-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathalphabeta.pl
74 lines (53 loc) · 2.7 KB
/
alphabeta.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
% Main predicate %
% Encapsulate
alphabeta(Grid, Player, Depth, Result) :-
opposite(Player, Opposite),
% like in alphabeta but set the default first Coords that will defined the next move
allnextGrid(Grid, Player, Grids_out),
NextDepth is Depth - 1,
init_value_minOrMax(Depth, Init_minOrMax),
getScoreAlphaBeta(Grids_out, Player, Opposite, NextDepth, Init_minOrMax, Result, -inf, +inf),
!.
% main loop
alphabeta([Grid_in, FirstMinMaxCoords], MaxPlayer, MinPlayer, Depth, Result, Alpha, Beta) :-
Depth \= 0,
allnextGrid_data(Grid_in, MaxPlayer, Grids_out, FirstMinMaxCoords),
\+ length(Grids_out, 0),!, % there is still some tree to generate
NextDepth is Depth - 1,
init_value_minOrMax(Depth, Init_minOrMax),
getScoreAlphaBeta(Grids_out, MaxPlayer, MinPlayer, NextDepth, Init_minOrMax, Result, Alpha, Beta).
% no more possibility end of tree or Depth = 0
alphabeta([Grid_in, [A,I]], MaxPlayer, MinPlayer, _, [Result, [A,I]], _, _) :-
% dynamic_heuristic_evaluation(Grid_in, MaxPlayer, MinPlayer, Result) /* compute the Heuristic every time */
get_or_compute_heuristic(Grid_in, MaxPlayer, MinPlayer, Result) /* less brute force ;) */
.
% ,nl,afficheGrille(Grid_in), write(Result), write(' '),write(A), write(','), write(I),nl.
getScoreAlphaBeta([First_grid] , MaxPlayer, MinPlayer, Depth, OldRes, Result, Alpha, Beta) :-
even(Depth), !,
alphabeta(First_grid, MinPlayer, MaxPlayer, Depth, Result_current, Alpha, Beta),
my_min(OldRes, Result_current, Result).
% Result is max(OldRes, Result_current).
getScoreAlphaBeta([First_grid] , MaxPlayer, MinPlayer, Depth, OldRes, Result, Alpha, Beta) :-
alphabeta(First_grid, MinPlayer, MaxPlayer, Depth, Result_current, Alpha, Beta),
% Result is min(OldRes, Result_current).
my_max(OldRes, Result_current, Result).
getScoreAlphaBeta([First_grid|Rest_grid], MaxPlayer, MinPlayer, Depth, OldRes, RETURN, Alpha, Beta) :-
even(Depth),!,
alphabeta(First_grid, MinPlayer, MaxPlayer, Depth, Result_current, Alpha, Beta),
my_min(OldRes, Result_current, Result_tmp),
[Val , _] = Result_tmp,
( Val > Alpha ->
getScoreAlphaBeta(Rest_grid, MaxPlayer, MinPlayer, Depth, Result_tmp, RETURN, Alpha, Val)
; RETURN = Result_tmp
).
getScoreAlphaBeta([First_grid|Rest_grid], MaxPlayer, MinPlayer, Depth, OldRes, RETURN, Alpha, Beta) :-
alphabeta(First_grid, MinPlayer, MaxPlayer, Depth, Result_current, Alpha, Beta),
my_max(OldRes, Result_current, Result_tmp),
[Val , _] = Result_tmp,
( Val < Beta ->
getScoreAlphaBeta(Rest_grid, MaxPlayer, MinPlayer, Depth, Result_tmp, RETURN, Val, Beta)
; RETURN = Result_tmp
).
% grilleDeDepart(Grid),
% alphabeta(Grid, x, 4, R).
% vim:set et sw=2 ts=2 ft=prolog: