-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy path00-sistemas-ecuaciones-lineales.html
354 lines (341 loc) · 60.8 KB
/
00-sistemas-ecuaciones-lineales.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<meta name="generator" content="pandoc" />
<title>Sistemas de ecuaciones lineales</title>
<style type="text/css">code{white-space: pre;}</style>
<link rel="stylesheet" href="otro.css" type="text/css" />
<script src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2/MathJax.js?config=TeX-MML-AM_CHTML'></script>
<!--<script src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>-->
</head>
<body>
<div id="header">
<h1 class="title">Sistemas de ecuaciones lineales</h1>
</div>
<section>
<header>
<h1 id="ecuaciones-lineales">Ecuaciones lineales</h1>
</header>
<p>Una ecuación lineal es aquella en la que las incógnitas aparecen multiplicadas por valores numéricos y sumadas tal y como aparecen en el siguiente ejemplo:</p>
<p><span class="math">\[3 x - \frac{2}{5}y + \frac{5}{3} z = -\frac{12}{18}\]</span></p>
<p>Si la ecuación tiene 3 incógnitas, como en este ejemplo, cada solución consta de 3 números. Una solución es la terna <span class="math">\(\left(-\frac{2}{9},0,0\right)\)</span>, es decir, <span class="math">\(x=-\frac{2}{9}; \, y=0; \, z=0\)</span>.</p>
<p>Esta ecuación anterior tiene otras muchas soluciones. Algunas de ellas son las siguientes:</p>
<ul>
<li>\(x = 0\), \(y=\dfrac{5}3\), \(z= 0\),</li>
<li>\(x= 0\), \(y= 0\), \(z=-\dfrac{-2}5\),</li>
<li>\(x=\dfrac{1}3\), \(y=\dfrac{25}3\), \(z= 1\).</li>
</ul>
<p>Una forma de hallar más soluciones consiste en despejar alguna de las variables en función de las demás. Por ejemplo, si despejamos <span class="math">\(y\)</span>, tenemos la siguiente expresión</p>
<p><span class="math">\[\begin{aligned}
3 x - \frac{2}{5}y + \frac{5}{3} z &= -\frac{12}{18} \\
- \frac{2}{5}y &= -\frac{12}{18} - 3x - \frac{5}{3} z \\
y &= \frac{5}{2} \cdot \frac{12}{18} + \frac{5}{2} \cdot 3 x + \frac{5}{2} \cdot \frac{5}{3} z \\
y &= \frac{5}{3} + \frac{15}{2} x + \frac{25}{6} z.\end{aligned}\]</span></p>
<p>De esta forma asignando valores cualesquiera a \(x\) y \(z\) obtenemos el correspondiente valor de <span class="math">\(y\)</span> que soluciona la ecuación. Para escribir <span>todas</span> las soluciones de esta ecuación solemos expresarlo de la siguiente forma: <span class="math">\[\left\{\begin{array}{l}
x=\lambda,\\
y=\frac{5}{3} + \frac{15}{2} \lambda + \frac{25}{6} \mu,\\
z=\mu,\\
\end{array}\right. \hspace{.5cm} \lambda, \, \mu \in \mathbb{R}.\]</span> Este proceso puede hacerse con cualquier variable, con lo que obtendríamos una forma diferente para la expresión de todas soluciones pero exactamente el mismo conjunto de soluciones.</p>
</section>
<secton>
<header>
<h1 id="dos-ecuaciones-con-dos-incógnitas">Dos ecuaciones con dos incógnitas</h1>
</header>
<p>Vamos a dar algunas directrices para resolver sistemas de ecuaciones del tipo</p>
<p><span class="math">\[\left\{\begin{aligned}
a_1 x + b_1 y &= c_1, \\
a_2 x + b_2 y &= c_2.
\end{aligned}\right.\]</span></p>
<p>En la educación secundaria se suelen explicar tres formas de resolver este tipo de sistemas de ecuaciones: sustitución, igualación y reducción. Todos ellos se basan en realizar operaciones aritméticas que no cambian las soluciones de las ecuaciones presentes. El más interesante, porque puede aplicarse a sistemas de cualquier número de incógnitas, es el de <span><strong>reducción</strong></span>; realmente se trata de una versión del <span><strong>Método de Gauss</strong></span> para sistemas de dos ecuaciones y dos incógnitas.</p>
<h2 id="reducción">Reducción</h2>
<p>El procedimiento de reducción se basa en lograr que una misma variable aparezca en ambas ecuaciones con coeficientes opuestos (mismo valor y distinto signo). Vayamos viendo el mismo resolviendo el sistema empleado en los dos casos anteriores,</p>
<p><span class="math">\[\left\{\begin{aligned}
\frac{2}{7} x + 3 y &= -2, \\
-\frac{12}{5} x + \frac{2}{5} y &= 7,
\end{aligned}\right.\]</span></p>
<svg width="400" height="400" style="overflow: hidden; width: 400px; height: 400px;"><defs><filter id="box_f1" width="300%" height="300%" filterUnits="userSpaceOnUse"><feOffset result="offOut" in="SourceAlpha" dx="5" dy="5"></feOffset><feGaussianBlur result="blurOut" in="offOut" stdDeviation="3"></feGaussianBlur><feBlend in="SourceGraphic" in2="blurOut" mode="normal"></feBlend></filter><marker id="box_jxgBoard1L3TriangleStart" stroke="#666666" stroke-opacity="1" fill="#666666" fill-opacity="1" stroke-width="0" orient="auto" markerUnits="strokeWidth" viewBox="-1 -1 10 10" markerHeight="10" markerWidth="10" refY="5" refX="0" style="position: absolute;"><path d="M 0 0 L 10 5 L 0 10 z"></path></marker><marker id="box_jxgBoard1L12TriangleStart" stroke="#666666" stroke-opacity="1" fill="#666666" fill-opacity="1" stroke-width="0" orient="auto" markerUnits="strokeWidth" viewBox="-1 -1 10 10" markerHeight="10" markerWidth="10" refY="5" refX="0" style="position: absolute;"><path d="M 0 0 L 10 5 L 0 10 z"></path></marker></defs><g><foreignObject x="0" y="0" width="100%" height="100%"></foreignObject><ellipse id="box_jxgBoard1P1" stroke="#0000ff" stroke-opacity="1" stroke-width="2px" fill="red" fill-opacity="1" cx="200" cy="200" rx="4" ry="4" display="none" style="position: absolute; visibility: hidden;"></ellipse><ellipse id="box_jxgBoard1P2" stroke="#0000ff" stroke-opacity="1" stroke-width="2px" fill="red" fill-opacity="1" cx="214" cy="200" rx="4" ry="4" display="none" style="position: absolute; visibility: hidden;"></ellipse><ellipse id="box_jxgBoard1P10" stroke="#0000ff" stroke-opacity="1" stroke-width="2px" fill="red" fill-opacity="1" cx="200" cy="200" rx="4" ry="4" display="none" style="position: absolute; visibility: hidden;"></ellipse><ellipse id="box_jxgBoard1P11" stroke="#0000ff" stroke-opacity="1" stroke-width="2px" fill="red" fill-opacity="1" cx="200" cy="186" rx="4" ry="4" display="none" style="position: absolute; visibility: hidden;"></ellipse></g><g></g><g><line id="box_jxgBoard1L3" x1="4" y1="200.00000000000003" x2="386" y2="200.00000000000003" marker-end="url(#box_jxgBoard1L3TriangleStart)" stroke="#666666" stroke-opacity="1" stroke-width="1px" fill-opacity="0" style="position: absolute;"></line><path id="box_jxgBoard1L3_ticks_1" stroke-linecap="round" stroke-linejoin="round" stroke="#666666" stroke-opacity="0.25" stroke-width="1" d="M 200 0 L 200 400 M 214 200 L 214 205 M 229 200 L 229 205 M 243 200 L 243 205 M 257 200 L 257 205 M 271 0 L 271 400 M 286 200 L 286 205 M 300 200 L 300 205 M 314 200 L 314 205 M 329 200 L 329 205 M 343 0 L 343 400 M 357 200 L 357 205 M 371 200 L 371 205 M 386 200 L 386 205 M 400 200 L 400 205 M 186 200 L 186 205 M 171 200 L 171 205 M 157 200 L 157 205 M 143 200 L 143 205 M 129 0 L 129 400 M 114 200 L 114 205 M 100 200 L 100 205 M 86 200 L 86 205 M 71 200 L 71 205 M 57 0 L 57 400 M 43 200 L 43 205 M 29 200 L 29 205 M 14 200 L 14 205 M 0 200 L 0 205 " style="position: absolute;"></path><line id="box_jxgBoard1L12" x1="200.00000000000003" y1="396" x2="200.00000000000003" y2="14" marker-end="url(#box_jxgBoard1L12TriangleStart)" stroke="#666666" stroke-opacity="1" stroke-width="1px" fill-opacity="0" style="position: absolute;"></line><path id="box_jxgBoard1L12_ticks_1" stroke-linecap="round" stroke-linejoin="round" stroke="#666666" stroke-opacity="0.25" stroke-width="1" d="M 0 200 L 400 200 M 200 186 L 205 186 M 200 171 L 205 171 M 200 157 L 205 157 M 200 143 L 205 143 M 0 129 L 400 129 M 200 114 L 205 114 M 200 100 L 205 100 M 200 86 L 205 86 M 200 71 L 205 71 M 0 57 L 400 57 M 200 43 L 205 43 M 200 29 L 205 29 M 200 14 L 205 14 M 200 0 L 205 0 M 200 214 L 205 214 M 200 229 L 205 229 M 200 243 L 205 243 M 200 257 L 205 257 M 0 271 L 400 271 