-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglow.py
328 lines (285 loc) · 13.1 KB
/
glow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# We retain the copyright notice by NVIDIA from the original code. However, we
# we reserve our rights on the modifications based on the original code.
#
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a+input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
class Upsample1d(torch.nn.Module):
def __init__(self, scale=2):
super(Upsample1d, self).__init__()
self.scale = scale
def forward(self, x):
y = F.interpolate(
x, scale_factor=self.scale, mode='nearest')
return y
class SqueezeWaveLoss(torch.nn.Module):
def __init__(self, sigma=1.0):
super(SqueezeWaveLoss, self).__init__()
self.sigma = sigma
def forward(self, model_output):
z, log_s_list, log_det_W_list = model_output
for i, log_s in enumerate(log_s_list):
if i == 0:
log_s_total = torch.sum(log_s)
log_det_W_total = log_det_W_list[i]
else:
log_s_total = log_s_total + torch.sum(log_s)
log_det_W_total += log_det_W_list[i]
loss = torch.sum(z*z)/(2*self.sigma*self.sigma) - log_s_total - log_det_W_total
return loss/(z.size(0)*z.size(1)*z.size(2))
class Invertible1x1Conv(torch.nn.Module):
"""
The layer outputs both the convolution, and the log determinant
of its weight matrix. If reverse=True it does convolution with
inverse
"""
def __init__(self, c):
super(Invertible1x1Conv, self).__init__()
self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0,
bias=False)
# Sample a random orthonormal matrix to initialize weights
W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
# Ensure determinant is 1.0 not -1.0
if torch.det(W) < 0:
W[:,0] = -1*W[:,0]
W = W.view(c, c, 1)
self.conv.weight.data = W
def forward(self, z, reverse=False):
# shape
batch_size, group_size, n_of_groups = z.size()
W = self.conv.weight.squeeze()
if reverse:
if not hasattr(self, 'W_inverse'):
# Reverse computation
W_inverse = W.float().inverse()
W_inverse = Variable(W_inverse[..., None])
if z.dtype == torch.float16:
W_inverse = W_inverse.half()
self.W_inverse = W_inverse
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
return z
else:
# Forward computation
log_det_W = batch_size * n_of_groups * torch.logdet(W)
z = self.conv(z)
return z, log_det_W
class WN(torch.nn.Module):
"""
This is the WaveNet like layer for the affine coupling. The primary difference
from WaveNet is the convolutions need not be causal. There is also no dilation
size reset. The dilation only doubles on each layer
"""
def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels,
kernel_size):
super(WN, self).__init__()
assert(kernel_size % 2 == 1)
assert(n_channels % 2 == 0)
self.n_layers = n_layers
self.n_channels = n_channels
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.upsample = Upsample1d(2)
start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
start = torch.nn.utils.weight_norm(start, name='weight')
self.start = start
end = torch.nn.Conv1d(n_channels, 2*n_in_channels, 1)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = end
# cond_layer
cond_layer = torch.nn.Conv1d(n_mel_channels, 2*n_channels*n_layers, 1)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
for i in range(n_layers):
dilation = 1
padding = int((kernel_size*dilation - dilation)/2)
# depthwise separable convolution
depthwise = torch.nn.Conv1d(n_channels, n_channels, 3,
dilation=dilation, padding=padding,
groups=n_channels)
pointwise = torch.nn.Conv1d(n_channels, 2*n_channels, 1)
bn = torch.nn.BatchNorm1d(n_channels)
self.in_layers.append(torch.nn.Sequential(bn, depthwise, pointwise))
# res_skip_layer
res_skip_layer = torch.nn.Conv1d(n_channels, n_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
self.res_skip_layers.append(res_skip_layer)
def forward(self, forward_input):
audio, spect = forward_input
audio = self.start(audio)
n_channels_tensor = torch.IntTensor([self.n_channels])
# pass all the mel_spectrograms to cond_layer
spect = self.cond_layer(spect)
for i in range(self.n_layers):
# split the corresponding mel_spectrogram
spect_offset = i*2*self.n_channels
spec = spect[:,spect_offset:spect_offset+2*self.n_channels,:]
if audio.size(2) > spec.size(2):
cond = self.upsample(spec)
else:
cond = spec
acts = fused_add_tanh_sigmoid_multiply(
self.in_layers[i](audio),
cond,
n_channels_tensor)
# res_skip
res_skip_acts = self.res_skip_layers[i](acts)
audio = audio + res_skip_acts
return self.end(audio)
