtricCamera.plot, Camera.plot.
np = size(P,1);
opt.objpose = [];
opt.pose = [];
[opt,arglist] = tb_optparse(opt, varargin);
if isempty(opt.pose)
opt.pose = cam.T;
end
if isempty(opt.objpose)
opt.objpose = se3();
else
opt.objpose = se3(opt.objpose);
end
% transform all the points to camera frame
tform = inv(opt.pose) * opt.objpose;
X = tform.transform(P); % project them
R = vecnorm(X(:, 1:3)')';
phi = atan2( X(:, 2), X(:, 1) );
theta = acos( X(:, 3) ./ R );
switch cam.projection
case 'equiangular'
r = cam.k * theta;
case 'sine'
r = cam.k * sin(theta);
case 'equisolid'
r = cam.k * sin(theta/2);
case 'stereographic'
r = cam.k * tan(theta/2);
otherwise
error('unknown fisheye projection model');
end
x = r .* cos(phi);
y = r .* sin(phi);
uv = [x/cam.rho(1)+cam.pp(1), y/cam.rho(2)+cam.pp(2)];
if cam.noise
% add Gaussian noise with specified standard deviation
uv = (uv' + diag(cam.noise) * randn(size(uv')))';
end
end
end % methods
end % class