forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
routing_lp_scheduling.h
898 lines (829 loc) · 38.7 KB
/
routing_lp_scheduling.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_CONSTRAINT_SOLVER_ROUTING_LP_SCHEDULING_H_
#define OR_TOOLS_CONSTRAINT_SOLVER_ROUTING_LP_SCHEDULING_H_
#include <algorithm>
#include <cstdint>
#include <deque>
#include <functional>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/container/flat_hash_map.h"
#include "absl/time/time.h"
#include "ortools/base/logging.h"
#include "ortools/base/mathutil.h"
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_parameters.pb.h"
#include "ortools/glop/lp_solver.h"
#include "ortools/glop/parameters.pb.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/sorted_interval_list.h"
namespace operations_research {
// Classes to solve dimension cumul placement (aka scheduling) problems using
// linear programming.
// Utility class used in the core optimizer to tighten the cumul bounds as much
// as possible based on the model precedences.
class CumulBoundsPropagator {
public:
explicit CumulBoundsPropagator(const RoutingDimension* dimension);
// Tightens the cumul bounds starting from the current cumul var min/max,
// and propagating the precedences resulting from the next_accessor, and the
// dimension's precedence rules.
// Returns false iff the precedences are infeasible with the given routes.
// Otherwise, the user can call CumulMin() and CumulMax() to retrieve the new
// bounds of an index.
bool PropagateCumulBounds(
const std::function<int64_t(int64_t)>& next_accessor,
int64_t cumul_offset);
int64_t CumulMin(int index) const {
return propagated_bounds_[PositiveNode(index)];
}
int64_t CumulMax(int index) const {
const int64_t negated_upper_bound = propagated_bounds_[NegativeNode(index)];
return negated_upper_bound == std::numeric_limits<int64_t>::min()
? std::numeric_limits<int64_t>::max()
: -negated_upper_bound;
}
const RoutingDimension& dimension() const { return dimension_; }
private:
// An arc "tail --offset--> head" represents the relation
// tail + offset <= head.
// As arcs are stored by tail, we don't store it in the struct.
struct ArcInfo {
int head;
int64_t offset;
};
static const int kNoParent;
static const int kParentToBePropagated;
// Return the node corresponding to the lower bound of the cumul of index and
// -index respectively.
int PositiveNode(int index) const { return 2 * index; }
int NegativeNode(int index) const { return 2 * index + 1; }
void AddNodeToQueue(int node) {
if (!node_in_queue_[node]) {
bf_queue_.push_back(node);
node_in_queue_[node] = true;
}
}
// Adds the relation first_index + offset <= second_index, by adding arcs
// first_index --offset--> second_index and
// -second_index --offset--> -first_index.
void AddArcs(int first_index, int second_index, int64_t offset);
bool InitializeArcsAndBounds(
const std::function<int64_t(int64_t)>& next_accessor,
int64_t cumul_offset);
bool UpdateCurrentLowerBoundOfNode(int node, int64_t new_lb, int64_t offset);
bool DisassembleSubtree(int source, int target);
bool CleanupAndReturnFalse() {
// We clean-up node_in_queue_ for future calls, and return false.
for (int node_to_cleanup : bf_queue_) {
node_in_queue_[node_to_cleanup] = false;
}
bf_queue_.clear();
return false;
}
const RoutingDimension& dimension_;
const int64_t num_nodes_;
// TODO(user): Investigate if all arcs for a given tail can be created
// at the same time, in which case outgoing_arcs_ could point to an absl::Span
// for each tail index.
std::vector<std::vector<ArcInfo>> outgoing_arcs_;
std::deque<int> bf_queue_;
std::vector<bool> node_in_queue_;
std::vector<int> tree_parent_node_of_;
// After calling PropagateCumulBounds(), for each node index n,
// propagated_bounds_[2*n] and -propagated_bounds_[2*n+1] respectively contain
// the propagated lower and upper bounds of n's cumul variable.
std::vector<int64_t> propagated_bounds_;
// Vector used in DisassembleSubtree() to avoid memory reallocation.
std::vector<int> tmp_dfs_stack_;
// Used to store the pickup/delivery pairs encountered on the routes.
std::vector<std::pair<int64_t, int64_t>>
visited_pickup_delivery_indices_for_pair_;
};
enum class DimensionSchedulingStatus {
// An optimal solution was found respecting all constraints.
OPTIMAL,
// An optimal solution was found, however constraints which were relaxed were
// violated.
RELAXED_OPTIMAL_ONLY,
// A solution could not be found.
