[!INCLUDE dev v2]
Learn how to use an online endpoint to deploy your model, so you don't have to create and manage the underlying infrastructure. You'll begin by deploying a model on your local machine to debug any errors, and then you'll deploy and test it in Azure.
You'll also learn how to view the logs and monitor the service-level agreement (SLA). You start with a model and end up with a scalable HTTPS/REST endpoint that you can use for online and real-time scoring.
Online endpoints are endpoints that are used for online (real-time) inferencing. There are two types of online endpoints: managed online endpoints and Kubernetes online endpoints. For more information on endpoints, and differences between managed online endpoints and Kubernetes online endpoints, see What are Azure Machine Learning endpoints?.
Managed online endpoints help to deploy your ML models in a turnkey manner. Managed online endpoints work with powerful CPU and GPU machines in Azure in a scalable, fully managed way. Managed online endpoints take care of serving, scaling, securing, and monitoring your models, freeing you from the overhead of setting up and managing the underlying infrastructure.
The main example in this doc uses managed online endpoints for deployment. To use Kubernetes instead, see the notes in this document inline with the managed online endpoint discussion.
Tip
To create managed online endpoints in the Azure Machine Learning studio, see Use managed online endpoints in the studio.
[!INCLUDE basic prereqs cli]
-
Azure role-based access controls (Azure RBAC) are used to grant access to operations in Azure Machine Learning. To perform the steps in this article, your user account must be assigned the owner or contributor role for the Azure Machine Learning workspace, or a custom role allowing
Microsoft.MachineLearningServices/workspaces/onlineEndpoints/*
. For more information, see Manage access to an Azure Machine Learning workspace. -
If you haven't already set the defaults for the Azure CLI, save your default settings. To avoid passing in the values for your subscription, workspace, and resource group multiple times, run this code:
az account set --subscription <subscription ID> az configure --defaults workspace=<Azure Machine Learning workspace name> group=<resource group>
-
(Optional) To deploy locally, you must install Docker Engine on your local computer. We highly recommend this option, so it's easier to debug issues.
Important
The examples in this document assume that you are using the Bash shell. For example, from a Linux system or Windows Subsystem for Linux.
[!INCLUDE sdk v2]
[!INCLUDE basic prereqs sdk]
-
Azure role-based access controls (Azure RBAC) are used to grant access to operations in Azure Machine Learning. To perform the steps in this article, your user account must be assigned the owner or contributor role for the Azure Machine Learning workspace, or a custom role allowing
Microsoft.MachineLearningServices/workspaces/onlineEndpoints/*
. For more information, see Manage access to an Azure Machine Learning workspace. -
(Optional) To deploy locally, you must install Docker Engine on your local computer. We highly recommend this option, so it's easier to debug issues.
Note
While the Azure CLI and CLI extension for machine learning are used in these steps, they're not the main focus. they're used more as utilities, passing templates to Azure and checking the status of template deployments.
[!INCLUDE basic prereqs cli]
-
Azure role-based access controls (Azure RBAC) are used to grant access to operations in Azure Machine Learning. To perform the steps in this article, your user account must be assigned the owner or contributor role for the Azure Machine Learning workspace, or a custom role allowing
Microsoft.MachineLearningServices/workspaces/onlineEndpoints/*
. For more information, see Manage access to an Azure Machine Learning workspace. -
If you haven't already set the defaults for the Azure CLI, save your default settings. To avoid passing in the values for your subscription, workspace, and resource group multiple times, run this code:
az account set --subscription <subscription ID> az configure --defaults workspace=<Azure Machine Learning workspace name> group=<resource group>
Important
The examples in this document assume that you are using the Bash shell. For example, from a Linux system or Windows Subsystem for Linux.
To follow along with this article, first clone the samples repository (azureml-examples). Then, run the following code to go to the samples directory:
git clone --depth 1 https://github.com/Azure/azureml-examples
cd azureml-examples
cd cli
Tip
Use --depth 1
to clone only the latest commit to the repository, which reduces time to complete the operation.
To set your endpoint name, run the following command (replace YOUR_ENDPOINT_NAME
with a unique name).
For Unix, run this command:
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --local -n $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --local -n blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME --local
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --local --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --local --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --local --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show --local -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --local -n blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --local --name $ENDPOINT_NAME --yes
# </delete_endpoint>
Note
Endpoint names must be unique within an Azure region. For example, in the Azure westus2
region, there can be only one endpoint with the name my-endpoint
.
To run the training examples, first clone the examples repository (azureml-examples) and change into the azureml-examples/sdk/python/endpoints/online/managed
directory:
git clone --depth 1 https://github.com/Azure/azureml-examples
cd azureml-examples/sdk/python/endpoints/online/managed
Tip
Use --depth 1
to clone only the latest commit to the repository, which reduces time to complete the operation.
The information in this article is based on the online-endpoints-simple-deployment.ipynb notebook. It contains the same content as this article, although the order of the codes is slightly different.
The workspace is the top-level resource for Azure Machine Learning, providing a centralized place to work with all the artifacts you create when you use Azure Machine Learning. In this section, we'll connect to the workspace in which you'll perform deployment tasks.
-
Import the required libraries:
# import required libraries from azure.ai.ml import MLClient from azure.ai.ml.entities import ( ManagedOnlineEndpoint, ManagedOnlineDeployment, Model, Environment, CodeConfiguration, ) from azure.identity import DefaultAzureCredential
-
Configure workspace details and get a handle to the workspace:
To connect to a workspace, we need identifier parameters - a subscription, resource group and workspace name. We'll use these details in the
MLClient
fromazure.ai.ml
to get a handle to the required Azure Machine Learning workspace. This example uses the default Azure authentication.# enter details of your AzureML workspace subscription_id = "<SUBSCRIPTION_ID>" resource_group = "<RESOURCE_GROUP>" workspace = "<AZUREML_WORKSPACE_NAME>"
# get a handle to the workspace ml_client = MLClient( DefaultAzureCredential(), subscription_id, resource_group, workspace )
To follow along with this article, first clone the samples repository (azureml-examples). Then, run the following code to go to the samples directory:
git clone --depth 1 https://github.com/Azure/azureml-examples
cd azureml-examples
Tip
Use --depth 1
to clone only the latest commit to the repository, which reduces time to complete the operation.
To set your endpoint name, run the following command (replace YOUR_ENDPOINT_NAME
with a unique name).