M 200 286 L 205 286 M 200 300 L 205 300 M 200 314 L 205 314 M 200 329 L 205 329 M 0 343 L 400 343 M 200 357 L 205 357 M 200 371 L 205 371 M 200 386 L 205 386 M 200 400 L 205 400 " style="position: absolute;"></path></g><g><polygon id="box_jxgBoard1Py23" fill="#ffff00" fill-opacity="0.3" stroke="none" points="200,200 200,200 200,200 200,200" display="none" style="position: absolute; visibility: hidden;"></polygon></g><g></g><g><path id="box_jxgBoard1G24" stroke-linecap="round" stroke-linejoin="round" stroke="#0000ff" stroke-opacity="1" stroke-width="1px" fill-opacity="0" d=" M -14.285714285714306 189.1156462585034 L -13.448660714285722 189.1953656462585 L -12.611607142857167 189.2750850340136 L -11.774553571428584 189.3548044217687 L -10.9375 189.4345238095238 L -10.100446428571445 189.51424319727892 L -9.263392857142861 189.593962585034 L -8.426339285714306 189.67368197278913 L -7.589285714285722 189.75340136054422 L -6.752232142857167 189.83312074829934 L -5.915178571428584 189.91284013605443 L -5.078125 189.99255952380952 L -4.241071428571445 190.07227891156464 L -3.404017857142861 190.15199829931973 L -2.566964285714306 190.23171768707482 L -1.7299107142857224 190.31143707482994 L -0.8928571428571672 190.39115646258503 L -0.05580357142858361 190.47087585034015 L 0.78125 190.55059523809524 L 1.6183035714285552 190.63031462585033 L 2.455357142857139 190.71003401360545 L 3.292410714285694 190.78975340136054 L 4.129464285714278 190.86947278911566 L 4.966517857142833 190.94919217687075 L 5.803571428571416 191.02891156462584 L 6.640625 191.10863095238096 L 7.477678571428555 191.18835034013605 L 8.314732142857139 191.26806972789115 L 9.151785714285694 191.34778911564626 L 9.988839285714278 191.42750850340136 L 10.825892857142861 191.50722789115648 L 11.662946428571416 191.58694727891157 L 12.5 191.66666666666666 L 13.337053571428555 191.74638605442178 L 14.174107142857139 191.82610544217687 L 15.011160714285694 191.905824829932 L 15.848214285714278 191.98554421768708 L 16.68526785714286 192.06526360544217 L 17.522321428571416 192.1449829931973 L 18.359375 192.22470238095238 L 19.196428571428555 192.30442176870747 L 20.03348214285714 192.3841411564626 L 20.870535714285694 192.46386054421768 L 21.707589285714278 192.5435799319728 L 22.54464285714286 192.6232993197279 L 23.381696428571416 192.70301870748298 L 24.21875 192.7827380952381 L 25.055803571428555 192.8624574829932 L 25.89285714285714 192.9421768707483 L 26.729910714285694 193.0218962585034 L 27.566964285714278 193.1016156462585 L 28.40401785714286 193.1813350340136 L 29.241071428571416 193.2610544217687 L 30.078125 193.3407738095238 L 30.915178571428555 193.42049319727892 L 31.75223214285714 193.500212585034 L 32.589285714285694 193.57993197278913 L 33.42633928571428 193.65965136054422 L 34.26339285714286 193.7393707482993 L 35.100446428571416 193.81909013605443 L 35.9375 193.89880952380952 L 36.774553571428555 193.97852891156464 L 37.61160714285714 194.05824829931973 L 38.448660714285694 194.13796768707482 L 39.28571428571428 194.21768707482994 L 40.12276785714286 194.29740646258503 L 40.959821428571416 194.37712585034015 L 41.796875 194.45684523809524 L 42.633928571428555 194.53656462585033 L 43.47098214285714 194.61628401360545 L 44.308035714285694 194.69600340136054 L 45.14508928571428 194.77572278911566 L 45.98214285714286 194.85544217687075 L 46.819196428571416 194.93516156462584 L 47.65625 195.01488095238096 L 48.493303571428555 195.09460034013605 L 49.33035714285714 195.17431972789115 L 50.167410714285694 195.25403911564626 L 51.00446428571428 195.33375850340136 L 51.84151785714286 195.41347789115648 L 52.678571428571416 195.49319727891157 L 53.515625 195.57291666666666 L 54.352678571428555 195.65263605442178 L 55.18973214285714 195.73235544217687 L 56.026785714285694 195.812074829932 L 56.86383928571428 195.89179421768708 L 57.70089285714286 195.97151360544217 L 58.537946428571416 196.0512329931973 L 59.375 196.13095238095238 L 60.212053571428555 196.21067176870747 L 61.04910714285714 196.2903911564626 L 61.886160714285694 196.37011054421768 L 62.72321428571428 196.4498299319728 L 63.56026785714286 196.5295493197279 L 64.39732142857142 196.60926870748298 L 65.234375 196.6889880952381 L 66.07142857142856 196.7687074829932 L 66.90848214285714 196.8484268707483 L 67.7455357142857 196.9281462585034 L 68.58258928571428 197.0078656462585 L 69.41964285714286 197.0875850340136 L 70.25669642857142 197.1673044217687 L 71.09375 197.2470238095238 L 71.93080357142856 197.32674319727892 L 72.76785714285714 197.406462585034 L 73.60491071428571 197.48618197278913 L 74.44196428571428 197.56590136054422 L 75.27901785714285 197.6456207482993 L 76.11607142857142 197.72534013605443 L 76.953125 197.80505952380952 L 77.79017857142857 197.88477891156464 L 78.62723214285714 197.96449829931973 L 79.46428571428571 198.04421768707482 L 80.30133928571428 198.12393707482994 L 81.13839285714285 198.20365646258503 L 81.97544642857142 198.28337585034015 L 82.8125 198.36309523809524 L 83.64955357142857 198.44281462585033 L 84.48660714285714 198.52253401360545 L 85.32366071428571 198.60225340136054 L 86.16071428571428 198.68197278911566 L 86.99776785714285 198.76169217687075 L 87.83482142857142 198.84141156462584 L 88.671875 198.92113095238096 L 89.50892857142857 199.00085034013605 L 90.34598214285714 199.08056972789115 L 91.18303571428571 199.16028911564626 L 92.02008928571428 199.24000850340136 L 92.85714285714285 199.31972789115648 L 93.69419642857142 199.39944727891157 L 94.53125 199.47916666666666 L 95.36830357142857 199.55888605442178 L 96.20535714285714 199.63860544217687 L 97.04241071428571 199.718324829932 L 97.87946428571428 199.79804421768708 L 98.71651785714285 199.87776360544217 L 99.55357142857142 199.9574829931973 L 100.390625 200.03720238095238 L 101.22767857142857 200.11692176870747 L 102.06473214285714 200.1966411564626 L 102.90178571428571 200.27636054421768 L 103.73883928571428 200.3560799319728 L 104.57589285714285 200.4357993197279 L 105.41294642857143 200.51551870748298 L 106.25 200.5952380952381 L 107.08705357142857 200.6749574829932 L 107.92410714285714 200.7546768707483 L 108.76116071428571 200.8343962585034 L 109.59821428571428 200.9141156462585 L 110.43526785714285 200.9938350340136 L 111.27232142857143 201.0735544217687 L 112.109375 201.1532738095238 L 112.94642857142857 201.23299319727892 L 113.78348214285714 201.312712585034 L 114.62053571428571 201.39243197278913 L 115.45758928571428 201.47215136054422 L 116.29464285714285 201.5518707482993 L 117.13169642857143 201.63159013605443 L 117.96875 201.71130952380952 L 118.80580357142857 201.79102891156464 L 119.64285714285714 201.87074829931973 L 120.47991071428571 201.95046768707482 L 121.31696428571428 202.03018707482994 L 122.15401785714285 202.10990646258503 L 122.99107142857143 202.18962585034015 L 123.828125 202.26934523809524 L 124.66517857142857 202.34906462585033 L 125.50223214285714 202.42878401360545 L 126.33928571428571 202.50850340136054 L 127.17633928571428 202.58822278911563 L 128.01339285714283 202.66794217687075 L 128.85044642857144 202.74766156462584 L 129.6875 202.82738095238096 L 130.52455357142856 202.90710034013605 L 131.36160714285714 202.98681972789115 L 132.19866071428572 203.06653911564626 L 133.03571428571428 203.14625850340136 L 133.87276785714283 203.22597789115648 L 134.70982142857144 203.30569727891157 L 135.546875 203.38541666666666 L 136.38392857142856 203.46513605442178 L 137.22098214285714 203.54485544217687 L 138.05803571428572 203.624574829932 L 138.89508928571428 203.70429421768708 L 139.73214285714286 203.78401360544217 L 140.56919642857142 203.8637329931973 L 141.40625 203.94345238095238 L 142.24330357142856 204.02317176870747 L 143.08035714285714 204.1028911564626 L 143.91741071428572 204.18261054421768 L 144.75446428571428 204.2623299319728 L 145.59151785714286 204.3420493197279 L 146.42857142857142 204.42176870748298 L 147.265625 204.5014880952381 L 148.10267857142856 204.5812074829932 L 148.93973214285714 204.6609268707483 L 149.77678571428572 204.7406462585034 L 150.61383928571428 204.8203656462585 L 151.45089285714286 204.9000850340136 L 152.28794642857142 204.9798044217687 L 153.125 205.0595238095238 L 153.96205357142856 205.13924319727892 L 154.79910714285714 205.218962585034 L 155.63616071428572 205.29868197278913 L 156.47321428571428 205.37840136054422 L 157.31026785714286 205.4581207482993 L 158.14732142857142 205.53784013605443 L 158.984375 205.61755952380952 L 159.82142857142856 205.69727891156464 L 160.65848214285714 205.77699829931973 L 161.49553571428572 205.85671768707482 L 162.33258928571428 205.93643707482994 L 163.16964285714286 206.01615646258503 L 164.00669642857142 206.09587585034015 L 164.84375 206.17559523809524 L 165.68080357142856 206.25531462585033 L 166.51785714285714 206.33503401360545 L 167.35491071428572 206.41475340136054 L 168.19196428571428 206.49447278911563 L 169.02901785714286 206.57419217687075 L 169.86607142857142 206.65391156462584 L 170.703125 206.73363095238096 L 171.54017857142856 206.81335034013605 L 172.37723214285714 206.89306972789115 L 173.21428571428572 206.97278911564626 L 174.05133928571428 207.05250850340136 L 174.88839285714286 207.13222789115648 L 175.72544642857142 207.21194727891157 L 176.5625 207.29166666666666 L 177.39955357142856 207.37138605442178 L 178.23660714285714 207.45110544217687 L 179.07366071428572 207.530824829932 L 179.91071428571428 207.61054421768708 L 180.74776785714286 207.69026360544217 L 181.58482142857142 207.7699829931973 L 182.421875 207.84970238095238 L 183.25892857142856 207.92942176870747 L 184.09598214285714 208.0091411564626 L 184.93303571428572 208.08886054421768 L 185.77008928571428 208.1685799319728 L 186.60714285714286 208.2482993197279 L 187.44419642857142 208.32801870748298 L 188.28125 208.4077380952381 L 189.11830357142858 208.4874574829932 L 189.95535714285714 208.5671768707483 L 190.79241071428572 208.6468962585034 L 191.62946428571428 208.7266156462585 L 192.46651785714286 208.8063350340136 L 193.30357142857142 208.8860544217687 L 194.140625 208.9657738095238 L 194.97767857142858 209.04549319727892 L 195.81473214285714 209.125212585034 L 196.65178571428572 209.20493197278913 L 197.48883928571428 209.28465136054422 L 198.32589285714286 209.3643707482993 L 199.16294642857142 209.44409013605443 L 200 209.52380952380952 L 200.83705357142858 209.60352891156464 L 201.67410714285714 209.68324829931973 L 202.51116071428572 209.76296768707482 L 203.34821428571428 209.84268707482994 L 204.18526785714286 209.92240646258503 L 205.02232142857142 210.00212585034012 L 205.859375 210.08184523809524 L 206.69642857142858 210.16156462585033 L 207.53348214285714 210.24128401360545 L 208.37053571428572 210.32100340136054 L 209.20758928571428 210.40072278911566 L 210.04464285714286 210.48044217687075 L 210.88169642857142 210.56016156462584 L 211.71875 210.63988095238096 L 212.55580357142858 210.71960034013605 L 213.39285714285714 210.79931972789115 L 214.22991071428572 210.87903911564626 L 215.06696428571428 210.95875850340136 L 215.90401785714286 211.03847789115648 L 216.74107142857144 211.11819727891157 L 217.578125 211.19791666666666 L 218.41517857142858 211.27763605442178 L 219.25223214285714 211.35735544217687 L 220.08928571428572 211.437074829932 L 220.92633928571428 211.51679421768708 L 221.76339285714286 211.59651360544217 L 222.60044642857144 211.6762329931973 L 223.4375 211.75595238095238 L 224.27455357142858 211.83567176870747 L 225.11160714285714 211.9153911564626 L 225.94866071428572 211.99511054421768 L 226.78571428571428 212.0748299319728 L 227.62276785714286 212.1545493197279 L 228.45982142857144 212.23426870748298 L 229.296875 212.3139880952381 L 230.13392857142858 212.3937074829932 L 230.97098214285714 212.4734268707483 L 231.80803571428572 212.5531462585034 L 232.64508928571428 212.6328656462585 L 233.48214285714286 212.7125850340136 L 234.31919642857144 212.7923044217687 L 235.15625 212.8720238095238 L 235.99330357142858 212.95174319727892 L 236.83035714285714 213.031462585034 L 237.66741071428572 213.11118197278913 L 238.50446428571428 213.19090136054422 L 239.34151785714286 213.27062074829934 L 240.17857142857144 213.35034013605443 L 241.015625 213.43005952380952 L 241.85267857142858 213.50977891156464 L 242.68973214285714 213.58949829931973 L 243.52678571428572 213.66921768707482 L 244.36383928571428 213.74893707482994 L 245.20089285714286 213.82865646258503 L 246.03794642857144 213.90837585034012 L 246.875 213.98809523809524 L 247.71205357142858 214.06781462585033 L 248.54910714285714 214.14753401360545 L 249.38616071428572 214.22725340136054 L 250.22321428571428 214.30697278911563 L 251.06026785714286 214.38669217687075 L 251.89732142857144 214.46641156462584 L 252.734375 214.54613095238096 L 253.57142857142858 214.62585034013605 L 254.40848214285714 214.70556972789115 L 255.24553571428572 214.78528911564626 L 256.0825892857143 214.86500850340136 L 256.9196428571429 214.94472789115648 L 257.75669642857144 215.02444727891157 L 258.59375 215.10416666666666 L 259.43080357142856 215.18388605442178 L 260.26785714285717 215.26360544217687 L 261.1049107142857 215.343324829932 L 261.9419642857143 215.42304421768708 L 262.7790178571429 215.50276360544217 L 263.61607142857144 215.5824829931973 L 264.453125 215.66220238095238 L 265.29017857142856 215.74192176870747 L 266.12723214285717 215.8216411564626 L 266.9642857142857 215.90136054421768 L 267.8013392857143 215.9810799319728 L 268.6383928571429 216.0607993197279 L 269.47544642857144 216.14051870748298 L 270.3125 216.2202380952381 L 271.14955357142856 216.2999574829932 L 271.98660714285717 216.3796768707483 L 272.8236607142857 216.4593962585034 L 273.6607142857143 216.5391156462585 L 274.4977678571429 216.6188350340136 L 275.33482142857144 216.6985544217687 L 276.171875 216.7782738095238 L 277.00892857142856 216.85799319727892 L 277.84598214285717 216.937712585034 L 278.6830357142857 217.01743197278913 L 279.5200892857143 217.09715136054422 L 280.3571428571429 217.1768707482993 L 281.19419642857144 217.25659013605443 L 282.03125 217.33630952380952 L 282.86830357142856 217.41602891156464 L 283.70535714285717 217.49574829931973 L 284.5424107142857 217.57546768707482 L 285.3794642857143 217.65518707482994 L 286.2165178571429 217.73490646258503 L 287.05357142857144 217.81462585034012 L 287.890625 217.89434523809524 L 288.72767857142856 217.97406462585033 L 289.56473214285717 218.05378401360545 L 290.4017857142857 218.13350340136054 L 291.2388392857143 218.21322278911563 L 292.0758928571429 218.29294217687075 L 292.91294642857144 218.37266156462584 L 293.75 218.45238095238096 L 294.58705357142856 218.53210034013605 L 295.42410714285717 218.61181972789115 L 296.2611607142857 218.69153911564626 L 297.0982142857143 218.77125850340136 L 297.9352678571429 218.85097789115648 L 298.77232142857144 218.93069727891157 L 299.609375 219.01041666666666 L 300.44642857142856 219.09013605442178 L 301.28348214285717 219.16985544217687 L 302.1205357142857 219.249574829932 L 302.9575892857143 219.32929421768708 L 303.7946428571429 219.40901360544217 L 304.63169642857144 219.4887329931973 L 305.46875 219.56845238095238 L 306.30580357142856 219.64817176870747 L 307.14285714285717 219.7278911564626 L 307.9799107142857 219.80761054421768 L 308.8169642857143 219.8873299319728 L 309.6540178571429 219.9670493197279 L 310.49107142857144 220.04676870748298 L 311.328125 220.1264880952381 L 312.16517857142856 220.2062074829932 L 313.00223214285717 220.2859268707483 L 313.8392857142857 220.3656462585034 L 314.6763392857143 