INFEASIBLE
};
class RoutingLinearSolverWrapper {
public:
virtual ~RoutingLinearSolverWrapper() {}
virtual void Clear() = 0;
virtual int CreateNewPositiveVariable() = 0;
virtual void SetVariableName(int index, absl::string_view name) = 0;
virtual bool SetVariableBounds(int index, int64_t lower_bound,
int64_t upper_bound) = 0;
virtual void SetVariableDisjointBounds(int index,
const std::vector<int64_t>& starts,
const std::vector<int64_t>& ends) = 0;
virtual int64_t GetVariableLowerBound(int index) const = 0;
virtual int64_t GetVariableUpperBound(int index) const = 0;
virtual void SetObjectiveCoefficient(int index, double coefficient) = 0;
virtual double GetObjectiveCoefficient(int index) const = 0;
virtual void ClearObjective() = 0;
virtual int NumVariables() const = 0;
virtual int CreateNewConstraint(int64_t lower_bound, int64_t upper_bound) = 0;
virtual void SetCoefficient(int ct, int index, double coefficient) = 0;
virtual bool IsCPSATSolver() = 0;
virtual void AddObjectiveConstraint() = 0;
virtual void AddMaximumConstraint(int max_var, std::vector<int> vars) = 0;
virtual void AddProductConstraint(int product_var, std::vector<int> vars) = 0;
virtual void SetEnforcementLiteral(int ct, int condition) = 0;
virtual DimensionSchedulingStatus Solve(absl::Duration duration_limit) = 0;
virtual int64_t GetObjectiveValue() const = 0;
virtual double GetValue(int index) const = 0;
virtual bool SolutionIsInteger() const = 0;
// This function is meant to override the parameters of the solver.
virtual void SetParameters(const std::string& parameters) = 0;
// Adds a variable with bounds [lower_bound, upper_bound].
int AddVariable(int64_t lower_bound, int64_t upper_bound) {
CHECK_LE(lower_bound, upper_bound);
const int variable = CreateNewPositiveVariable();
SetVariableBounds(variable, lower_bound, upper_bound);
return variable;
}
// Adds a linear constraint, enforcing
// lower_bound <= sum variable * coeff <= upper_bound,
// and returns the identifier of that constraint.
int AddLinearConstraint(
int64_t lower_bound, int64_t upper_bound,
const std::vector<std::pair<int, double>>& variable_coeffs) {
CHECK_LE(lower_bound, upper_bound);
const int ct = CreateNewConstraint(lower_bound, upper_bound);
for (const auto& variable_coeff : variable_coeffs) {
SetCoefficient(ct, variable_coeff.first, variable_coeff.second);
}
return ct;
}
// Adds a linear constraint and a 0/1 variable that is true iff
// lower_bound <= sum variable * coeff <= upper_bound,
// and returns the identifier of that variable.
int AddReifiedLinearConstraint(
int64_t lower_bound, int64_t upper_bound,
const std::vector<std::pair<int, double>>& weighted_variables) {
const int reification_ct = AddLinearConstraint(1, 1, {});
if (std::numeric_limits<int64_t>::min() < lower_bound) {
const int under_lower_bound = AddVariable(0, 1);
#ifndef NDEBUG
SetVariableName(under_lower_bound, "under_lower_bound");
#endif
SetCoefficient(reification_ct, under_lower_bound, 1);
const int under_lower_bound_ct =
AddLinearConstraint(std::numeric_limits<int64_t>::min(),
lower_bound - 1, weighted_variables);
SetEnforcementLiteral(under_lower_bound_ct, under_lower_bound);
}
if (upper_bound < std::numeric_limits<int64_t>::max()) {
const int above_upper_bound = AddVariable(0, 1);
#ifndef NDEBUG
SetVariableName(above_upper_bound, "above_upper_bound");
#endif
SetCoefficient(reification_ct, above_upper_bound, 1);
const int above_upper_bound_ct = AddLinearConstraint(
upper_bound + 1, std::numeric_limits<int64_t>::max(),
weighted_variables);
SetEnforcementLiteral(above_upper_bound_ct, above_upper_bound);
}
const int within_bounds = AddVariable(0, 1);
#ifndef NDEBUG
SetVariableName(within_bounds, "within_bounds");
#endif
SetCoefficient(reification_ct, within_bounds, 1);
const int within_bounds_ct =
AddLinearConstraint(lower_bound, upper_bound, weighted_variables);
SetEnforcementLiteral(within_bounds_ct, within_bounds);
return within_bounds;
}
};
class RoutingGlopWrapper : public RoutingLinearSolverWrapper {
public:
RoutingGlopWrapper(bool is_relaxation, const glop::GlopParameters& parameters)
: is_relaxation_(is_relaxation) {
lp_solver_.SetParameters(parameters);
linear_program_.SetMaximizationProblem(false);
}
void Clear() override {
linear_program_.Clear();
linear_program_.SetMaximizationProblem(false);
allowed_intervals_.clear();
}
int CreateNewPositiveVariable() override {
return linear_program_.CreateNewVariable().value();
}
void SetVariableName(int index, absl::string_view name) override {
linear_program_.SetVariableName(glop::ColIndex(index), name);
}
bool SetVariableBounds(int index, int64_t lower_bound,
int64_t upper_bound) override {
DCHECK_GE(lower_bound, 0);
// When variable upper bounds are greater than this threshold, precision
// issues arise in GLOP. In this case we are just going to suppose that
// these high bound values are infinite and not set the upper bound.