For Unix, run this command:
set -x
#<get_access_token>
TOKEN=$(az account get-access-token --query accessToken -o tsv)
#</get_access_token>
# <create_variables>
SUBSCRIPTION_ID=$(az account show --query id | tr -d '\r"')
LOCATION=$(az ml workspace show --query location | tr -d '\r"')
RESOURCE_GROUP=$(az group show --query name | tr -d '\r"')
WORKSPACE=$(az configure -l | jq -r '.[] | select(.name=="workspace") | .value')
#</create_variables>
# <set_endpoint_name>
export ENDPOINT_NAME=endpoint-`echo $RANDOM`
# </set_endpoint_name>
#<api_version>
API_VERSION="2022-05-01"
#</api_version>
echo -e "Using:\nSUBSCRIPTION_ID=$SUBSCRIPTION_ID\nLOCATION=$LOCATION\nRESOURCE_GROUP=$RESOURCE_GROUP\nWORKSPACE=$WORKSPACE"
# define how to wait
wait_for_completion () {
operation_id=$1
status="unknown"
if [[ $operation_id == "" || -z $operation_id || $operation_id == "null" ]]; then
echo "operation id cannot be empty"
exit 1
fi
while [[ $status != "Succeeded" && $status != "Failed" ]]
do
echo "Getting operation status from: $operation_id"
operation_result=$(curl --location --request GET $operation_id --header "Authorization: Bearer $TOKEN")
# TODO error handling here
status=$(echo $operation_result | jq -r '.status')
echo "Current operation status: $status"
sleep 5
done
if [[ $status == "Failed" ]]
then
error=$(echo $operation_result | jq -r '.error')
echo "Error: $error"
fi
}
# <get_storage_details>
# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.accountName')
# </get_storage_details>
# <upload_code>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/score -s cli/endpoints/online/model-1/onlinescoring --account-name $AZURE_STORAGE_ACCOUNT
# </upload_code>
# <create_code>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/code-version.json \
--parameters \
workspaceName=$WORKSPACE \
codeAssetName="score-sklearn" \
codeUri="https://$AZURE_STORAGE_ACCOUNT.blob.core.windows.net/$AZUREML_DEFAULT_CONTAINER/score"
# </create_code>
# <upload_model>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/model -s cli/endpoints/online/model-1/model --account-name $AZURE_STORAGE_ACCOUNT
# </upload_model>
# <create_model>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/model-version.json \
--parameters \
workspaceName=$WORKSPACE \
modelAssetName="sklearn" \
modelUri="azureml://subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/workspaces/$WORKSPACE/datastores/$AZUREML_DEFAULT_DATASTORE/paths/model/sklearn_regression_model.pkl"
# </create_model>
# <read_condafile>
CONDA_FILE=$(cat cli/endpoints/online/model-1/environment/conda.yml)
# </read_condafile>
# <create_environment>
ENV_VERSION=$RANDOM
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/environment-version.json \
--parameters \
workspaceName=$WORKSPACE \
environmentAssetName=sklearn-env \
environmentAssetVersion=$ENV_VERSION \
dockerImage=mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1 \
condaFile="$CONDA_FILE"
# </create_environment>
# <create_endpoint>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint.json \
--parameters \
workspaceName=$WORKSPACE \
onlineEndpointName=$ENDPOINT_NAME \
identityType=SystemAssigned \
authMode=AMLToken \
location=$LOCATION
# </create_endpoint>
# <get_endpoint>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
# </get_endpoint>
# <create_deployment>
resourceScope="/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices"
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint-deployment.json \
--parameters \
workspaceName=$WORKSPACE \
location=$LOCATION \
onlineEndpointName=$ENDPOINT_NAME \
onlineDeploymentName=blue \
codeId="$resourceScope/workspaces/$WORKSPACE/codes/score-sklearn/versions/1" \
scoringScript=score.py \
environmentId="$resourceScope/workspaces/$WORKSPACE/environments/sklearn-env/versions/$ENV_VERSION" \
model="$resourceScope/workspaces/$WORKSPACE/models/score-sklearn/versions/1" \
endpointComputeType=Managed \
skuName=Standard_F2s_v2 \
skuCapacity=1
# </create_deployment>
# <get_deployment>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
scoringUri=$(echo $response | jq -r '.properties' | jq -r '.scoringUri')
# </get_endpoint>
# <get_endpoint_access_token>
response=$(curl -H "Content-Length: 0" --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/token?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN")
accessToken=$(echo $response | jq -r '.accessToken')
# </get_endpoint_access_token>
# <score_endpoint>
curl --location --request POST $scoringUri \
--header "Authorization: Bearer $accessToken" \
--header "Content-Type: application/json" \
--data-raw @cli/endpoints/online/model-1/sample-request.json
# </score_endpoint>
# <get_deployment_logs>
curl --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue/getLogs?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{ \"tail\": 100 }"
# </get_deployment_logs>
# <delete_endpoint>
curl --location --request DELETE "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN" || true
# </delete_endpoint>
Note
Endpoint names must be unique within an Azure region. For example, in the Azure westus2
region, there can be only one endpoint with the name my-endpoint
.
Also set the following environment variables, as they are used in the examples in this article. Replace the values with your Azure subscription ID, the Azure region where your workspace is located, the resource group that contains the workspace, and the workspace name:
export SUBSCRIPTION_ID="your Azure subscription ID"
export LOCATION="Azure region where your workspace is located"
export RESOURCE_GROUP="Azure resource group that contains your workspace"
export WORKSPACE="Azure Machine Learning workspace name"
A couple of the template examples require you to upload files to the Azure Blob store for your workspace. The following steps will query the workspace and store this information in environment variables used in the examples:
- Get an access token:
set -x
#<get_access_token>
TOKEN=$(az account get-access-token --query accessToken -o tsv)
#</get_access_token>
# <create_variables>
SUBSCRIPTION_ID=$(az account show --query id | tr -d '\r"')
LOCATION=$(az ml workspace show --query location | tr -d '\r"')
RESOURCE_GROUP=$(az group show --query name | tr -d '\r"')
WORKSPACE=$(az configure -l | jq -r '.[] | select(.name=="workspace") | .value')
#</create_variables>
# <set_endpoint_name>
export ENDPOINT_NAME=endpoint-`echo $RANDOM`
# </set_endpoint_name>
#<api_version>
API_VERSION="2022-05-01"
#</api_version>
echo -e "Using:\nSUBSCRIPTION_ID=$SUBSCRIPTION_ID\nLOCATION=$LOCATION\nRESOURCE_GROUP=$RESOURCE_GROUP\nWORKSPACE=$WORKSPACE"
# define how to wait
wait_for_completion () {
operation_id=$1
status="unknown"
if [[ $operation_id == "" || -z $operation_id || $operation_id == "null" ]]; then
echo "operation id cannot be empty"
exit 1
fi
while [[ $status != "Succeeded" && $status != "Failed" ]]
do
echo "Getting operation status from: $operation_id"
operation_result=$(curl --location --request GET $operation_id --header "Authorization: Bearer $TOKEN")
# TODO error handling here
status=$(echo $operation_result | jq -r '.status')
echo "Current operation status: $status"
sleep 5
done
if [[ $status == "Failed" ]]
then
error=$(echo $operation_result | jq -r '.error')
echo "Error: $error"
fi
}
# <get_storage_details>
# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.accountName')
# </get_storage_details>
# <upload_code>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/score -s cli/endpoints/online/model-1/onlinescoring --account-name $AZURE_STORAGE_ACCOUNT
# </upload_code>
# <create_code>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/code-version.json \
--parameters \
workspaceName=$WORKSPACE \
codeAssetName="score-sklearn" \
codeUri="https://$AZURE_STORAGE_ACCOUNT.blob.core.windows.net/$AZUREML_DEFAULT_CONTAINER/score"
# </create_code>
# <upload_model>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/model -s cli/endpoints/online/model-1/model --account-name $AZURE_STORAGE_ACCOUNT
# </upload_model>
# <create_model>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/model-version.json \
--parameters \
workspaceName=$WORKSPACE \
modelAssetName="sklearn" \
modelUri="azureml://subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/workspaces/$WORKSPACE/datastores/$AZUREML_DEFAULT_DATASTORE/paths/model/sklearn_regression_model.pkl"
# </create_model>
# <read_condafile>
CONDA_FILE=$(cat cli/endpoints/online/model-1/environment/conda.yml)
# </read_condafile>
# <create_environment>
ENV_VERSION=$RANDOM
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/environment-version.json \
--parameters \
workspaceName=$WORKSPACE \
environmentAssetName=sklearn-env \
environmentAssetVersion=$ENV_VERSION \
dockerImage=mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1 \
condaFile="$CONDA_FILE"
# </create_environment>
# <create_endpoint>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint.json \
--parameters \
workspaceName=$WORKSPACE \
onlineEndpointName=$ENDPOINT_NAME \
identityType=SystemAssigned \
authMode=AMLToken \
location=$LOCATION
# </create_endpoint>
# <get_endpoint>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
# </get_endpoint>
# <create_deployment>
resourceScope="/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices"
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint-deployment.json \
--parameters \
workspaceName=$WORKSPACE \
location=$LOCATION \
onlineEndpointName=$ENDPOINT_NAME \
onlineDeploymentName=blue \
codeId="$resourceScope/workspaces/$WORKSPACE/codes/score-sklearn/versions/1" \
scoringScript=score.py \
environmentId="$resourceScope/workspaces/$WORKSPACE/environments/sklearn-env/versions/$ENV_VERSION" \
model="$resourceScope/workspaces/$WORKSPACE/models/score-sklearn/versions/1" \
endpointComputeType=Managed \
skuName=Standard_F2s_v2 \
skuCapacity=1
# </create_deployment>
# <get_deployment>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
scoringUri=$(echo $response | jq -r '.properties' | jq -r '.scoringUri')
# </get_endpoint>
# <get_endpoint_access_token>
response=$(curl -H "Content-Length: 0" --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/token?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN")
accessToken=$(echo $response | jq -r '.accessToken')
# </get_endpoint_access_token>
# <score_endpoint>
curl --location --request POST $scoringUri \
--header "Authorization: Bearer $accessToken" \
--header "Content-Type: application/json" \
--data-raw @cli/endpoints/online/model-1/sample-request.json
# </score_endpoint>
# <get_deployment_logs>
curl --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue/getLogs?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{ \"tail\": 100 }"
# </get_deployment_logs>
# <delete_endpoint>
curl --location --request DELETE "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN" || true
# </delete_endpoint>
- Set the REST API version:
set -x
#<get_access_token>
TOKEN=$(az account get-access-token --query accessToken -o tsv)
#</get_access_token>
# <create_variables>
SUBSCRIPTION_ID=$(az account show --query id | tr -d '\r"')
LOCATION=$(az ml workspace show --query location | tr -d '\r"')
RESOURCE_GROUP=$(az group show --query name | tr -d '\r"')
WORKSPACE=$(az configure -l | jq -r '.[] | select(.name=="workspace") | .value')
#</create_variables>
# <set_endpoint_name>
export ENDPOINT_NAME=endpoint-`echo $RANDOM`
# </set_endpoint_name>
#<api_version>
API_VERSION="2022-05-01"
#</api_version>
echo -e "Using:\nSUBSCRIPTION_ID=$SUBSCRIPTION_ID\nLOCATION=$LOCATION\nRESOURCE_GROUP=$RESOURCE_GROUP\nWORKSPACE=$WORKSPACE"
# define how to wait
wait_for_completion () {
operation_id=$1
status="unknown"
if [[ $operation_id == "" || -z $operation_id || $operation_id == "null" ]]; then
echo "operation id cannot be empty"
exit 1
fi
while [[ $status != "Succeeded" && $status != "Failed" ]]
do
echo "Getting operation status from: $operation_id"
operation_result=$(curl --location --request GET $operation_id --header "Authorization: Bearer $TOKEN")
# TODO error handling here
status=$(echo $operation_result | jq -r '.status')
echo "Current operation status: $status"
sleep 5
done
if [[ $status == "Failed" ]]
then
error=$(echo $operation_result | jq -r '.error')
echo "Error: $error"
fi
}
# <get_storage_details>
# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.accountName')
# </get_storage_details>
# <upload_code>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/score -s cli/endpoints/online/model-1/onlinescoring --account-name $AZURE_STORAGE_ACCOUNT
# </upload_code>
# <create_code>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/code-version.json \
--parameters \
workspaceName=$WORKSPACE \
codeAssetName="score-sklearn" \
codeUri="https://$AZURE_STORAGE_ACCOUNT.blob.core.windows.net/$AZUREML_DEFAULT_CONTAINER/score"
# </create_code>
# <upload_model>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/model -s cli/endpoints/online/model-1/model --account-name $AZURE_STORAGE_ACCOUNT
# </upload_model>
# <create_model>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/model-version.json \
--parameters \
workspaceName=$WORKSPACE \
modelAssetName="sklearn" \
modelUri="azureml://subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/workspaces/$WORKSPACE/datastores/$AZUREML_DEFAULT_DATASTORE/paths/model/sklearn_regression_model.pkl"
# </create_model>
# <read_condafile>
CONDA_FILE=$(cat cli/endpoints/online/model-1/environment/conda.yml)
# </read_condafile>
# <create_environment>
ENV_VERSION=$RANDOM
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/environment-version.json \
--parameters \
workspaceName=$WORKSPACE \
environmentAssetName=sklearn-env \
environmentAssetVersion=$ENV_VERSION \
dockerImage=mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1 \
condaFile="$CONDA_FILE"
# </create_environment>
# <create_endpoint>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint.json \
--parameters \
workspaceName=$WORKSPACE \
onlineEndpointName=$ENDPOINT_NAME \
identityType=SystemAssigned \
authMode=AMLToken \
location=$LOCATION
# </create_endpoint>
# <get_endpoint>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
# </get_endpoint>
# <create_deployment>
resourceScope="/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices"
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint-deployment.json \
--parameters \
workspaceName=$WORKSPACE \
location=$LOCATION \
onlineEndpointName=$ENDPOINT_NAME \
onlineDeploymentName=blue \
codeId="$resourceScope/workspaces/$WORKSPACE/codes/score-sklearn/versions/1" \
scoringScript=score.py \
environmentId="$resourceScope/workspaces/$WORKSPACE/environments/sklearn-env/versions/$ENV_VERSION" \
model="$resourceScope/workspaces/$WORKSPACE/models/score-sklearn/versions/1" \
endpointComputeType=Managed \
skuName=Standard_F2s_v2 \
skuCapacity=1
# </create_deployment>
# <get_deployment>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
scoringUri=$(echo $response | jq -r '.properties' | jq -r '.scoringUri')
# </get_endpoint>
# <get_endpoint_access_token>
response=$(curl -H "Content-Length: 0" --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/token?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN")
accessToken=$(echo $response | jq -r '.accessToken')
# </get_endpoint_access_token>
# <score_endpoint>
curl --location --request POST $scoringUri \
--header "Authorization: Bearer $accessToken" \
--header "Content-Type: application/json" \
--data-raw @cli/endpoints/online/model-1/sample-request.json
# </score_endpoint>
# <get_deployment_logs>
curl --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue/getLogs?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{ \"tail\": 100 }"
# </get_deployment_logs>
# <delete_endpoint>
curl --location --request DELETE "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN" || true
# </delete_endpoint>
- Get the storage information:
set -x
#<get_access_token>
TOKEN=$(az account get-access-token --query accessToken -o tsv)
#</get_access_token>
# <create_variables>
SUBSCRIPTION_ID=$(az account show --query id | tr -d '\r"')
LOCATION=$(az ml workspace show --query location | tr -d '\r"')
RESOURCE_GROUP=$(az group show --query name | tr -d '\r"')
WORKSPACE=$(az configure -l | jq -r '.[] | select(.name=="workspace") | .value')
#</create_variables>
# <set_endpoint_name>
export ENDPOINT_NAME=endpoint-`echo $RANDOM`
# </set_endpoint_name>
#<api_version>
API_VERSION="2022-05-01"
#</api_version>
echo -e "Using:\nSUBSCRIPTION_ID=$SUBSCRIPTION_ID\nLOCATION=$LOCATION\nRESOURCE_GROUP=$RESOURCE_GROUP\nWORKSPACE=$WORKSPACE"
# define how to wait
wait_for_completion () {
operation_id=$1
status="unknown"
if [[ $operation_id == "" || -z $operation_id || $operation_id == "null" ]]; then
echo "operation id cannot be empty"
exit 1
fi
while [[ $status != "Succeeded" && $status != "Failed" ]]
do
echo "Getting operation status from: $operation_id"
operation_result=$(curl --location --request GET $operation_id --header "Authorization: Bearer $TOKEN")
# TODO error handling here
status=$(echo $operation_result | jq -r '.status')
echo "Current operation status: $status"
sleep 5
done
if [[ $status == "Failed" ]]
then
error=$(echo $operation_result | jq -r '.error')
echo "Error: $error"
fi
}
# <get_storage_details>
# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.accountName')
# </get_storage_details>
# <upload_code>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/score -s cli/endpoints/online/model-1/onlinescoring --account-name $AZURE_STORAGE_ACCOUNT
# </upload_code>
# <create_code>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/code-version.json \
--parameters \
workspaceName=$WORKSPACE \
codeAssetName="score-sklearn" \
codeUri="https://$AZURE_STORAGE_ACCOUNT.blob.core.windows.net/$AZUREML_DEFAULT_CONTAINER/score"
# </create_code>
# <upload_model>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/model -s cli/endpoints/online/model-1/model --account-name $AZURE_STORAGE_ACCOUNT
# </upload_model>
# <create_model>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/model-version.json \
--parameters \
workspaceName=$WORKSPACE \
modelAssetName="sklearn" \
modelUri="azureml://subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/workspaces/$WORKSPACE/datastores/$AZUREML_DEFAULT_DATASTORE/paths/model/sklearn_regression_model.pkl"
# </create_model>
# <read_condafile>
CONDA_FILE=$(cat cli/endpoints/online/model-1/environment/conda.yml)
# </read_condafile>
# <create_environment>
ENV_VERSION=$RANDOM
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/environment-version.json \
--parameters \
workspaceName=$WORKSPACE \
environmentAssetName=sklearn-env \
environmentAssetVersion=$ENV_VERSION \
dockerImage=mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1 \
condaFile="$CONDA_FILE"
# </create_environment>
# <create_endpoint>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint.json \
--parameters \
workspaceName=$WORKSPACE \
onlineEndpointName=$ENDPOINT_NAME \
identityType=SystemAssigned \
authMode=AMLToken \
location=$LOCATION
# </create_endpoint>
# <get_endpoint>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
# </get_endpoint>
# <create_deployment>
resourceScope="/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices"
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint-deployment.json \
--parameters \
workspaceName=$WORKSPACE \
location=$LOCATION \
onlineEndpointName=$ENDPOINT_NAME \
onlineDeploymentName=blue \
codeId="$resourceScope/workspaces/$WORKSPACE/codes/score-sklearn/versions/1" \
scoringScript=score.py \
environmentId="$resourceScope/workspaces/$WORKSPACE/environments/sklearn-env/versions/$ENV_VERSION" \
model="$resourceScope/workspaces/$WORKSPACE/models/score-sklearn/versions/1" \
endpointComputeType=Managed \
skuName=Standard_F2s_v2 \
skuCapacity=1
# </create_deployment>
# <get_deployment>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
scoringUri=$(echo $response | jq -r '.properties' | jq -r '.scoringUri')
# </get_endpoint>
# <get_endpoint_access_token>
response=$(curl -H "Content-Length: 0" --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/token?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN")
accessToken=$(echo $response | jq -r '.accessToken')
# </get_endpoint_access_token>
# <score_endpoint>
curl --location --request POST $scoringUri \
--header "Authorization: Bearer $accessToken" \
--header "Content-Type: application/json" \
--data-raw @cli/endpoints/online/model-1/sample-request.json
# </score_endpoint>
# <get_deployment_logs>
curl --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue/getLogs?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{ \"tail\": 100 }"
# </get_deployment_logs>
# <delete_endpoint>
curl --location --request DELETE "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN" || true
# </delete_endpoint>
The following snippet shows the endpoints/online/managed/sample/endpoint.yml file:
$schema: https://azuremlschemas.azureedge.net/latest/managedOnlineEndpoint.schema.json
name: my-endpoint
auth_mode: key
Note
For a full description of the YAML, see Online endpoint YAML reference.