220.4453656462585 L 315.5133928571429 220.5250850340136 L 316.35044642857144 220.6048044217687 L 317.1875 220.6845238095238 L 318.02455357142856 220.76424319727892 L 318.86160714285717 220.843962585034 L 319.6986607142857 220.92368197278913 L 320.5357142857143 221.00340136054422 L 321.3727678571429 221.08312074829934 L 322.20982142857144 221.16284013605443 L 323.046875 221.24255952380952 L 323.88392857142856 221.32227891156464 L 324.72098214285717 221.40199829931973 L 325.5580357142857 221.48171768707482 L 326.3950892857143 221.56143707482994 L 327.2321428571429 221.64115646258503 L 328.06919642857144 221.72087585034015 L 328.90625 221.80059523809524 L 329.74330357142856 221.88031462585033 L 330.5803571428571 221.96003401360545 L 331.4174107142857 222.03975340136054 L 332.25446428571433 222.11947278911566 L 333.0915178571429 222.19919217687075 L 333.92857142857144 222.27891156462584 L 334.765625 222.35863095238096 L 335.60267857142856 222.43835034013605 L 336.4397321428571 222.51806972789115 L 337.2767857142857 222.59778911564626 L 338.11383928571433 222.67750850340136 L 338.9508928571429 222.75722789115648 L 339.78794642857144 222.83694727891157 L 340.625 222.91666666666666 L 341.46205357142856 222.99638605442178 L 342.2991071428571 223.07610544217687 L 343.1361607142857 223.155824829932 L 343.97321428571433 223.23554421768708 L 344.8102678571429 223.31526360544217 L 345.64732142857144 223.3949829931973 L 346.484375 223.47470238095238 L 347.32142857142856 223.55442176870747 L 348.1584821428571 223.6341411564626 L 348.9955357142857 223.71386054421768 L 349.83258928571433 223.7935799319728 L 350.6696428571429 223.8732993197279 L 351.50669642857144 223.95301870748298 L 352.34375 224.0327380952381 L 353.18080357142856 224.1124574829932 L 354.0178571428571 224.1921768707483 L 354.8549107142857 224.2718962585034 L 355.69196428571433 224.3516156462585 L 356.5290178571429 224.4313350340136 L 357.36607142857144 224.5110544217687 L 358.203125 224.5907738095238 L 359.04017857142856 224.67049319727892 L 359.8772321428571 224.750212585034 L 360.7142857142857 224.82993197278913 L 361.55133928571433 224.90965136054422 L 362.3883928571429 224.9893707482993 L 363.22544642857144 225.06909013605443 L 364.0625 225.14880952380952 L 364.89955357142856 225.22852891156464 L 365.7366071428571 225.30824829931973 L 366.5736607142857 225.38796768707482 L 367.41071428571433 225.46768707482994 L 368.2477678571429 225.54740646258503 L 369.08482142857144 225.62712585034015 L 369.921875 225.70684523809524 L 370.75892857142856 225.78656462585033 L 371.5959821428571 225.86628401360545 L 372.4330357142857 225.94600340136054 L 373.27008928571433 226.02572278911566 L 374.1071428571429 226.10544217687075 L 374.94419642857144 226.18516156462584 L 375.78125 226.26488095238096 L 376.61830357142856 226.34460034013605 L 377.4553571428571 226.42431972789115 L 378.2924107142857 226.50403911564626 L 379.12946428571433 226.58375850340136 L 379.9665178571429 226.66347789115648 L 380.80357142857144 226.74319727891157 L 381.640625 226.82291666666666 L 382.47767857142856 226.90263605442178 L 383.3147321428571 226.98235544217687 L 384.1517857142857 227.062074829932 L 384.98883928571433 227.14179421768708 L 385.8258928571429 227.22151360544217 L 386.66294642857144 227.3012329931973 L 387.5 227.38095238095238 L 388.33705357142856 227.46067176870747 L 389.1741071428571 227.5403911564626 L 390.0111607142857 227.62011054421768 L 390.84821428571433 227.6998299319728 L 391.6852678571429 227.7795493197279 L 392.52232142857144 227.85926870748298 L 393.359375 227.9389880952381 L 394.19642857142856 228.0187074829932 L 395.03348214285717 228.0984268707483 L 395.8705357142857 228.1781462585034 L 396.70758928571433 228.2578656462585 L 397.5446428571429 228.3375850340136 L 398.38169642857144 228.4173044217687 L 399.21875 228.49702380952382 L 400.05580357142856 228.57674319727892 L 400.89285714285717 228.656462585034 L 401.7299107142857 228.73618197278913 L 402.56696428571433 228.81590136054422 L 403.4040178571429 228.8956207482993 L 404.24107142857144 228.97534013605443 L 405.078125 229.05505952380952 L 405.91517857142856 229.13477891156464 L 406.75223214285717 229.21449829931973 L 407.5892857142857 229.29421768707482 L 408.42633928571433 229.37393707482994 L 409.2633928571429 229.45365646258503 L 410.10044642857144 229.53337585034012 L 410.9375 229.61309523809524 L 411.77455357142856 229.69281462585033 L 412.61160714285717 229.77253401360545 L 413.4486607142857 229.85225340136054 L 414.28571428571433 229.93197278911566" style="position: absolute;"></path><path id="box_jxgBoard1G25" stroke-linecap="round" stroke-linejoin="round" stroke="#0000ff" stroke-opacity="1" stroke-width="1px" fill-opacity="0" d=" M 57.14285714285714 -907.1428571428571 L 66.07142857142856 -853.5714285714287 L 75 -800 L 83.92857142857142 -746.4285714285714 L 92.85714285714285 -692.8571428571429 L 101.78571428571428 -639.2857142857143 L 110.71428571428571 -585.7142857142858 L 119.64285714285714 -532.1428571428572 L 124.10714285714285 -505.3571428571429 L 124.66517857142857 -502.00892857142856 L 125.22321428571428 -498.66071428571433 L 125.78125 -495.3125 L 126.33928571428571 -491.9642857142858 L 126.89732142857143 -488.61607142857144 L 127.45535714285714 -485.2678571428572 L 128.01339285714283 -481.9196428571429 L 128.57142857142856 -478.57142857142856 L 129.12946428571428 -475.22321428571433 L 129.6875 -471.875 L 130.24553571428572 -468.5267857142858 L 130.80357142857144 -465.17857142857144 L 131.36160714285714 -461.8303571428572 L 131.91964285714283 -458.4821428571429 L 132.47767857142856 -455.13392857142856 L 133.03571428571428 -451.78571428571433 L 133.59375 -448.4375 L 134.15178571428572 -445.0892857142858 L 134.70982142857144 -441.74107142857144 L 135.26785714285714 -438.3928571428572 L 135.82589285714283 -435.0446428571429 L 136.38392857142856 -431.69642857142856 L 136.94196428571428 -428.34821428571433 L 137.5 -425 L 138.05803571428572 -421.6517857142858 L 138.61607142857142 -418.30357142857144 L 139.17410714285714 -414.9553571428572 L 139.73214285714286 -411.6071428571429 L 140.29017857142856 -408.25892857142856 L 140.84821428571428 -404.91071428571433 L 141.40625 -401.5625 L 141.96428571428572 -398.2142857142858 L 142.52232142857142 -394.86607142857144 L 143.08035714285714 -391.5178571428572 L 143.63839285714286 -388.1696428571429 L 144.19642857142856 -384.82142857142856 L 144.75446428571428 -381.47321428571433 L 145.3125 -378.125 L 145.87053571428572 -374.7767857142858 L 146.42857142857142 -371.42857142857144 L 146.98660714285714 -368.0803571428572 L 147.54464285714286 -364.7321428571429 L 148.10267857142856 -361.38392857142856 L 148.66071428571428 -358.03571428571433 L 149.21875 -354.6875 L 149.77678571428572 -351.3392857142858 L 150.33482142857142 -347.99107142857144 L 150.89285714285714 -344.6428571428572 L 151.45089285714286 -341.2946428571429 L 152.00892857142856 -337.94642857142856 L 152.56696428571428 -334.59821428571433 L 153.125 -331.25 L 153.68303571428572 -327.9017857142858 L 154.24107142857142 -324.55357142857144 L 154.79910714285714 -321.2053571428572 L 155.35714285714286 -317.8571428571429 L 155.91517857142856 -314.50892857142856 L 156.47321428571428 -311.16071428571433 L 157.03125 -307.8125 L 157.58928571428572 -304.4642857142857 L 158.14732142857142 -301.11607142857144 L 158.70535714285714 -297.76785714285717 L 159.26339285714286 -294.4196428571429 L 159.82142857142856 -291.0714285714286 L 160.37946428571428 -287.72321428571433 L 160.9375 -284.375 L 161.49553571428572 -281.0267857142857 L 162.05357142857142 -277.67857142857144 L 162.61160714285714 -274.33035714285717 L 163.16964285714286 -270.9821428571429 L 163.72767857142856 -267.6339285714286 L 164.28571428571428 -264.28571428571433 L 164.84375 -260.9375 L 165.40178571428572 -257.5892857142857 L 165.95982142857142 -254.24107142857144 L 166.51785714285714 -250.89285714285717 L 167.07589285714286 -247.5446428571429 L 167.63392857142856 -244.1964285714286 L 168.19196428571428 -240.84821428571433 L 168.75 -237.5 L 169.30803571428572 -234.15178571428572 L 169.86607142857142 -230.80357142857144 L 170.42410714285714 -227.45535714285717 L 170.98214285714286 -224.1071428571429 L 171.54017857142856 -220.7589285714286 L 172.09821428571428 -217.41071428571433 L 172.65625 -214.0625 L 173.21428571428572 -210.71428571428572 L 173.77232142857142 -207.36607142857144 L 174.33035714285714 -204.01785714285717 L 174.88839285714286 -200.6696428571429 L 175.44642857142856 -197.3214285714286 L 176.00446428571428 -193.97321428571433 L 176.5625 -190.625 L 177.12053571428572 -187.27678571428572 L 177.67857142857142 -183.92857142857144 L 178.23660714285714 -180.58035714285717 L 178.79464285714286 -177.2321428571429 L 179.35267857142856 -173.8839285714286 L 179.91071428571428 -170.53571428571428 L 180.46875 -167.1875 L 181.02678571428572 -163.83928571428572 L 181.58482142857142 -160.49107142857144 L 182.14285714285714 -157.14285714285717 L 182.70089285714286 -153.7946428571429 L 183.25892857142856 -150.4464285714286 L 183.81696428571428 -147.09821428571428 L 184.375 -143.75 L 184.93303571428572 -140.40178571428572 L 185.49107142857142 -137.05357142857144 L 186.04910714285714 -133.70535714285717 L 186.60714285714286 -130.3571428571429 L 187.16517857142858 -127.00892857142861 L 187.72321428571428 -123.66071428571428 L 188.28125 -120.3125 L 188.83928571428572 -116.96428571428572 L 189.39732142857142 -113.61607142857144 L 189.95535714285714 -110.26785714285717 L 190.51339285714286 -106.91964285714289 L 191.07142857142858 -103.57142857142861 L 191.62946428571428 -100.22321428571428 L 192.1875 -96.875 L 192.74553571428572 -93.52678571428572 L 193.30357142857142 -90.17857142857144 L 193.86160714285714 -86.83035714285717 L 194.41964285714286 -83.48214285714289 L 194.97767857142858 -80.13392857142861 L 195.53571428571428 -76.78571428571428 L 196.09375 -73.4375 L 196.65178571428572 -70.08928571428572 L 197.20982142857142 -66.74107142857144 L 197.76785714285714 -63.39285714285717 L 198.32589285714286 -60.04464285714289 L 198.88392857142858 -56.69642857142861 L 199.44196428571428 -53.348214285714306 L 200 -50 L 200.55803571428572 -46.65178571428572 L 201.11607142857142 -43.303571428571445 L 201.67410714285714 -39.95535714285717 L 202.23214285714286 -36.60714285714286 L 202.79017857142858 -33.258928571428584 L 203.34821428571428 -29.910714285714306 L 203.90625 -26.5625 L 204.46428571428572 -23.214285714285722 L 205.02232142857142 -19.866071428571445 L 205.58035714285714 -16.517857142857167 L 206.13839285714286 -13.169642857142861 L 206.69642857142858 -9.821428571428584 L 207.25446428571428 -6.473214285714306 L 207.8125 -3.125 L 208.37053571428572 0.2232142857142776 L 208.92857142857142 3.571428571428555 L 209.48660714285714 6.919642857142833 L 210.04464285714286 10.267857142857139 L 210.60267857142858 13.616071428571416 L 211.16071428571428 16.964285714285694 L 211.71875 20.3125 L 212.27678571428572 23.660714285714278 L 212.83482142857142 27.008928571428555 L 213.39285714285714 30.35714285714286 L 213.95089285714286 33.70535714285714 L 214.50892857142858 37.053571428571416 L 215.06696428571428 40.401785714285694 L 215.625 43.75 L 216.18303571428572 47.09821428571428 L 216.74107142857144 50.446428571428555 L 217.29910714285714 53.79464285714286 L 217.85714285714286 57.14285714285714 L 218.41517857142858 60.491071428571416 L 218.97321428571428 63.839285714285694 L 219.53125 67.1875 L 220.08928571428572 70.53571428571428 L 220.64732142857144 73.88392857142857 L 221.20535714285714 77.23214285714285 L 221.76339285714286 80.58035714285714 L 222.32142857142858 83.92857142857142 L 222.87946428571428 87.27678571428571 L 223.4375 90.625 L 223.99553571428572 93.97321428571428 L 224.55357142857144 97.32142857142857 L 225.11160714285714 100.66964285714285 L 225.66964285714286 104.01785714285714 L 226.22767857142858 107.36607142857143 L 226.78571428571428 110.71428571428571 L 227.34375 114.0625 L 227.90178571428572 117.41071428571428 L 228.45982142857144 120.75892857142857 L 229.01785714285714 124.10714285714285 L 229.57589285714286 127.45535714285714 L 230.13392857142858 130.80357142857144 L 230.69196428571428 134.15178571428572 L 231.25 137.5 L 231.80803571428572 140.84821428571428 L 232.36607142857144 144.19642857142856 L 232.92410714285714 147.54464285714286 L 233.48214285714286 150.89285714285714 L 234.04017857142858 154.24107142857142 L 234.59821428571428 157.58928571428572 L 235.15625 160.9375 L 235.71428571428572 164.28571428571428 L 236.27232142857144 167.63392857142856 L 236.83035714285714 170.98214285714286 L 237.38839285714286 174.33035714285714 L 237.94642857142858 177.67857142857142 L 238.50446428571428 181.02678571428572 L 239.0625 184.375 L 239.62053571428572 187.72321428571428 L 240.17857142857144 191.07142857142858 L 240.73660714285714 194.41964285714286 L 241.29464285714286 197.76785714285714 L 241.85267857142858 201.11607142857142 L 242.41071428571428 204.46428571428572 L 242.96875 207.8125 L 243.52678571428572 211.16071428571428 L 244.08482142857144 214.50892857142858 L 244.64285714285714 217.85714285714286 L 245.20089285714286 221.20535714285714 L 245.75892857142858 224.55357142857144 L 246.31696428571428 227.90178571428572 L 246.875 231.25 L 247.43303571428572 234.59821428571428 L 247.99107142857144 237.94642857142858 L 248.54910714285714 241.29464285714286 L 249.10714285714286 244.64285714285714 L 249.66517857142858 247.99107142857144 L 250.22321428571428 251.33928571428572 L 250.78125 254.6875 L 251.33928571428572 258.0357142857143 L 251.89732142857144 261.38392857142856 L 252.45535714285714 264.7321428571429 L 253.01339285714286 268.08035714285717 L 253.57142857142858 271.42857142857144 L 254.12946428571428 274.7767857142857 L 254.6875 278.125 L 255.24553571428572 281.4732142857143 L 255.80357142857144 284.82142857142856 L 256.36160714285717 288.1696428571429 L 256.9196428571429 291.51785714285717 L 257.47767857142856 294.86607142857144 L 258.0357142857143 298.2142857142857 L 258.59375 301.5625 L 259.1517857142857 304.9107142857143 L 259.70982142857144 308.25892857142856 L 260.26785714285717 311.6071428571429 L 260.8258928571429 314.95535714285717 L 261.38392857142856 318.30357142857144 L 261.9419642857143 321.6517857142857 L 262.5 325 L 263.0580357142857 328.34821428571433 L 263.61607142857144 331.69642857142856 L 264.17410714285717 335.0446428571429 L 264.7321428571429 338.3928571428571 L 265.29017857142856 341.74107142857144 L 265.8482142857143 345.0892857142857 L 266.40625 348.4375 L 266.9642857142857 351.78571428571433 L 267.52232142857144 355.13392857142856 L 268.08035714285717 358.4821428571429 L 268.6383928571429 361.8303571428571 L 269.19642857142856 365.17857142857144 L 269.7544642857143 368.5267857142857 L 270.3125 371.875 L 270.8705357142857 375.22321428571433 L 271.42857142857144 378.57142857142856 L 271.98660714285717 381.9196428571429 L 272.5446428571429 385.2678571428571 L 273.10267857142856 388.61607142857144 L 273.6607142857143 391.9642857142857 L 274.21875 395.3125 L 274.7767857142857 398.66071428571433 L 275.33482142857144 402.00892857142856 L 275.89285714285717 405.3571428571429 L 276.4508928571429 408.70535714285717 L 277.00892857142856 412.05357142857144 L 277.5669642857143 415.4017857142857 L 278.125 418.75 L 278.6830357142857 422.09821428571433 L 279.24107142857144 425.44642857142856 L 279.79910714285717 428.7946428571429 L 280.3571428571429 432.14285714285717 L 280.91517857142856 435.49107142857144 L 281.4732142857143 438.8392857142857 L 282.03125 442.1875 L 282.5892857142857 