const int64_t kMaxValue = 1e10;
const double lp_min = lower_bound;
const double lp_max =
(upper_bound > kMaxValue) ? glop::kInfinity : upper_bound;
if (lp_min <= lp_max) {
linear_program_.SetVariableBounds(glop::ColIndex(index), lp_min, lp_max);
return true;
}
// The linear_program would not be feasible, and it cannot handle the
// lp_min > lp_max case, so we must detect infeasibility here.
return false;
}
void SetVariableDisjointBounds(int index, const std::vector<int64_t>& starts,
const std::vector<int64_t>& ends) override {
// TODO(user): Investigate if we can avoid rebuilding the interval list
// each time (we could keep a reference to the forbidden interval list in
// RoutingDimension but we would need to store cumul offsets and use them
// when checking intervals).
allowed_intervals_[index] =
std::make_unique<SortedDisjointIntervalList>(starts, ends);
}
int64_t GetVariableLowerBound(int index) const override {
return linear_program_.variable_lower_bounds()[glop::ColIndex(index)];
}
int64_t GetVariableUpperBound(int index) const override {
const double upper_bound =
linear_program_.variable_upper_bounds()[glop::ColIndex(index)];
DCHECK_GE(upper_bound, 0);
return upper_bound == glop::kInfinity ? std::numeric_limits<int64_t>::max()
: static_cast<int64_t>(upper_bound);
}
void SetObjectiveCoefficient(int index, double coefficient) override {
linear_program_.SetObjectiveCoefficient(glop::ColIndex(index), coefficient);
}
double GetObjectiveCoefficient(int index) const override {
return linear_program_.objective_coefficients()[glop::ColIndex(index)];
}
void ClearObjective() override {
for (glop::ColIndex i(0); i < linear_program_.num_variables(); ++i) {
linear_program_.SetObjectiveCoefficient(i, 0);
}
}
int NumVariables() const override {
return linear_program_.num_variables().value();
}
int CreateNewConstraint(int64_t lower_bound, int64_t upper_bound) override {
const glop::RowIndex ct = linear_program_.CreateNewConstraint();
linear_program_.SetConstraintBounds(
ct,
(lower_bound == std::numeric_limits<int64_t>::min()) ? -glop::kInfinity
: lower_bound,
(upper_bound == std::numeric_limits<int64_t>::max()) ? glop::kInfinity
: upper_bound);
return ct.value();
}
void SetCoefficient(int ct, int index, double coefficient) override {
linear_program_.SetCoefficient(glop::RowIndex(ct), glop::ColIndex(index),
coefficient);
}
bool IsCPSATSolver() override { return false; }
void AddObjectiveConstraint() override {
double max_coefficient = 0;
for (int variable = 0; variable < NumVariables(); variable++) {
const double coefficient = GetObjectiveCoefficient(variable);
max_coefficient = std::max(MathUtil::Abs(coefficient), max_coefficient);
}
DCHECK_GE(max_coefficient, 0);
if (max_coefficient == 0) {
// There are no terms in the objective.
return;
}
const glop::RowIndex ct = linear_program_.CreateNewConstraint();
double normalized_objective_value = 0;
for (int variable = 0; variable < NumVariables(); variable++) {
const double coefficient = GetObjectiveCoefficient(variable);
if (coefficient != 0) {
const double normalized_coeff = coefficient / max_coefficient;
SetCoefficient(ct.value(), variable, normalized_coeff);
normalized_objective_value += normalized_coeff * GetValue(variable);
}
}
normalized_objective_value = std::max(
normalized_objective_value, GetObjectiveValue() / max_coefficient);
linear_program_.SetConstraintBounds(ct, -glop::kInfinity,
normalized_objective_value);
}
void AddMaximumConstraint(int /*max_var*/,
std::vector<int> /*vars*/) override {}
void AddProductConstraint(int /*product_var*/,
std::vector<int> /*vars*/) override {}
void SetEnforcementLiteral(int /*ct*/, int /*condition*/) override{};
DimensionSchedulingStatus Solve(absl::Duration duration_limit) override {
lp_solver_.GetMutableParameters()->set_max_time_in_seconds(
absl::ToDoubleSeconds(duration_limit));
// Because we construct the lp one constraint at a time and we never call
// SetCoefficient() on the same variable twice for a constraint, we know
// that the columns do not contain duplicates and are already ordered by
// constraint so we do not need to call linear_program->CleanUp() which can
// be costly. Note that the assumptions are DCHECKed() in the call below.