The reference for the endpoint YAML format is described in the following table. To learn how to specify these attributes, see the YAML example in Prepare your system or the online endpoint YAML reference. For information about limits related to managed endpoints, see Manage and increase quotas for resources with Azure Machine Learning.
Key | Description |
---|---|
$schema |
(Optional) The YAML schema. To see all available options in the YAML file, you can view the schema in the preceding example in a browser. |
name |
The name of the endpoint. It must be unique in the Azure region. Naming rules are defined under managed online endpoint limits. |
auth_mode |
Use key for key-based authentication. Use aml_token for Azure Machine Learning token-based authentication. key doesn't expire, but aml_token does expire. (Get the most recent token by using the az ml online-endpoint get-credentials command.) |
The example contains all the files needed to deploy a model on an online endpoint. To deploy a model, you must have:
- Model files (or the name and version of a model that's already registered in your workspace). In the example, we have a scikit-learn model that does regression.
- The code that's required to score the model. In this case, we have a score.py file.
- An environment in which your model runs. As you'll see, the environment might be a Docker image with Conda dependencies, or it might be a Dockerfile.
- Settings to specify the instance type and scaling capacity.
The following snippet shows the endpoints/online/managed/sample/blue-deployment.yml file, with all the required inputs:
$schema: https://azuremlschemas.azureedge.net/latest/managedOnlineDeployment.schema.json
name: blue
endpoint_name: my-endpoint
model:
path: ../../model-1/model/
code_configuration:
code: ../../model-1/onlinescoring/
scoring_script: score.py
environment:
conda_file: ../../model-1/environment/conda.yml
image: mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04:latest
instance_type: Standard_DS3_v2
instance_count: 1
The table describes the attributes of a deployment
:
Key | Description |
---|---|
name |
The name of the deployment. |
model |
In this example, we specify the model properties inline: path . Model files are automatically uploaded and registered with an autogenerated name. For related best practices, see the tip in the next section. |
code_configuration.code.path |
The directory on the local development environment that contains all the Python source code for scoring the model. You can use nested directories and packages. |
code_configuration.scoring_script |
The Python file that's in the code_configuration.code.path scoring directory on the local development environment. This Python code must have an init() function and a run() function. The function init() will be called after the model is created or updated (you can use it to cache the model in memory, for example). The run() function is called at every invocation of the endpoint to do the actual scoring and prediction. |
environment |
Contains the details of the environment to host the model and code. In this example, we have inline definitions that include thepath . We'll use environment.docker.image for the image. The conda_file dependencies will be installed on top of the image. For more information, see the tip in the next section. |
instance_type |
The VM SKU that will host your deployment instances. For more information, see Managed online endpoints supported VM SKUs. |
instance_count |
The number of instances in the deployment. Base the value on the workload you expect. For high availability, we recommend that you set instance_count to at least 3 . We reserve an extra 20% for performing upgrades. For more information, see managed online endpoint quotas. |
During deployment, the local files such as the Python source for the scoring model, are uploaded from the development environment.
For more information about the YAML schema, see the online endpoint YAML reference.
Note
To use Kubernetes instead of managed endpoints as a compute target:
- Create and attach your Kubernetes cluster as a compute target to your Azure Machine Learning workspace by using Azure Machine Learning studio.
- Use the endpoint YAML to target Kubernetes instead of the managed endpoint YAML. You'll need to edit the YAML to change the value of
target
to the name of your registered compute target. You can use this deployment.yaml that has additional properties applicable to Kubernetes deployment.
All the commands that are used in this article (except the optional SLA monitoring and Azure Log Analytics integration) can be used either with managed endpoints or with Kubernetes endpoints.
In this article, we first define names of online endpoint and deployment for debug locally.
-
Define endpoint (with name for local endpoint):
# Creating a local endpoint import datetime local_endpoint_name = "local-" + datetime.datetime.now().strftime("%m%d%H%M%f") # create an online endpoint endpoint = ManagedOnlineEndpoint( name=local_endpoint_name, description="this is a sample local endpoint" )
-
Define deployment (with name for local deployment)
The example contains all the files needed to deploy a model on an online endpoint. To deploy a model, you must have:
- Model files (or the name and version of a model that's already registered in your workspace). In the example, we have a scikit-learn model that does regression.
- The code that's required to score the model. In this case, we have a score.py file.
- An environment in which your model runs. As you'll see, the environment might be a Docker image with Conda dependencies, or it might be a Dockerfile.
- Settings to specify the instance type and scaling capacity.
Key aspects of deployment
name
- Name of the deployment.endpoint_name
- Name of the endpoint to create the deployment under.model
- The model to use for the deployment. This value can be either a reference to an existing versioned model in the workspace or an inline model specification.environment
- The environment to use for the deployment. This value can be either a reference to an existing versioned environment in the workspace or an inline environment specification.code_configuration
- the configuration for the source code and scoring scriptpath
- Path to the source code directory for scoring the modelscoring_script
- Relative path to the scoring file in the source code directory
instance_type
- The VM size to use for the deployment. For the list of supported sizes, see Managed online endpoints SKU list.instance_count
- The number of instances to use for the deployment
model = Model(path="../model-1/model/sklearn_regression_model.pkl") env = Environment( conda_file="../model-1/environment/conda.yml", image="mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04:latest", ) blue_deployment = ManagedOnlineDeployment( name="blue", endpoint_name=local_endpoint_name, model=model, environment=env, code_configuration=CodeConfiguration( code="../model-1/onlinescoring", scoring_script="score.py" ), instance_type="Standard_DS2_v2", instance_count=1, )
The Azure Resource Manager templates online-endpoint.json and online-endpoint-deployment.json are used by the steps in this article.
In this example, we specify the path
(where to upload files from) inline. The CLI automatically uploads the files and registers the model and environment. As a best practice for production, you should register the model and environment and specify the registered name and version separately in the YAML. Use the form model: azureml:my-model:1
or environment: azureml:my-env:1
.
For registration, you can extract the YAML definitions of model
and environment
into separate YAML files and use the commands az ml model create
and az ml environment create
. To learn more about these commands, run az ml model create -h
and az ml environment create -h
.
In this example, we specify the path
(where to upload files from) inline. The SDK automatically uploads the files and registers the model and environment. As a best practice for production, you should register the model and environment and specify the registered name and version separately in the codes.
