-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_agent.py
194 lines (162 loc) · 6.66 KB
/
eval_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from dagger_agent import DAggerAgent
import copy
import logging
from dataclasses import dataclass, field
from typing import Optional, Dict, Sequence
import torch
import transformers
import os
import random
import numpy as np
from lm_env import R2RBatch
from llm_api import llama_generate_api
import json
import io
from evaluation import Evaluation
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "</s>"
DEFAULT_UNK_TOKEN = "</s>"
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
maxAction: int = field(default=15)
feedback: str = field(default="sample")
name: str = field(default="test")
policy_beta: float = field(default=0.8)
lora_weights: str = field(default="")
one_shot_eval: bool = field(default=False)
@dataclass
class DataArguments:
data_path: str = field(default=None, metadata={"help": "Path to the training data."})
traj_path: str = field(default=None, metadata={"help": "Path to the traj file."})
fg_direction: bool = field(default=False, metadata={"help": "Whether to use fg_direction."})
fg_feature: str = field(default="", metadata={"help": "which feature to use."})
history_first: bool = field(default=False, metadata={"help": "Whether to use history_first."})
dataset_debug: bool = field(default=False, metadata={"help": "Whether to use debug mode."})
batchSize: int = field(default=1, metadata={"help": "Batch size."})
model_max_length: int = field(
default=4096,
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
)
exp_seed: int = field(default=0, metadata={"help": "Random seed."})
data_split: str = field(default="train", metadata={"help": "Which split to use."})
exp_name: str = field(default="", metadata={"help": "Experiment name."})
def _make_r_io_base(f, mode: str):
if not isinstance(f, io.IOBase):
f = open(f, mode=mode)
return f
def jload(f, mode="r"):
"""Load a .json file into a dictionary."""
f = _make_r_io_base(f, mode)
jdict = json.load(f)
f.close()
return jdict
def set_seed(seed: int):
"""Set seed for reproducibility."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
transformers.set_seed(seed)
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def prepare_model_and_tokenizer(data_args, model_args):
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
device_map="auto",
torch_dtype=torch.bfloat16
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
model_max_length=data_args.model_max_length,
padding_side="left",
use_fast=False,
)
if tokenizer.pad_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
tokenizer=tokenizer,
model=model,
)
if "llama" in model_args.model_name_or_path:
tokenizer.add_special_tokens(
{
"eos_token": DEFAULT_EOS_TOKEN,
"bos_token": DEFAULT_BOS_TOKEN,
"unk_token": DEFAULT_UNK_TOKEN,
}
)
tokenizer.padding_side = "left"
return model, tokenizer
def prepare_feat_dict(data_args):
logging.warning("Loading mp3d visual2text data...")
feat_dict = {}
scene_files = os.listdir(os.path.join(data_args.data_path))
for scene_file in scene_files:
if scene_file.endswith('.json'):
scene_name = scene_file.split('.')[0]
feat_dict[scene_name] = jload(os.path.join(data_args.data_path, scene_file))
featurized_scans = set([key.split("_")[0] for key in list(feat_dict.keys())])
return feat_dict, featurized_scans
def main():
parser = transformers.HfArgumentParser((ModelArguments, DataArguments))
model_args, data_args = parser.parse_args_into_dataclasses()
# set seed for reproducibility
set_seed(data_args.exp_seed)
# prepare model and tokenizer
model, tokenizer = prepare_model_and_tokenizer(data_args, model_args)
llm_api = llama_generate_api(model, tokenizer)
# prepare feat dict
feat_dict, featurized_scans = prepare_feat_dict(data_args)
splits = data_args.data_split.split('+')
agent = DAggerAgent(
llm=llm_api,
env=R2RBatch(batch_size=data_args.batchSize, splits=splits),
results_path="",
feat_dict=feat_dict,
data_args=data_args,
model_args=model_args,
)
iters = None
if model_args.lora_weights != "" and model_args.lora_weights != "None":
# env_name = model_args.lora_weights.split('/')[-2]
save_path = os.path.join(model_args.lora_weights, 'sequantial_results')
else:
save_path = os.path.join(model_args.model_name_or_path, 'sequantial_results')
if os.path.exists(os.path.join(save_path, '{}.json'.format(splits[0]))):
print('Loading previous results from %s' % save_path)
with open(os.path.join(save_path, '{}.json'.format(splits[0])), 'r') as f:
result = json.load(f)
else:
agent.test(iters=iters)
result = agent.get_results()
print('Saving results to %s' % save_path)
if not os.path.exists(save_path):
os.mkdir(save_path)
with open(os.path.join(save_path, '{}.json'.format(splits[0])), 'w') as f:
json.dump(result, f)
evaluator = Evaluation(splits, featurized_scans)
score_summary, _ = evaluator.score(result)
loss_str = "Env name: %s" % splits[0]
for metric,val in score_summary.items():
loss_str += ', %s: %.4f' % (metric, val)
print(loss_str)
if __name__ == '__main__':
main()