linear_program_.NotifyThatColumnsAreClean();
VLOG(2) << linear_program_.Dump();
const glop::ProblemStatus status = lp_solver_.Solve(linear_program_);
if (status != glop::ProblemStatus::OPTIMAL &&
status != glop::ProblemStatus::IMPRECISE) {
return DimensionSchedulingStatus::INFEASIBLE;
}
if (is_relaxation_) {
return DimensionSchedulingStatus::RELAXED_OPTIMAL_ONLY;
}
for (const auto& allowed_interval : allowed_intervals_) {
const double value_double = GetValue(allowed_interval.first);
const int64_t value =
(value_double >= std::numeric_limits<int64_t>::max())
? std::numeric_limits<int64_t>::max()
: MathUtil::FastInt64Round(value_double);
const SortedDisjointIntervalList* const interval_list =
allowed_interval.second.get();
const auto it = interval_list->FirstIntervalGreaterOrEqual(value);
if (it == interval_list->end() || value < it->start) {
return DimensionSchedulingStatus::RELAXED_OPTIMAL_ONLY;
}
}
return DimensionSchedulingStatus::OPTIMAL;
}
int64_t GetObjectiveValue() const override {
return MathUtil::FastInt64Round(lp_solver_.GetObjectiveValue());
}
double GetValue(int index) const override {
return lp_solver_.variable_values()[glop::ColIndex(index)];
}
bool SolutionIsInteger() const override {
return linear_program_.SolutionIsInteger(lp_solver_.variable_values(),
/*absolute_tolerance*/ 1e-3);
}
void SetParameters(const std::string& parameters) override {
glop::GlopParameters params;
const bool status = params.ParseFromString(parameters);
DCHECK(status);
lp_solver_.SetParameters(params);
}
private:
const bool is_relaxation_;
glop::LinearProgram linear_program_;
glop::LPSolver lp_solver_;
absl::flat_hash_map<int, std::unique_ptr<SortedDisjointIntervalList>>
allowed_intervals_;
};
class RoutingCPSatWrapper : public RoutingLinearSolverWrapper {
public:
RoutingCPSatWrapper() {
parameters_.set_num_search_workers(1);
// Keeping presolve but with 0 iterations; as of 11/2019 it is
// significantly faster than both full presolve and no presolve.
parameters_.set_cp_model_presolve(true);
parameters_.set_max_presolve_iterations(0);
parameters_.set_catch_sigint_signal(false);
parameters_.set_mip_max_bound(1e8);
parameters_.set_search_branching(sat::SatParameters::LP_SEARCH);
}
~RoutingCPSatWrapper() override {}
void Clear() override {
model_.Clear();
response_.Clear();
objective_coefficients_.clear();
}
int CreateNewPositiveVariable() override {
const int index = model_.variables_size();
sat::IntegerVariableProto* const variable = model_.add_variables();
variable->add_domain(0);
variable->add_domain(static_cast<int64_t>(parameters_.mip_max_bound()));
return index;
}
void SetVariableName(int index, absl::string_view name) override {
model_.mutable_variables(index)->set_name(name.data());
}
bool SetVariableBounds(int index, int64_t lower_bound,
int64_t upper_bound) override {
DCHECK_GE(lower_bound, 0);
const int64_t capped_upper_bound =
std::min<int64_t>(upper_bound, parameters_.mip_max_bound());
if (lower_bound > capped_upper_bound) return false;
sat::IntegerVariableProto* const variable = model_.mutable_variables(index);
variable->set_domain(0, lower_bound);
variable->set_domain(1, capped_upper_bound);
return true;
}
void SetVariableDisjointBounds(int index, const std::vector<int64_t>& starts,
const std::vector<int64_t>& ends) override {
DCHECK_EQ(starts.size(), ends.size());
const int ct = CreateNewConstraint(1, 1);
for (int i = 0; i < starts.size(); ++i) {
const int variable = CreateNewPositiveVariable();
#ifndef NDEBUG
SetVariableName(variable,
absl::StrFormat("disjoint(%ld, %ld)", index, i));
#endif
SetVariableBounds(variable, 0, 1);
SetCoefficient(ct, variable, 1);
const int window_ct = CreateNewConstraint(starts[i], ends[i]);
SetCoefficient(window_ct, index, 1);
model_.mutable_constraints(window_ct)->add_enforcement_literal(variable);
}
}
int64_t GetVariableLowerBound(int index) const override {
return model_.variables(index).domain(0);
}
int64_t GetVariableUpperBound(int index) const override {
const auto& domain = model_.variables(index).domain();
return domain[domain.size() - 1];
}
void SetObjectiveCoefficient(int index, double coefficient) override {
if (index >= objective_coefficients_.size()) {
objective_coefficients_.resize(index + 1, 0);
}
objective_coefficients_[index] = coefficient;
sat::FloatObjectiveProto* const objective =
model_.mutable_floating_point_objective();
objective->add_vars(index);
objective->add_coeffs(coefficient);
}
double GetObjectiveCoefficient(int index) const override {
return (index < objective_coefficients_.size())
? objective_coefficients_[index]
: 0;
}
void ClearObjective() override {
model_.mutable_floating_point_objective()->Clear();
}
int NumVariables() const override { return model_.variables_size(); }
int CreateNewConstraint(int64_t lower_bound, int64_t upper_bound) override {
sat::LinearConstraintProto* const ct =
model_.add_constraints()->mutable_linear();
ct->add_domain(lower_bound);
ct->add_domain(upper_bound);
return model_.constraints_size() - 1;
}
void SetCoefficient(int ct_index, int index, double coefficient) override {
sat::LinearConstraintProto* const ct =
model_.mutable_constraints(ct_index)->mutable_linear();
ct->add_vars(index);
const int64_t integer_coefficient = coefficient;
ct->add_coeffs(integer_coefficient);
}
bool IsCPSATSolver() override { return true; }
void AddObjectiveConstraint() override {
const sat::CpObjectiveProto& objective = response_.integer_objective();
int64_t activity = 0;
for (int i = 0; i < objective.vars_size(); ++i) {
activity += response_.solution(objective.vars(i)) * objective.coeffs(i);
}
const int ct =
CreateNewConstraint(std::numeric_limits<int64_t>::min(), activity);
for (int i = 0; i < objective.vars_size(); ++i) {
SetCoefficient(ct, objective.vars(i), objective.coeffs(i));
}
model_.clear_objective();
}
void AddMaximumConstraint(int max_var, std::vector<int> vars) override {
sat::LinearArgumentProto* const ct =
model_.add_constraints()->mutable_lin_max();
ct->mutable_target()->add_vars(max_var);
ct->mutable_target()->add_coeffs(1);
for (const int var : vars) {
sat::LinearExpressionProto* const expr = ct->add_exprs();
expr->add_vars(var);
expr->add_coeffs(1);
}
}
void AddProductConstraint(int product_var, std::vector<int> vars) override {
sat::LinearArgumentProto* const ct =
model_.add_constraints()->mutable_int_prod();
ct->mutable_target()->add_vars(product_var);
ct->mutable_target()->add_coeffs(1);
for (const int var : vars) {
sat::LinearExpressionProto* expr = ct->add_exprs();
expr->add_vars(var);
expr->add_coeffs(1);
}
}
void SetEnforcementLiteral(int ct, int condition) override {
DCHECK_LT(ct, model_.constraints_size());
model_.mutable_constraints(ct)->add_enforcement_literal(condition);
}
DimensionSchedulingStatus Solve(absl::Duration duration_limit) override {
parameters_.set_max_time_in_seconds(absl::ToDoubleSeconds(duration_limit));
VLOG(2) << model_.DebugString();
if (hint_.vars_size() == model_.variables_size()) {
*model_.mutable_solution_hint() = hint_;
}
sat::Model model;
model.Add(sat::NewSatParameters(parameters_));
response_ = sat::SolveCpModel(model_, &model);
VLOG(2) << response_.DebugString();
if (response_.status() == sat::CpSolverStatus::OPTIMAL ||
(response_.status() == sat::CpSolverStatus::FEASIBLE &&
!model_.has_floating_point_objective())) {
hint_.Clear();
for (int i = 0; i < response_.solution_size(); ++i) {
hint_.add_vars(i);
hint_.add_values(response_.solution(i));
}
return DimensionSchedulingStatus::OPTIMAL;
}
return DimensionSchedulingStatus::INFEASIBLE;
}
int64_t GetObjectiveValue() const override {
return MathUtil::FastInt64Round(response_.objective_value());
}
double GetValue(int index) const override {
return response_.solution(index);
}
bool SolutionIsInteger() const override { return true; }
// NOTE: This function is not implemented for the CP-SAT solver.
void SetParameters(const std::string& /*parameters*/) override {
DCHECK(false);
}
private:
sat::CpModelProto model_;
sat::CpSolverResponse response_;
sat::SatParameters parameters_;
std::vector<double> objective_coefficients_;
sat::PartialVariableAssignment hint_;
};
// Utility class used in Local/GlobalDimensionCumulOptimizer to set the linear
// solver constraints and solve the problem.
class DimensionCumulOptimizerCore {
public:
DimensionCumulOptimizerCore(const RoutingDimension* dimension,
bool use_precedence_propagator);
// In the OptimizeSingleRoute() and Optimize() methods, if both "cumul_values"
// and "cost" parameters are null, we don't optimize the cost and stop at the
// first feasible solution in the linear solver (since in this case only
// feasibility is of interest).