For more information on registering your model as an asset, see Register your model as an asset in Machine Learning by using the SDK
For more information on creating an environment, see Manage Azure Machine Learning environments with the CLI & SDK (v2)
- To register the model using a template, you must first upload the model file to an Azure Blob store. The following example uses the
az storage blob upload-batch
command to upload a file to the default storage for your workspace:
set -x
#<get_access_token>
TOKEN=$(az account get-access-token --query accessToken -o tsv)
#</get_access_token>
# <create_variables>
SUBSCRIPTION_ID=$(az account show --query id | tr -d '\r"')
LOCATION=$(az ml workspace show --query location | tr -d '\r"')
RESOURCE_GROUP=$(az group show --query name | tr -d '\r"')
WORKSPACE=$(az configure -l | jq -r '.[] | select(.name=="workspace") | .value')
#</create_variables>
# <set_endpoint_name>
export ENDPOINT_NAME=endpoint-`echo $RANDOM`
# </set_endpoint_name>
#<api_version>
API_VERSION="2022-05-01"
#</api_version>
echo -e "Using:\nSUBSCRIPTION_ID=$SUBSCRIPTION_ID\nLOCATION=$LOCATION\nRESOURCE_GROUP=$RESOURCE_GROUP\nWORKSPACE=$WORKSPACE"
# define how to wait
wait_for_completion () {
operation_id=$1
status="unknown"
if [[ $operation_id == "" || -z $operation_id || $operation_id == "null" ]]; then
echo "operation id cannot be empty"
exit 1
fi
while [[ $status != "Succeeded" && $status != "Failed" ]]
do
echo "Getting operation status from: $operation_id"
operation_result=$(curl --location --request GET $operation_id --header "Authorization: Bearer $TOKEN")
# TODO error handling here
status=$(echo $operation_result | jq -r '.status')
echo "Current operation status: $status"
sleep 5
done
if [[ $status == "Failed" ]]
then
error=$(echo $operation_result | jq -r '.error')
echo "Error: $error"
fi
}
# <get_storage_details>
# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.accountName')
# </get_storage_details>
# <upload_code>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/score -s cli/endpoints/online/model-1/onlinescoring --account-name $AZURE_STORAGE_ACCOUNT
# </upload_code>
# <create_code>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/code-version.json \
--parameters \
workspaceName=$WORKSPACE \
codeAssetName="score-sklearn" \
codeUri="https://$AZURE_STORAGE_ACCOUNT.blob.core.windows.net/$AZUREML_DEFAULT_CONTAINER/score"
# </create_code>
# <upload_model>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/model -s cli/endpoints/online/model-1/model --account-name $AZURE_STORAGE_ACCOUNT
# </upload_model>
# <create_model>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/model-version.json \
--parameters \
workspaceName=$WORKSPACE \
modelAssetName="sklearn" \
modelUri="azureml://subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/workspaces/$WORKSPACE/datastores/$AZUREML_DEFAULT_DATASTORE/paths/model/sklearn_regression_model.pkl"
# </create_model>
# <read_condafile>
CONDA_FILE=$(cat cli/endpoints/online/model-1/environment/conda.yml)
# </read_condafile>
# <create_environment>
ENV_VERSION=$RANDOM
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/environment-version.json \
--parameters \
workspaceName=$WORKSPACE \
environmentAssetName=sklearn-env \
environmentAssetVersion=$ENV_VERSION \
dockerImage=mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1 \
condaFile="$CONDA_FILE"
# </create_environment>
# <create_endpoint>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint.json \
--parameters \
workspaceName=$WORKSPACE \
onlineEndpointName=$ENDPOINT_NAME \
identityType=SystemAssigned \
authMode=AMLToken \
location=$LOCATION
# </create_endpoint>
# <get_endpoint>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
# </get_endpoint>
# <create_deployment>
resourceScope="/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices"
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint-deployment.json \
--parameters \
workspaceName=$WORKSPACE \
location=$LOCATION \
onlineEndpointName=$ENDPOINT_NAME \
onlineDeploymentName=blue \
codeId="$resourceScope/workspaces/$WORKSPACE/codes/score-sklearn/versions/1" \
scoringScript=score.py \
environmentId="$resourceScope/workspaces/$WORKSPACE/environments/sklearn-env/versions/$ENV_VERSION" \
model="$resourceScope/workspaces/$WORKSPACE/models/score-sklearn/versions/1" \
endpointComputeType=Managed \
skuName=Standard_F2s_v2 \
skuCapacity=1
# </create_deployment>
# <get_deployment>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
scoringUri=$(echo $response | jq -r '.properties' | jq -r '.scoringUri')
# </get_endpoint>
# <get_endpoint_access_token>
response=$(curl -H "Content-Length: 0" --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/token?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN")
accessToken=$(echo $response | jq -r '.accessToken')
# </get_endpoint_access_token>
# <score_endpoint>
curl --location --request POST $scoringUri \
--header "Authorization: Bearer $accessToken" \
--header "Content-Type: application/json" \
--data-raw @cli/endpoints/online/model-1/sample-request.json
# </score_endpoint>
# <get_deployment_logs>
curl --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue/getLogs?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{ \"tail\": 100 }"
# </get_deployment_logs>
# <delete_endpoint>
curl --location --request DELETE "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN" || true
# </delete_endpoint>
- After uploading the file, use the template to create a model registration. In the following example, the
modelUri
parameter contains the path to the model:
set -x
#<get_access_token>
TOKEN=$(az account get-access-token --query accessToken -o tsv)
#</get_access_token>
# <create_variables>
SUBSCRIPTION_ID=$(az account show --query id | tr -d '\r"')
LOCATION=$(az ml workspace show --query location | tr -d '\r"')
RESOURCE_GROUP=$(az group show --query name | tr -d '\r"')
WORKSPACE=$(az configure -l | jq -r '.[] | select(.name=="workspace") | .value')
#</create_variables>
# <set_endpoint_name>
export ENDPOINT_NAME=endpoint-`echo $RANDOM`
# </set_endpoint_name>
#<api_version>
API_VERSION="2022-05-01"
#</api_version>
echo -e "Using:\nSUBSCRIPTION_ID=$SUBSCRIPTION_ID\nLOCATION=$LOCATION\nRESOURCE_GROUP=$RESOURCE_GROUP\nWORKSPACE=$WORKSPACE"
# define how to wait
wait_for_completion () {
operation_id=$1
status="unknown"
if [[ $operation_id == "" || -z $operation_id || $operation_id == "null" ]]; then
echo "operation id cannot be empty"
exit 1
fi
while [[ $status != "Succeeded" && $status != "Failed" ]]
do
echo "Getting operation status from: $operation_id"
operation_result=$(curl --location --request GET $operation_id --header "Authorization: Bearer $TOKEN")
# TODO error handling here
status=$(echo $operation_result | jq -r '.status')
echo "Current operation status: $status"
sleep 5
done
if [[ $status == "Failed" ]]
then
