-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgisu.py
122 lines (89 loc) · 5.11 KB
/
gisu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import pandas as pd
import numpy as np
from gprofiler import GProfiler
def run(settings, study, platform):
transformation_method = settings['transformation_method']
if settings['gene_data_online'] == 'YES':
# Load data from web
try:
gene_history = pd.read_csv("https://ftp.ncbi.nih.gov/gene/DATA/gene_history.gz", delimiter="\t",
usecols=['GeneID', 'Discontinued_GeneID'])
print(gene_history.head())
except:
print("Error load Gene History data from web")
gene_history = pd.read_csv(settings['gene_history_file'], delimiter="\t")
try:
NCBI_intel = pd.read_csv("https://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz",
delimiter="\t", usecols=['GeneID', 'Symbol'])
except:
print("Error load data from web")
NCBI_intel = pd.read_csv(settings['homo_sapiens_file'], delimiter="\t")
else:
# Load Data from local folder
gene_history = pd.read_csv(settings['gene_history_file'], delimiter="\t")
NCBI_intel = pd.read_csv(settings['homo_sapiens_file'], delimiter="\t")
Platform_intel = pd.read_csv(settings['platforms_folder'] + platform + ".txt", delimiter="\t")
# Get dataframe without first line
data = study.iloc[2:].copy()
data.rename(columns={data.columns[0]: "ID_REF"}, inplace=True)
# Get Gene IDs
dataIDs = pd.DataFrame(data["ID_REF"])
# Gene name update based on gene_history
probe_ID_platform = pd.merge(dataIDs, Platform_intel, how="inner", left_on="ID_REF", right_on="ID").drop(
columns="ID")
probe_ID_gene_history = pd.merge(probe_ID_platform, gene_history, how="inner", left_on="SPOT_ID",
right_on="Discontinued_GeneID").drop(columns=["Discontinued_GeneID", "SPOT_ID"])
probe_ID_gene_history_UPDATED = pd.merge(probe_ID_platform, probe_ID_gene_history, how="outer", left_on="ID_REF",
right_on="ID_REF")
probe_ID_gene_history_UPDATED['SPOT_ID'] = np.where(probe_ID_gene_history_UPDATED.GeneID.notna(),
probe_ID_gene_history_UPDATED['GeneID'],
probe_ID_gene_history_UPDATED['SPOT_ID'])
probe_ID_gene_history_UPDATED.drop(columns="GeneID", inplace=True)
probe_ID_final = probe_ID_gene_history_UPDATED[probe_ID_gene_history_UPDATED['SPOT_ID'] != '-'].copy()
probe_ID_final.dropna(axis=0, how="any", inplace=True)
probe_ID_final['SPOT_ID'] = probe_ID_final['SPOT_ID'].astype(int)
probe_ID_NCBI = pd.merge(probe_ID_final, NCBI_intel, how="inner", left_on="SPOT_ID", right_on="GeneID").drop(
columns="GeneID")
final_file = pd.merge(probe_ID_NCBI, data, how="inner", left_on="ID_REF", right_on="ID_REF")
final_file.drop(columns="ID_REF", inplace=True)
for col in final_file.columns[2:]:
final_file[col] = final_file[col].astype(float)
fun = {i: transformation_method for i in list(final_file.columns.values)[2:]}
output = final_file.groupby(by=['SPOT_ID', 'Symbol']).agg(fun).reset_index()
output.drop(columns="SPOT_ID", inplace=True)
output.loc[-1] = study.iloc[1] # adding a row
output.loc[-2] = study.iloc[0] # adding a row
output.index = output.index + 2 # shifting index
output.sort_index(inplace=True)
return output
def run_updated_genes(settings, study):
transformation_method = settings['transformation_method']
transformation_organism = settings['transformation_organism']
target_name = settings['target_namespace']
data = study.iloc[2:].copy()
data.rename(columns={data.columns[0]: "ID_REF"}, inplace=True)
# Get Gene IDs
dataIDs = pd.DataFrame(data["ID_REF"])
# GConvert(probe IDs to Gene Sympols)
gp = GProfiler(return_dataframe=True)
conv = gp.convert(organism=transformation_organism,
query=list(list(data["ID_REF"])),
target_namespace= target_name)['converted']
data["ID_REF"] = conv
# GConvert(probe IDs to Gene Sympols)
# print(data)
for col in data.columns[2:]:
data[col] = data[col].astype(float)
fun = {i: transformation_method for i in list(data.columns.values)[2:]}
output = data.groupby(by=['ID_REF']).agg(fun).reset_index()
# output['ID_REF'][0] = 'ID'
# output['ID_REF'][1] = 'CLASS'
output.loc[-1] = study.iloc[1] # adding a row
output.loc[-2] = study.iloc[0] # adding a row
output.iloc[-1,0] = 'ID'
output.iloc[-2,0] = 'CLASS'
output.index = output.index + 2 # shifting index
output.sort_index(inplace=True)
output.columns = range(output.columns.size)
print(output.head())
return output