DimensionSchedulingStatus OptimizeSingleRoute(
int vehicle, const std::function<int64_t(int64_t)>& next_accessor,
RoutingLinearSolverWrapper* solver, std::vector<int64_t>* cumul_values,
std::vector<int64_t>* break_values, int64_t* cost, int64_t* transit_cost,
bool clear_lp = true);
std::vector<DimensionSchedulingStatus> OptimizeSingleRouteWithResources(
int vehicle, const std::function<int64_t(int64_t)>& next_accessor,
const std::function<int64_t(int64_t, int64_t)>& transit_accessor,
const std::vector<RoutingModel::ResourceGroup::Resource>& resources,
const std::vector<int>& resource_indices, bool optimize_vehicle_costs,
RoutingLinearSolverWrapper* solver,
std::vector<int64_t>* costs_without_transits,
std::vector<std::vector<int64_t>>* cumul_values,
std::vector<std::vector<int64_t>>* break_values, bool clear_lp = true);
DimensionSchedulingStatus Optimize(
const std::function<int64_t(int64_t)>& next_accessor,
RoutingLinearSolverWrapper* solver, std::vector<int64_t>* cumul_values,
std::vector<int64_t>* break_values,
std::vector<std::vector<int>>* resource_indices_per_group, int64_t* cost,
int64_t* transit_cost, bool clear_lp = true);
DimensionSchedulingStatus OptimizeAndPack(
const std::function<int64_t(int64_t)>& next_accessor,
RoutingLinearSolverWrapper* solver, std::vector<int64_t>* cumul_values,
std::vector<int64_t>* break_values,
std::vector<std::vector<int>>* resource_indices_per_group);
DimensionSchedulingStatus OptimizeAndPackSingleRoute(
int vehicle, const std::function<int64_t(int64_t)>& next_accessor,
const RoutingModel::ResourceGroup::Resource* resource,
RoutingLinearSolverWrapper* solver, std::vector<int64_t>* cumul_values,
std::vector<int64_t>* break_values);
const RoutingDimension* dimension() const { return dimension_; }
private:
// Initializes the containers and given solver. Must be called prior to
// setting any constraints and solving.
void InitOptimizer(RoutingLinearSolverWrapper* solver);
// Computes the minimum/maximum of cumuls for nodes on "route", and sets them
// in current_route_[min|max]_cumuls_ respectively.
// If the propagator_ is not null, uses the bounds tightened by the
// propagator.
// Otherwise, the bounds are computed by going over the nodes on the route
// using the CP bounds, and the fixed transits are used to tighten them.
bool ComputeRouteCumulBounds(const std::vector<int64_t>& route,
const std::vector<int64_t>& fixed_transits,
int64_t cumul_offset);
// Sets the constraints for all nodes on "vehicle"'s route according to
// "next_accessor". If optimize_costs is true, also sets the objective
// coefficients for the LP.
// Returns false if some infeasibility was detected, true otherwise.
bool SetRouteCumulConstraints(
int vehicle, const std::function<int64_t(int64_t)>& next_accessor,
const std::function<int64_t(int64_t, int64_t)>& transit_accessor,
int64_t cumul_offset, bool optimize_costs,
RoutingLinearSolverWrapper* solver, int64_t* route_transit_cost,
int64_t* route_cost_offset);
// Sets the global constraints on the dimension, and adds global objective
// cost coefficients if optimize_costs is true.
// NOTE: When called, the call to this function MUST come after
// SetRouteCumulConstraints() has been called on all routes, so that
// index_to_cumul_variable_ and min_start/max_end_cumul_ are correctly
// initialized.
// Returns false if some infeasibility was detected, true otherwise.
bool SetGlobalConstraints(
const std::function<int64_t(int64_t)>& next_accessor,
int64_t cumul_offset, bool optimize_costs,
RoutingLinearSolverWrapper* solver);
void SetValuesFromLP(const std::vector<int>& lp_variables, int64_t offset,
RoutingLinearSolverWrapper* solver,
std::vector<int64_t>* lp_values) const;
void SetResourceIndices(
RoutingLinearSolverWrapper* solver,
std::vector<std::vector<int>>* resource_indices_per_group) const;
// This function packs the routes of the given vehicles while keeping the cost
// of the LP lower than its current (supposed optimal) objective value.
// It does so by setting the current objective variables' coefficient to 0 and
// setting the coefficient of the route ends to 1, to first minimize the route
// ends' cumuls, and then maximizes the starts' cumuls without increasing the
// ends.