error=$(echo $operation_result | jq -r '.error')
echo "Error: $error"
fi
}
# <get_storage_details>
# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.accountName')
# </get_storage_details>
# <upload_code>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/score -s cli/endpoints/online/model-1/onlinescoring --account-name $AZURE_STORAGE_ACCOUNT
# </upload_code>
# <create_code>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/code-version.json \
--parameters \
workspaceName=$WORKSPACE \
codeAssetName="score-sklearn" \
codeUri="https://$AZURE_STORAGE_ACCOUNT.blob.core.windows.net/$AZUREML_DEFAULT_CONTAINER/score"
# </create_code>
# <upload_model>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/model -s cli/endpoints/online/model-1/model --account-name $AZURE_STORAGE_ACCOUNT
# </upload_model>
# <create_model>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/model-version.json \
--parameters \
workspaceName=$WORKSPACE \
modelAssetName="sklearn" \
modelUri="azureml://subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/workspaces/$WORKSPACE/datastores/$AZUREML_DEFAULT_DATASTORE/paths/model/sklearn_regression_model.pkl"
# </create_model>
# <read_condafile>
CONDA_FILE=$(cat cli/endpoints/online/model-1/environment/conda.yml)
# </read_condafile>
# <create_environment>
ENV_VERSION=$RANDOM
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/environment-version.json \
--parameters \
workspaceName=$WORKSPACE \
environmentAssetName=sklearn-env \
environmentAssetVersion=$ENV_VERSION \
dockerImage=mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1 \
condaFile="$CONDA_FILE"
# </create_environment>
# <create_endpoint>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint.json \
--parameters \
workspaceName=$WORKSPACE \
onlineEndpointName=$ENDPOINT_NAME \
identityType=SystemAssigned \
authMode=AMLToken \
location=$LOCATION
# </create_endpoint>
# <get_endpoint>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
# </get_endpoint>
# <create_deployment>
resourceScope="/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices"
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint-deployment.json \
--parameters \
workspaceName=$WORKSPACE \
location=$LOCATION \
onlineEndpointName=$ENDPOINT_NAME \
onlineDeploymentName=blue \
codeId="$resourceScope/workspaces/$WORKSPACE/codes/score-sklearn/versions/1" \
scoringScript=score.py \
environmentId="$resourceScope/workspaces/$WORKSPACE/environments/sklearn-env/versions/$ENV_VERSION" \
model="$resourceScope/workspaces/$WORKSPACE/models/score-sklearn/versions/1" \
endpointComputeType=Managed \
skuName=Standard_F2s_v2 \
skuCapacity=1
# </create_deployment>
# <get_deployment>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
scoringUri=$(echo $response | jq -r '.properties' | jq -r '.scoringUri')
# </get_endpoint>
# <get_endpoint_access_token>
response=$(curl -H "Content-Length: 0" --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/token?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN")
accessToken=$(echo $response | jq -r '.accessToken')
# </get_endpoint_access_token>
# <score_endpoint>
curl --location --request POST $scoringUri \
--header "Authorization: Bearer $accessToken" \
--header "Content-Type: application/json" \
--data-raw @cli/endpoints/online/model-1/sample-request.json
# </score_endpoint>
# <get_deployment_logs>
curl --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue/getLogs?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{ \"tail\": 100 }"
# </get_deployment_logs>
# <delete_endpoint>
curl --location --request DELETE "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN" || true
# </delete_endpoint>
- Part of the environment is a conda file that specifies the model dependencies needed to host the model. The following example demonstrates how to read the contents of the conda file into environment variables:
set -x
#<get_access_token>
TOKEN=$(az account get-access-token --query accessToken -o tsv)
#</get_access_token>
# <create_variables>
SUBSCRIPTION_ID=$(az account show --query id | tr -d '\r"')
LOCATION=$(az ml workspace show --query location | tr -d '\r"')
RESOURCE_GROUP=$(az group show --query name | tr -d '\r"')
WORKSPACE=$(az configure -l | jq -r '.[] | select(.name=="workspace") | .value')
#</create_variables>
# <set_endpoint_name>
export ENDPOINT_NAME=endpoint-`echo $RANDOM`
# </set_endpoint_name>
#<api_version>
API_VERSION="2022-05-01"
#</api_version>
echo -e "Using:\nSUBSCRIPTION_ID=$SUBSCRIPTION_ID\nLOCATION=$LOCATION\nRESOURCE_GROUP=$RESOURCE_GROUP\nWORKSPACE=$WORKSPACE"
# define how to wait
wait_for_completion () {
operation_id=$1
status="unknown"
if [[ $operation_id == "" || -z $operation_id || $operation_id == "null" ]]; then
echo "operation id cannot be empty"
exit 1
fi
while [[ $status != "Succeeded" && $status != "Failed" ]]
do
echo "Getting operation status from: $operation_id"
operation_result=$(curl --location --request GET $operation_id --header "Authorization: Bearer $TOKEN")
# TODO error handling here
status=$(echo $operation_result | jq -r '.status')
echo "Current operation status: $status"
sleep 5
done
if [[ $status == "Failed" ]]
then
error=$(echo $operation_result | jq -r '.error')
echo "Error: $error"
fi
}
# <get_storage_details>
# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.accountName')
# </get_storage_details>
# <upload_code>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/score -s cli/endpoints/online/model-1/onlinescoring --account-name $AZURE_STORAGE_ACCOUNT
# </upload_code>
# <create_code>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/code-version.json \
--parameters \
workspaceName=$WORKSPACE \
codeAssetName="score-sklearn" \
codeUri="https://$AZURE_STORAGE_ACCOUNT.blob.core.windows.net/$AZUREML_DEFAULT_CONTAINER/score"
# </create_code>
# <upload_model>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/model -s cli/endpoints/online/model-1/model --account-name $AZURE_STORAGE_ACCOUNT
# </upload_model>
# <create_model>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/model-version.json \
--parameters \
workspaceName=$WORKSPACE \
modelAssetName="sklearn" \
modelUri="azureml://subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/workspaces/$WORKSPACE/datastores/$AZUREML_DEFAULT_DATASTORE/paths/model/sklearn_regression_model.pkl"
# </create_model>
# <read_condafile>
CONDA_FILE=$(cat cli/endpoints/online/model-1/environment/conda.yml)
# </read_condafile>
# <create_environment>
ENV_VERSION=$RANDOM
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/environment-version.json \
--parameters \
workspaceName=$WORKSPACE \
environmentAssetName=sklearn-env \
environmentAssetVersion=$ENV_VERSION \
dockerImage=mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1 \
condaFile="$CONDA_FILE"
# </create_environment>
# <create_endpoint>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint.json \
--parameters \