445.53571428571433 L 283.14732142857144 448.88392857142856 L 283.70535714285717 452.2321428571429 L 284.2633928571429 455.58035714285717 L 284.82142857142856 458.92857142857144 L 285.3794642857143 462.2767857142857 L 285.9375 465.625 L 286.4955357142857 468.9732142857143 L 287.05357142857144 472.3214285714286 L 287.61160714285717 475.6696428571429 L 288.1696428571429 479.01785714285717 L 288.72767857142856 482.36607142857144 L 289.2857142857143 485.7142857142857 L 289.84375 489.0625 L 290.4017857142857 492.4107142857143 L 290.95982142857144 495.7589285714286 L 291.51785714285717 499.1071428571429 L 292.0758928571429 502.45535714285717 L 292.63392857142856 505.80357142857144 L 293.1919642857143 509.1517857142857 L 293.75 512.5 L 294.3080357142857 515.8482142857142 L 294.86607142857144 519.1964285714287 L 295.42410714285717 522.5446428571429 L 295.9821428571429 525.8928571428571 L 296.54017857142856 529.2410714285714 L 297.0982142857143 532.5892857142858 L 297.65625 535.9375 L 298.2142857142857 539.2857142857142 L 298.77232142857144 542.6339285714287 L 299.33035714285717 545.9821428571429 L 299.8883928571429 549.3303571428571 L 300.44642857142856 552.6785714285714 L 301.0044642857143 556.0267857142858 L 301.5625 559.375 L 302.1205357142857 562.7232142857142 L 302.67857142857144 566.0714285714287 L 303.23660714285717 569.4196428571429 L 303.7946428571429 572.7678571428571 L 304.35267857142856 576.1160714285714 L 304.9107142857143 579.4642857142858 L 305.46875 582.8125 L 306.0267857142857 586.1607142857143 L 306.58482142857144 589.5089285714287 L 307.14285714285717 592.8571428571429 L 307.7008928571429 596.2053571428571 L 308.25892857142856 599.5535714285714 L 308.8169642857143 602.9017857142858 L 309.375 606.25 L 309.9330357142857 609.5982142857143 L 310.49107142857144 612.9464285714287 L 311.04910714285717 616.2946428571429 L 311.6071428571429 619.6428571428571 L 312.16517857142856 622.9910714285714 L 312.7232142857143 626.3392857142858 L 313.28125 629.6875 L 313.8392857142857 633.0357142857143 L 314.39732142857144 636.3839285714287 L 314.95535714285717 639.7321428571429 L 315.5133928571429 643.0803571428571 L 316.07142857142856 646.4285714285714 L 316.6294642857143 649.7767857142858 L 317.1875 653.125 L 317.7455357142857 656.4732142857143 L 318.30357142857144 659.8214285714287 L 318.86160714285717 663.1696428571429 L 319.4196428571429 666.5178571428571 L 319.97767857142856 669.8660714285714 L 320.5357142857143 673.2142857142858 L 321.09375 676.5625 L 321.6517857142857 679.9107142857143 L 322.20982142857144 683.2589285714287 L 322.76785714285717 686.6071428571429 L 323.3258928571429 689.9553571428571 L 323.88392857142856 693.3035714285714 L 324.4419642857143 696.6517857142858 L 325 700 L 325.5580357142857 703.3482142857143 L 326.11607142857144 706.6964285714287 L 326.67410714285717 710.0446428571429 L 327.2321428571429 713.3928571428572 L 327.79017857142856 716.7410714285714 L 328.34821428571433 720.0892857142858 L 328.90625 723.4375 L 329.4642857142857 726.7857142857143 L 330.02232142857144 730.1339285714286 L 330.5803571428571 733.4821428571429 L 331.1383928571429 736.8303571428572 L 331.69642857142856 740.1785714285714 L 332.25446428571433 743.5267857142858 L 332.8125 746.875 L 333.3705357142857 750.2232142857143 L 333.92857142857144 753.5714285714286 L 334.4866071428571 756.9196428571429 L 335.0446428571429 760.2678571428572 L 335.60267857142856 763.6160714285714 L 336.16071428571433 766.9642857142858 L 336.71875 770.3125 L 337.2767857142857 773.6607142857143 L 337.83482142857144 777.0089285714286 L 338.3928571428571 780.3571428571429 L 338.9508928571429 783.7053571428572 L 339.50892857142856 787.0535714285714 L 340.06696428571433 790.4017857142858 L 340.625 793.75 L 341.1830357142857 797.0982142857143 L 341.74107142857144 800.4464285714286 L 342.2991071428571 803.7946428571429 L 342.8571428571429 807.1428571428572" style="position: absolute;"></path></g><g></g><g></g><g></g><g><foreignObject x="0" y="0" width="100%" height="100%"></foreignObject><text id="box_jxgBoard1L3_ticks_11Label1" class="JXGtext" NS1:space="preserve" fill="black" fill-opacity="1" x="204px" text-anchor="start" y="209px" dominant-baseline="middle" style="position: absolute; font-size: 12px;">0</text><text id="box_jxgBoard1L3_ticks_16Label2" class="JXGtext" NS2:space="preserve" fill="black" fill-opacity="1" x="275.42857142857144px" text-anchor="start" y="209px" dominant-baseline="middle" style="position: absolute; font-size: 12px;">5</text><text id="box_jxgBoard1L3_ticks_111Label3" class="JXGtext" NS3:space="preserve" fill="black" fill-opacity="1" x="346.8571428571429px" text-anchor="start" y="209px" dominant-baseline="middle" style="position: absolute; font-size: 12px;">10</text><text id="box_jxgBoard1L3_ticks_120Label4" class="JXGtext" NS4:space="preserve" fill="black" fill-opacity="1" x="132.57142857142856px" text-anchor="start" y="209px" dominant-baseline="middle" style="position: absolute; font-size: 12px;">−5</text><text id="box_jxgBoard1L3_ticks_125Label5" class="JXGtext" NS5:space="preserve" fill="black" fill-opacity="1" x="61.14285714285714px" text-anchor="start" y="209px" dominant-baseline="middle" style="position: absolute; font-size: 12px;">−10</text><text id="box_jxgBoard1L12_ticks_11Label1" class="JXGtext" NS6:space="preserve" fill="black" fill-opacity="1" x="204px" text-anchor="start" y="209px" dominant-baseline="middle" style="position: absolute; font-size: 12px;">0</text><text id="box_jxgBoard1L12_ticks_16Label2" class="JXGtext" NS7:space="preserve" fill="black" fill-opacity="1" x="204px" text-anchor="start" y="137.57142857142856px" dominant-baseline="middle" style="position: absolute; font-size: 12px;">5</text><text id="box_jxgBoard1L12_ticks_111Label3" class="JXGtext" NS8:space="preserve" fill="black" fill-opacity="1" x="204px" text-anchor="start" y="66.14285714285714px" dominant-baseline="middle" style="position: absolute; font-size: 12px;">10</text><text id="box_jxgBoard1L12_ticks_120Label4" class="JXGtext" NS9:space="preserve" fill="black" fill-opacity="1" x="204px" text-anchor="start" y="280.42857142857144px" dominant-baseline="middle" style="position: absolute; font-size: 12px;">−5</text><text id="box_jxgBoard1L12_ticks_125Label5" class="JXGtext" NS10:space="preserve" fill="black" fill-opacity="1" x="204px" text-anchor="start" y="351.8571428571429px" dominant-baseline="middle" style="position: absolute; font-size: 12px;">−10</text><ellipse id="box_jxgBoard1P19" stroke="#ff0000" stroke-opacity="1" stroke-width="2px" fill="#ff0000" fill-opacity="1" cx="200" cy="200" rx="4" ry="4" display="none" style="position: absolute; visibility: hidden;"></ellipse><ellipse id="box_jxgBoard1P20" stroke="#ff0000" stroke-opacity="1" stroke-width="2px" fill="#ff0000" fill-opacity="1" cx="200" cy="200" rx="4" ry="4" display="none" style="position: absolute; visibility: hidden;"></ellipse><ellipse id="box_jxgBoard1P21" stroke="#ff0000" stroke-opacity="1" stroke-width="2px" fill="#ff0000" fill-opacity="1" cx="200" cy="200" rx="4" ry="4" display="none" style="position: absolute; visibility: hidden;"></ellipse><ellipse id="box_jxgBoard1P22" stroke="#ff0000" stroke-opacity="1" stroke-width="2px" fill="#ff0000" fill-opacity="1" cx="200" cy="200" rx="4" ry="4" display="none" style="position: absolute; visibility: hidden;"></ellipse></g><g></g><g></g><g></g><g></g><g></g><g></g><g></g><g></g><g></g><g></g>
</svg>
<p>Vamos a reducir la variable <span class="math">\(y\)</span>. Para ello multiplicamos la primera ecuación por <span class="math">\(\frac{2}{5}\)</span>, y la segunda ecuación por <span class="math">\(-3\)</span>, obteniendo</p>
<p><span class="math">\[\left\{\begin{aligned}
\frac{2}{7} x + 3 y &= -2 \\
-\frac{12}{5} x + \frac{2}{5} y &= 7
\end{aligned}\right.