class SqueezeWave(torch.nn.Module):
def __init__(self, n_mel_channels, n_flows, n_audio_channel, n_early_every,
n_early_size, WN_config):
super(SqueezeWave, self).__init__()
assert(n_audio_channel % 2 == 0)
self.n_flows = n_flows
self.n_audio_channel = n_audio_channel
self.n_early_every = n_early_every
self.n_early_size = n_early_size
self.WN = torch.nn.ModuleList()
self.convinv = torch.nn.ModuleList()
n_half = int(n_audio_channel / 2)
# Set up layers with the right sizes based on how many dimensions
# have been output already
n_remaining_channels = n_audio_channel
for k in range(n_flows):
if k % self.n_early_every == 0 and k > 0:
n_half = n_half - int(self.n_early_size/2)
n_remaining_channels = n_remaining_channels - self.n_early_size
self.convinv.append(Invertible1x1Conv(n_remaining_channels))
self.WN.append(WN(n_half, n_mel_channels, **WN_config))
self.n_remaining_channels = n_remaining_channels # Useful during inference
def forward(self, forward_input):
"""
forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames
forward_input[1] = audio: batch x time
"""
spect, audio = forward_input
audio = audio.unfold(
1, self.n_audio_channel, self.n_audio_channel).permute(0, 2, 1)
output_audio = []
log_s_list = []
log_det_W_list = []
for k in range(self.n_flows):
if k % self.n_early_every == 0 and k > 0:
output_audio.append(audio[:,:self.n_early_size,:])
audio = audio[:,self.n_early_size:,:]
audio, log_det_W = self.convinv[k](audio)
log_det_W_list.append(log_det_W)
n_half = int(audio.size(1)/2)
audio_0 = audio[:,:n_half,:]
audio_1 = audio[:,n_half:,:]
output = self.WN[k]((audio_0, spect))
log_s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = (torch.exp(log_s))*audio_1 + b
log_s_list.append(log_s)
audio = torch.cat([audio_0, audio_1], 1)
output_audio.append(audio)
return torch.cat(output_audio, 1), log_s_list, log_det_W_list
def infer(self, spect, sigma=1.0):
spect_size = spect.size()
l = spect.size(2)*(256 // self.n_audio_channel)
if spect.dtype == torch.float16:
audio = torch.empty(spect.size(0),
self.n_remaining_channels,
l, device=spect.device).normal_()
else:
audio = torch.empty(spect.size(0),
self.n_remaining_channels,
l, device=spect.device).normal_()
for k in reversed(range(self.n_flows)):
n_half = int(audio.size(1)/2)
audio_0 = audio[:,:n_half,:]
audio_1 = audio[:,n_half:,:]
output = self.WN[k]((audio_0, spect))
s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = (audio_1 - b)/torch.exp(s)
audio = torch.cat([audio_0, audio_1],1)
audio = self.convinv[k](audio, reverse=True)
if k % self.n_early_every == 0 and k > 0:
if spect.dtype == torch.float16:
z = torch.empty(spect.size(0), self.n_early_size, l, device=spect.device).normal_()
else:
z = torch.empty(spect.size(0), self.n_early_size, l, device=spect.device).normal_()
audio = torch.cat((sigma*z, audio),1)
audio = audio.permute(0,2,1).contiguous().view(audio.size(0), -1).data
return audio
@staticmethod
def remove_weightnorm(model):
squeezewave = model
for WN in squeezewave.WN:
WN.start = torch.nn.utils.remove_weight_norm(WN.start)
WN.in_layers = remove_batch_norm(WN.in_layers)
WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer)
WN.res_skip_layers = remove(WN.res_skip_layers)
return squeezewave
def fuse_conv_and_bn(conv, bn):
fusedconv = torch.nn.Conv1d(
conv.in_channels,
conv.out_channels,
kernel_size = conv.kernel_size,
padding=conv.padding,
bias=True,
groups=conv.groups)
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps+bn.running_var)))
w_bn = w_bn.clone()
fusedconv.weight.data = torch.mm(w_bn, w_conv).view(fusedconv.weight.size())
if conv.bias is not None:
b_conv = conv.bias
else:
b_conv = torch.zeros( conv.weight.size(0) )
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
b_bn = torch.unsqueeze(b_bn, 1)
bn_3 = b_bn.expand(-1, 3)
b = torch.matmul(w_conv, torch.transpose(bn_3, 0, 1))[range(b_bn.size()[0]), range(b_bn.size()[0])]
fusedconv.bias.data = ( b_conv + b )
return fusedconv
def remove_batch_norm(conv_list):
new_conv_list = torch.nn.ModuleList()
for old_conv in conv_list:
depthwise = fuse_conv_and_bn(old_conv[1], old_conv[0])
pointwise = old_conv[2]
new_conv_list.append(torch.nn.Sequential(depthwise, pointwise))
return new_conv_list
def remove(conv_list):
new_conv_list = torch.nn.ModuleList()
for old_conv in conv_list:
old_conv = torch.nn.utils.remove_weight_norm(old_conv)
new_conv_list.append(old_conv)
return new_conv_list