DimensionSchedulingStatus PackRoutes(
std::vector<int> vehicles, RoutingLinearSolverWrapper* solver,
const glop::GlopParameters& packing_parameters);
std::unique_ptr<CumulBoundsPropagator> propagator_;
std::vector<int64_t> current_route_min_cumuls_;
std::vector<int64_t> current_route_max_cumuls_;
const RoutingDimension* const dimension_;
// Scheduler variables for current route cumuls and for all nodes cumuls.
std::vector<int> current_route_cumul_variables_;
std::vector<int> index_to_cumul_variable_;
// Scheduler variables for current route breaks and all vehicle breaks.
// There are two variables for each break: start and end.
// current_route_break_variables_ has variables corresponding to
// break[0] start, break[0] end, break[1] start, break[1] end, etc.
std::vector<int> current_route_break_variables_;
// Vector all_break_variables contains the break variables of all vehicles,
// in the same format as current_route_break_variables.
// It is the concatenation of break variables of vehicles in [0, #vehicles).
std::vector<int> all_break_variables_;
// Allows to retrieve break variables of a given vehicle: those go from
// all_break_variables_[vehicle_to_all_break_variables_offset_[vehicle]] to
// all_break_variables[vehicle_to_all_break_variables_offset_[vehicle+1]-1].
std::vector<int> vehicle_to_all_break_variables_offset_;
// The following vector contains indices of resource-to-vehicle assignment
// variables. For every resource group, stores indices of
// num_resources*num_vehicles boolean variables indicating whether resource #r
// is assigned to vehicle #v.
std::vector<std::vector<int>>
resource_group_to_resource_to_vehicle_assignment_variables_;
int max_end_cumul_;
int min_start_cumul_;
std::vector<std::pair<int64_t, int64_t>>
visited_pickup_delivery_indices_for_pair_;
};
// Class used to compute optimal values for dimension cumuls of routes,
// minimizing cumul soft lower and upper bound costs, and vehicle span costs of
// a route.
// In its methods, next_accessor is a callback returning the next node of a
// given node on a route.
class LocalDimensionCumulOptimizer {
public:
LocalDimensionCumulOptimizer(
const RoutingDimension* dimension,
RoutingSearchParameters::SchedulingSolver solver_type);
// If feasible, computes the optimal cost of the route performed by a vehicle,
// minimizing cumul soft lower and upper bound costs and vehicle span costs,
// and stores it in "optimal_cost" (if not null).
// Returns true iff the route respects all constraints.
DimensionSchedulingStatus ComputeRouteCumulCost(
int vehicle, const std::function<int64_t(int64_t)>& next_accessor,
int64_t* optimal_cost);
// Same as ComputeRouteCumulCost, but the cost computed does not contain
// the part of the vehicle span cost due to fixed transits.
DimensionSchedulingStatus ComputeRouteCumulCostWithoutFixedTransits(
int vehicle, const std::function<int64_t(int64_t)>& next_accessor,
int64_t* optimal_cost_without_transits);
std::vector<DimensionSchedulingStatus>
ComputeRouteCumulCostsForResourcesWithoutFixedTransits(
int vehicle, const std::function<int64_t(int64_t)>& next_accessor,
const std::function<int64_t(int64_t, int64_t)>& transit_accessor,
const std::vector<RoutingModel::ResourceGroup::Resource>& resources,
const std::vector<int>& resource_indices, bool optimize_vehicle_costs,
std::vector<int64_t>* optimal_costs_without_transits,
std::vector<std::vector<int64_t>>* optimal_cumuls,
std::vector<std::vector<int64_t>>* optimal_breaks);
// If feasible, computes the optimal values for cumul and break variables
// of the route performed by a vehicle, minimizing cumul soft lower, upper
// bound costs and vehicle span costs, stores them in "optimal_cumuls"
// (if not null), and optimal_breaks, and returns true.
// Returns false if the route is not feasible.
DimensionSchedulingStatus ComputeRouteCumuls(
int vehicle, const std::function<int64_t(int64_t)>& next_accessor,
std::vector<int64_t>* optimal_cumuls,
std::vector<int64_t>* optimal_breaks);
// Similar to ComputeRouteCumuls, but also tries to pack the cumul values on
// the route, such that the cost remains the same, the cumul of route end is
// minimized, and then the cumul of the start of the route is maximized.
// If 'resource' is non-null, the packed route must also respect its start/end
// time window.