\quad \Rightarrow \quad
\left\{\begin{aligned}
\frac{2}{5} \Bigg( \frac{2}{7} x + 3 y &= -2 \Bigg) \\
-3 \Bigg( -\frac{12}{5} x + \frac{2}{5} y &= 7 \Bigg)
\end{aligned}\right.
\quad \Rightarrow \quad
\left\{\begin{aligned}
\frac{4}{35} x + \frac{6}{5} y &= -\frac{4}{5} \\
\frac{36}{5} x - \frac{6}{5} y &= -21
\end{aligned}\right.\]</span></p>
<p>Si sumamos las dos últimas ecuaciones obtenemos una nueva ecuación en la que no aparece la variable <span class="math">\(y\)</span> ya que los coeficientes son opuestos y se cancelan,</p>
<p><span class="math">\[\begin{aligned}
\frac{4}{35} x + \frac{6}{5} y + \frac{36}{5} x - \frac{6}{5} y &= -\frac{4}{5} -21, \\
\left( \frac{4}{35} + \frac{36}{5} \right) x + \left( \frac{6}{5} - \frac{6}{5} \right) y &= -\frac{4}{5} -21, \\
\frac{256}{35} x &= -\frac{109}{5}, \\
x &= -\frac{109}{5} \cdot \frac{35}{256} = -\frac{763}{256}.\end{aligned}\]</span></p>
<p>Este valor de <span class="math">\(x\)</span> se sustituye en cualquiera de las ecuaciones iniciales para calcular el valor de <span class="math">\(y\)</span>,</p>
<p><span class="math">\[\begin{aligned}
\frac{2}{7} x + 3 y &= -2, \\
\frac{2}{7} \left( -\frac{763}{256} \right) + 3 y &= -2, \\
-\frac{109}{128} + 3y &= -2, \\
3y &= -2 + \frac{109}{128} = -\frac{147}{128}, \\
y &= -\frac{147}{128} \cdot \frac{1}{3} = - \frac{49}{128}.\end{aligned}\]</span></p>
<p>Así obtenemos la única solución de este sistema:</p>
<p><span class="math">\[x = -\frac{763}{256}, \qquad y = -\frac{49}{128}.\]</span></p>
<article>
<header>
<h3>Ejercicio</h3>
<p>Resuelve el siguiente sistema de ecuaciones:</p>
</header>
<p><span class="math">\[\left\{\begin{aligned}
-\frac{3}{5} x + \frac{2}{5} y &= -\frac{3}{2}, \\
\frac{2}{5} x - \frac{1}{3} y &= \frac{6}{5}.
\end{aligned}\right.\]</span>
<button id="e1-1" class="button" onclick="show2('e1-1');">Solución</button></p>
<div id="sol-e1-1" style="display:none;">
\(x=\dfrac{1}2,\, y=-3 \).
</div>
</article>
</section>
<section>
<header>
<h1 id="tres-ecuaciones-con-tres-incógnitas">Tres ecuaciones con tres incógnitas</h1>
</header>
<h2 id="método-de-gauss">Método de Gauss</h2>
<p>Vamos a dar un procedimiento clásico para resolver sistemas de ecuaciones lineales con tres ecuaciones y tres incógnitas</p>
<p><span class="math">\[\left\{\begin{aligned}
a_1 x + b_1 y + c_1 z &= d_1, \\
a_2 x + b_2 y + c_2 z &= d_2, \\
a_3 x + b_3 y + c_3 z &= d_3.
\end{aligned}\right.\]</span></p>
<p>que además es fácil extender a cualquier sistema con <span class="math">\(m\)</span> ecuaciones y <span class="math">\(n\)</span> incógnitas. Este método se basa en cambiar el sistema por otro que tiene exactamente las mismas soluciones y que es más sencillo; para ello se utilizan una serie de transformaciones de entre las siguientes:</p>
<ol>
<li><p>Intercambiar la posición de dos ecuaciones.</p></li>
<li><p>Multiplicar una ecuación por un número distinto de cero.</p></li>
<li><p>Sumar a una ecuación un múltiplo de otra.</p></li>
<li><p>Eliminar la ecuación <span class="math">\(0=0\)</span>.</p></li>
</ol>
<p>Resolveremos el sistema</p>
<p><span class="math">\[\left\{\begin{aligned}
2x - y + z &= 3,\\
x + y - z &= 0, \\
x - y + z &= 2. \\
\end{aligned}\right.\]</span></p>
<p>En primer lugar vamos a intercambiar la primera y la tercera ecuación, porque vamos a utilizar el coeficiente de <span class="math">\(x\)</span> para eliminar esta incógnita de las ecuaciones segunda y tercera, así que nos conviene tener un número sencillo.</p>
<p><span class="math">\[\left\{\begin{aligned}
x + y - z &= 0, \\
x - y + z &= 2, \\
2x - y + z &=3.
\end{aligned}\right.\]</span></p>
<p>Ahora hacemos dos transformaciones: a la segunda ecuación le restamos la primera (es decir, le sumamos la primera multiplicada por <span class="math">\((-1)\)</span>) y a la tercera le restamos el doble de la primera (es decir, le sumamos la primera multiplicada por <span class="math">\(2\)</span>). El objetivo de eliminar la <span class="math">\(x\)</span> de dos ecuaciones se cumple: <span class="math">\[\left\{\begin{array}{rrrl}
x &+ y& - z &= 0, \\
&-2 y &+2 z &= 2, \\
& -3 y &+3 z &= 3.
\end{array}\right.\]</span> Ahora multiplicamos la segunda ecuación por <span class="math">\(-\frac{1}{2}\)</span> y nos queda <span class="math">\[\left\{\begin{array}{rrrl}
x &+ y& - z &= 0, \\
&y &- z &= -1, \\
& -3 y &+3 z &= 3,
\end{array}\right.\]</span> y a la tercera ecuación le sumamos <span class="math">\(3\)</span> veces la segunda <span class="math">\[\left\{\begin{array}{rrrl}
x &+ y& - z &= 0, \\
&y &- z &= -1, \\
& &0 &= 0.
\end{array}\right.\]</span> Como ha aparecido la ecuación <span class="math">\(0=0\)</span> la podemos eliminar y nos queda <span class="math">\[\left\{\begin{array}{rrrl}
x &+ y& - z &= 0, \\
&y &- z &= -1, \\
\end{array}\right.\]</span> en este sistema es fácil despejar la <span class="math">\(y\)</span> en la segunda ecuación: <span class="math">\(y=-1+z\)</span> y ahora sustituyendo <span class="math">\(y\)</span> en la primera despejamos también <span class="math">\(x\)</span> y obtenemos: <span class="math">\(x+(-1+z)-z=0\)</span> y por tanto <span class="math">\(x=1\)</span>. Como <span class="math">\(z\)</span> no tiene que cumplir ninguna condición puede tomar cualquier valor, así que es un <span><em>parámetro</em></span>. Las soluciones de este sistema son:</p>
<p><span class="math">\[\left\{\begin{array}{l}
x=1,\\
y=-1+\lambda,\\
z=\lambda,\\
\end{array}\right. \hspace{.5cm} \lambda \in \mathbb{R}.\]</span></p>
<p>Este método permite resolver cualquier sistema, o decidir que no tiene solución, cuando aparece una ecuación de la forma <span class="math">\(0=b\)</span> para un número <span class="math">\(b\)</span> disitnto de cero.</p>
<h2 id="representación-matricial-de-un-sistema-de-ecuaciones-lineales-y-determinante-de-una-matriz-3-times-3">Representación matricial de un sistema de ecuaciones lineales y determinante de una matriz <span class="math">\(3 \times 3\)</span></h2>
<p>Todo sistema de ecuaciones lineales puede representarse mediante una ecuación matricial haciendo uso del producto de matrices. Veamos cómo en el caso que nos ocupa de tres ecuaciones y tres incógnitas.</p>
<p><span class="math">\[\left\{\begin{aligned}
a_1 x + b_1 y + c_1 z &= d_1, \\
a_2 x + b_2 y + c_2 z &= d_2, \\
a_3 x + b_3 y + c_3 z &= d_3,
\end{aligned}\right. \text{ se representa como }
\begin{pmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{pmatrix}
\begin{pmatrix}
x \\ y \\ z
\end{pmatrix} =
\begin{pmatrix}
d_1 \\ d_2 \\ d_3
\end{pmatrix}.\]</span></p>
<p>La matriz <span class="math">\[\begin{pmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{pmatrix}\]</span> se llama <span><em>matriz de coeficientes del sistema</em></span> y a <span class="math">\[\begin{pmatrix}
d_1 \\ d_2 \\ d_3
\end{pmatrix}\]</span> la llamamos <span><em>columna de términos independientes</em></span>. Reuniendo toda la información del sistema tenemos la <span><em>matriz ampliada del sistema</em></span>: <span class="math">\[\begin{pmatrix}
a_1 & b_1 & c_1 &d_1\\
a_2 & b_2 & c_2 & d_2\\
a_3 & b_3 & c_3 & d_3
\end{pmatrix}.\]</span></p>
<p>Recordemos que el determinante de una matriz cuadrada <span class="math">\(3 \times 3\)</span> puede calcularse mediante la regla de Sarrus</p>
<p><span class="math">\[\begin{vmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{vmatrix} = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33},\]</span></p>
<p>que puede recordarse de forma más sencilla mediante el diagrama</p>
<img width="400px" src="img-sistemas/sarrus.svg" alt="Regla Sarrus"/>
<p>en el que sumamos los productos asociados a líneas continuas y restamos los productos asociados a líneas discontinuas.</p>
<h2 id="regla-de-cramer">Regla de Cramer</h2>
<p>Basado en el cálculo de determinantes existe un procedimiento llamado <em>Regla de Cramer</em> que puede utilizarse para resolver sistemas de ecuaciones que cumplan dos condiciones: que el número de incógnitas sea igual al de ecuaciones (para que la matriz de coeficientes sea cuadrada) y que el determinante de la matriz de coeficientes sea distinto de cero. Es poco práctico para 3 ecuaciones con 3 incógnitas, y para cuatro o más incógnitas el procedimiento se puede aplicar (si se conoce el cálculo de determinantes de dicho tamaño), pero la cantidad de operaciones necesarias para su conclusión se incrementa de forma extraordinaria. Una vez descrito el sistema de ecuaciones lineales mediante su expresión matricial, la regla de Cramer nos da un método sencillo de resolución. Dado el sistema de ecuaciones lineales</p>
<p><span class="math">\[\begin{pmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{pmatrix}
\begin{pmatrix}
x \\ y \\ z
\end{pmatrix} =
\begin{pmatrix}
d_1 \\ d_2 \\ d_3
\end{pmatrix}, \text{ con } \begin{vmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{vmatrix} \neq 0.\]</span></p>
<p>la solución al mismo es</p>
<p><span class="math">\[x = \frac{\begin{vmatrix}
{\color{red}d_1} & b_1 & c_1 \\
{\color{red}d_2} & b_2 & c_2 \\
{\color{red}d_3} & b_3 & c_3
\end{vmatrix}}{\begin{vmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{vmatrix}}, \quad y = \frac{\begin{vmatrix}
a_1 & {\color{red}d_1} & c_1 \\
a_2 & {\color{red}d_2} & c_2 \\
a_3 & {\color{red}d_3} & c_3
\end{vmatrix}}{\begin{vmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{vmatrix}}, \quad z = \frac{\begin{vmatrix}
a_1 & b_1 & {\color{red}d_1} \\
a_2 & b_2 & {\color{red}d_2} \\
a_3 & b_3 & {\color{red}d_3}
\end{vmatrix}}{\begin{vmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{vmatrix}}.\]</span></p>
<p>Vamos a resolver el sistema de ecuaciones lineales</p>
<p><span class="math">\[\left\{\begin{aligned}
\frac{1}{2} x - 2 y + 2 z &= -2, \\
- 3 x + \frac{2}{5} z &= 0, \\
3 x + \frac{3}{5} y -5 z &= \frac{3}{4}.
\end{aligned}\right.\]</span></p>
<p>En primer lugar calculamos el determinante de la matriz de coeficientes de las variables, lo que podemos hacer aplicando la regla de Sarrus</p>
<p><span class="math">\[\begin{split}
\begin{vmatrix}
\frac{1}{2} & -2 & 2 \\
-3 & 0 & \frac{2}{5} \\
3 & \frac{3}{5} & -5
\end{vmatrix} &= \frac{1}{2} \cdot 0 \cdot (-5) + (-2) \cdot \frac{2}{5} \cdot 3 + 2 \cdot (-3) \cdot \frac{3}{5} \\
&\quad - 2 \cdot 0 \cdot 3 - \frac{1}{2} \cdot \frac{2}{5} \cdot \frac{3}{5} - (-2) \cdot (-3) \cdot (-5) \\
&= 0 - \frac{12}{5} - \frac{18}{5} - 0 - \frac{6}{50} + 30 = \frac{597}{25} \neq 0.
\end{split}\]</span></p>
<p>Como el resultado es distinto de <span class="math">\(0\)</span> podemos proseguir y aplicar la Regla de Cramer para obtener los valores de <span class="math">\(x\)</span>, <span class="math">\(y\)</span> y <span class="math">\(z\)</span></p>
<p><span class="math">\[x = \frac{\begin{vmatrix}
-2 & -2 & 2 \\
0 & 0 & \frac{2}{5} \\
\frac{3}{4} & \frac{3}{5} & -5
\end{vmatrix}}{\frac{597}{25}} = -\frac{1}{199}, \quad
y = \frac{\begin{vmatrix}
\frac{1}{2} & -2 & 2 \\
-3 & 0 & \frac{2}{5} \\
3 & \frac{3}{4} & -5
\end{vmatrix}}{\frac{597}{25}} = \frac{765}{796}, \quad
z= \frac{\begin{vmatrix}
\frac{1}{2} & -2 & -2 \\
-3 & 0 & 0 \\
3 & \frac{3}{5} & \frac{3}{4}
\end{vmatrix}}{\frac{597}{25}} = -\frac{15}{398}.\]</span></p>
<article>
<header>
<h3>Ejercicio</h3>
<p>Resuelve los siguientes sistemas de ecuaciones:</p>
</header>
<ol>
<li><p><span class="math">\[\left\{\begin{aligned}
x - 2 y + 3 z &= \frac{1}{2} \\
- 2 y + \frac{3}{5} z &= \frac{3}{10} \\
2 x + \frac{2}{5} y + \frac{1}{3} z &= -\frac{11}{6}
\end{aligned}\right.\]</span>
<button id="e2-1" class="button" onclick="show2('e2-1');">Solución</button></p>
<div id="sol-e2-1" style="display:none;">
\(x=-1,\, y=0,\, z=\dfrac{1}2 \).
</div>
</li>
<li><p><span class="math">\[\left\{\begin{aligned}
y -2 z &= -4 \\
x + y -z &= 0 \\
2 x - y + z &= 3
\end{aligned}\right.\]</span>
<button id="e2-2" class="button" onclick="show2('e2-2');">Solución</button></p>
<div id="sol-e2-2" style="display:none;">
\(x=1,\, y=2,\, z=3\).
</div></li>
<li><p><span class="math">\[\left\{\begin{aligned}
x -2 y +3 z &= -6 \\
2x + y -z &= 5 \\
5 x + y +3 z &= 4
\end{aligned}\right.\]</span>
<button id="e2-3" class="button" onclick="show2('e2-3');">Solución</button></p>
<div id="sol-e2-3" style="display:none;">
\(x=1,\, y=2,\, z=-1 \).
</div></li>
<li><p><span class="math">\[\left\{\begin{aligned}
x -2 y +3 z &= -6 \\
2x + y -z &= 5 \\
3 x - y +2 z &= 2
\end{aligned}\right.\]</span>
<button id="e2-4" class="button" onclick="show2('e2-4');">Solución</button></p>
<div id="sol-e2-4" style="display:none;">
No tiene solución: si sumamos las dos primeras ecuaciones y le restamos la tercera, nos da \(0=3\), por lo que el sistema es incompatible.
</div></li>
</ol>
</article>
</section>
<div class="footnotes">
<hr />
<p style="font-size: 10pt">Esta página está basada en las transparencias de Evangelina Santos Aláez para el Curso Cero de la ETSIIT de la Universidad de Granada. Las representaciones gráficas se han realizado con <a href="http://jsxgraph.uni-bayreuth.de">JSXGraph</a></p>
</div>
<script type="text/javascript" language="javascript">
function show(str, obj){
document.getElementById(obj).innerHTML = str;
MathJax.Hub.Typeset();
}
function show2(divID) {
var sol = document.getElementById("sol-"+divID);
var div = document.getElementById(divID);
if(sol.style.display == "none"){
sol.style.display = "block";
}else{
sol.style.display = "none";
}
if(div.innerHTML == "Solución"){
div.innerHTML = "Oculta solución";
}else{
div.innerHTML = "Solución";
}
}
</script>
</body>
</html>