DimensionSchedulingStatus ComputePackedRouteCumuls(
int vehicle, const std::function<int64_t(int64_t)>& next_accessor,
const RoutingModel::ResourceGroup::Resource* resource,
std::vector<int64_t>* packed_cumuls, std::vector<int64_t>* packed_breaks);
const RoutingDimension* dimension() const {
return optimizer_core_.dimension();
}
private:
std::vector<std::unique_ptr<RoutingLinearSolverWrapper>> solver_;
DimensionCumulOptimizerCore optimizer_core_;
};
class GlobalDimensionCumulOptimizer {
public:
GlobalDimensionCumulOptimizer(
const RoutingDimension* dimension,
RoutingSearchParameters::SchedulingSolver solver_type);
// If feasible, computes the optimal cost of the entire model with regards to
// the optimizer_core_'s dimension costs, minimizing cumul soft lower/upper
// bound costs and vehicle/global span costs, and stores it in "optimal_cost"
// (if not null).
// Returns true iff all the constraints can be respected.
DimensionSchedulingStatus ComputeCumulCostWithoutFixedTransits(
const std::function<int64_t(int64_t)>& next_accessor,
int64_t* optimal_cost_without_transits);
// If feasible, computes the optimal values for cumul, break and resource
// variables, minimizing cumul soft lower/upper bound costs and vehicle/global
// span costs, stores them in "optimal_cumuls" (if not null), "optimal_breaks"
// and "optimal_resource_indices_per_group", and returns true.
// Returns false if the routes are not feasible.
DimensionSchedulingStatus ComputeCumuls(
const std::function<int64_t(int64_t)>& next_accessor,
std::vector<int64_t>* optimal_cumuls,
std::vector<int64_t>* optimal_breaks,
std::vector<std::vector<int>>* optimal_resource_indices_per_group);
// Similar to ComputeCumuls, but also tries to pack the cumul values on all
// routes, such that the cost remains the same, the cumuls of route ends are
// minimized, and then the cumuls of the starts of the routes are maximized.
DimensionSchedulingStatus ComputePackedCumuls(
const std::function<int64_t(int64_t)>& next_accessor,
std::vector<int64_t>* packed_cumuls, std::vector<int64_t>* packed_breaks,
std::vector<std::vector<int>>* resource_indices_per_group);
const RoutingDimension* dimension() const {
return optimizer_core_.dimension();
}
private:
std::unique_ptr<RoutingLinearSolverWrapper> solver_;
DimensionCumulOptimizerCore optimizer_core_;
};
class ResourceAssignmentOptimizer {
public:
ResourceAssignmentOptimizer(const RoutingModel::ResourceGroup* resource_group,
LocalDimensionCumulOptimizer* optimizer,
LocalDimensionCumulOptimizer* mp_optimizer);
// Returns the cost resulting from the min-cost assignment of resources to
// (used) vehicles, or -1 if the assignment is impossible.
// For each vehicle v and resource r, the cost of assigning r to v is equal to
// - primary_vehicle_to_resource_assignment_costs[v][r] if
// primary_vehicle_to_resource_assignment_costs[v] is not empty,
// - secondary_vehicle_to_resource_assignment_costs[v][r] otherwise
// (secondary_vehicle_to_resource_assignment_costs[v] can never be empty).
// If non-null, 'resource_indices' contains the index of the resource assigned
// to each vehicle.
// TODO(user): Return std::optional<int64_t> to catch infeasibilities.
int64_t ComputeBestAssignmentCost(
const std::vector<std::vector<int64_t>>&
primary_vehicle_to_resource_assignment_costs,
const std::vector<std::vector<int64_t>>&
secondary_vehicle_to_resource_assignment_costs,
const std::function<bool(int)>& use_primary_for_vehicle,
std::vector<int>* resource_indices) const;
// Computes the vehicle-to-resource assignment costs for the given vehicle to
// all resources in the group, and sets these costs in assignment_costs (if
// non-null).
// optimize_vehicle_costs indicates if the costs should be optimized or if
// we merely care about feasibility (cost of 0) and infeasibility (cost of -1)
// of the assignments.
// The cumul and break values corresponding to the assignment of each resource
// are also set in cumul_values and break_values, if non-null.
bool ComputeAssignmentCostsForVehicle(
int v, const std::function<int64_t(int64_t)>& next_accessor,
const std::function<int64_t(int64_t, int64_t)>& transit_accessor,
bool optimize_vehicle_costs, std::vector<int64_t>* assignment_costs,
std::vector<std::vector<int64_t>>* cumul_values,
std::vector<std::vector<int64_t>>* break_values);
const RoutingDimension* const dimension() const {
return optimizer_.dimension();
}
private:
LocalDimensionCumulOptimizer& optimizer_;
LocalDimensionCumulOptimizer& mp_optimizer_;
const RoutingModel& model_;
const RoutingModel::ResourceGroup& resource_group_;
};
} // namespace operations_research
#endif // OR_TOOLS_CONSTRAINT_SOLVER_ROUTING_LP_SCHEDULING_H_