workspaceName=$WORKSPACE \
onlineEndpointName=$ENDPOINT_NAME \
identityType=SystemAssigned \
authMode=AMLToken \
location=$LOCATION
# </create_endpoint>
# <get_endpoint>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
# </get_endpoint>
# <create_deployment>
resourceScope="/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices"
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint-deployment.json \
--parameters \
workspaceName=$WORKSPACE \
location=$LOCATION \
onlineEndpointName=$ENDPOINT_NAME \
onlineDeploymentName=blue \
codeId="$resourceScope/workspaces/$WORKSPACE/codes/score-sklearn/versions/1" \
scoringScript=score.py \
environmentId="$resourceScope/workspaces/$WORKSPACE/environments/sklearn-env/versions/$ENV_VERSION" \
model="$resourceScope/workspaces/$WORKSPACE/models/score-sklearn/versions/1" \
endpointComputeType=Managed \
skuName=Standard_F2s_v2 \
skuCapacity=1
# </create_deployment>
# <get_deployment>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
scoringUri=$(echo $response | jq -r '.properties' | jq -r '.scoringUri')
# </get_endpoint>
# <get_endpoint_access_token>
response=$(curl -H "Content-Length: 0" --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/token?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN")
accessToken=$(echo $response | jq -r '.accessToken')
# </get_endpoint_access_token>
# <score_endpoint>
curl --location --request POST $scoringUri \
--header "Authorization: Bearer $accessToken" \
--header "Content-Type: application/json" \
--data-raw @cli/endpoints/online/model-1/sample-request.json
# </score_endpoint>
# <get_deployment_logs>
curl --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue/getLogs?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{ \"tail\": 100 }"
# </get_deployment_logs>
# <delete_endpoint>
curl --location --request DELETE "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN" || true
# </delete_endpoint>
- The following example demonstrates how to use the template to register the environment. The contents of the conda file from the previous step are passed to the template using the
condaFile
parameter:
set -x
#<get_access_token>
TOKEN=$(az account get-access-token --query accessToken -o tsv)
#</get_access_token>
# <create_variables>
SUBSCRIPTION_ID=$(az account show --query id | tr -d '\r"')
LOCATION=$(az ml workspace show --query location | tr -d '\r"')
RESOURCE_GROUP=$(az group show --query name | tr -d '\r"')
WORKSPACE=$(az configure -l | jq -r '.[] | select(.name=="workspace") | .value')
#</create_variables>
# <set_endpoint_name>
export ENDPOINT_NAME=endpoint-`echo $RANDOM`
# </set_endpoint_name>
#<api_version>
API_VERSION="2022-05-01"
#</api_version>
echo -e "Using:\nSUBSCRIPTION_ID=$SUBSCRIPTION_ID\nLOCATION=$LOCATION\nRESOURCE_GROUP=$RESOURCE_GROUP\nWORKSPACE=$WORKSPACE"
# define how to wait
wait_for_completion () {
operation_id=$1
status="unknown"
if [[ $operation_id == "" || -z $operation_id || $operation_id == "null" ]]; then
echo "operation id cannot be empty"
exit 1
fi
while [[ $status != "Succeeded" && $status != "Failed" ]]
do
echo "Getting operation status from: $operation_id"
operation_result=$(curl --location --request GET $operation_id --header "Authorization: Bearer $TOKEN")
# TODO error handling here
status=$(echo $operation_result | jq -r '.status')
echo "Current operation status: $status"
sleep 5
done
if [[ $status == "Failed" ]]
then
error=$(echo $operation_result | jq -r '.error')
echo "Error: $error"
fi
}
# <get_storage_details>
# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.accountName')
# </get_storage_details>
# <upload_code>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/score -s cli/endpoints/online/model-1/onlinescoring --account-name $AZURE_STORAGE_ACCOUNT
# </upload_code>
# <create_code>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/code-version.json \
--parameters \
workspaceName=$WORKSPACE \
codeAssetName="score-sklearn" \
codeUri="https://$AZURE_STORAGE_ACCOUNT.blob.core.windows.net/$AZUREML_DEFAULT_CONTAINER/score"
# </create_code>
# <upload_model>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/model -s cli/endpoints/online/model-1/model --account-name $AZURE_STORAGE_ACCOUNT
# </upload_model>
# <create_model>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/model-version.json \
--parameters \
workspaceName=$WORKSPACE \
modelAssetName="sklearn" \
modelUri="azureml://subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/workspaces/$WORKSPACE/datastores/$AZUREML_DEFAULT_DATASTORE/paths/model/sklearn_regression_model.pkl"
# </create_model>
# <read_condafile>
CONDA_FILE=$(cat cli/endpoints/online/model-1/environment/conda.yml)
# </read_condafile>
# <create_environment>
ENV_VERSION=$RANDOM
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/environment-version.json \
--parameters \
workspaceName=$WORKSPACE \
environmentAssetName=sklearn-env \
environmentAssetVersion=$ENV_VERSION \
dockerImage=mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1 \
condaFile="$CONDA_FILE"
# </create_environment>
# <create_endpoint>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint.json \
--parameters \
workspaceName=$WORKSPACE \
onlineEndpointName=$ENDPOINT_NAME \
identityType=SystemAssigned \
authMode=AMLToken \
location=$LOCATION
# </create_endpoint>
# <get_endpoint>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
# </get_endpoint>
# <create_deployment>
resourceScope="/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices"
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint-deployment.json \
--parameters \
workspaceName=$WORKSPACE \
location=$LOCATION \
onlineEndpointName=$ENDPOINT_NAME \
onlineDeploymentName=blue \
codeId="$resourceScope/workspaces/$WORKSPACE/codes/score-sklearn/versions/1" \
scoringScript=score.py \
environmentId="$resourceScope/workspaces/$WORKSPACE/environments/sklearn-env/versions/$ENV_VERSION" \
model="$resourceScope/workspaces/$WORKSPACE/models/score-sklearn/versions/1" \
endpointComputeType=Managed \
skuName=Standard_F2s_v2 \
skuCapacity=1
# </create_deployment>
# <get_deployment>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
scoringUri=$(echo $response | jq -r '.properties' | jq -r '.scoringUri')
# </get_endpoint>
# <get_endpoint_access_token>
response=$(curl -H "Content-Length: 0" --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/token?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN")
accessToken=$(echo $response | jq -r '.accessToken')
# </get_endpoint_access_token>
# <score_endpoint>
curl --location --request POST $scoringUri \
--header "Authorization: Bearer $accessToken" \
--header "Content-Type: application/json" \
--data-raw @cli/endpoints/online/model-1/sample-request.json
# </score_endpoint>
# <get_deployment_logs>
curl --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue/getLogs?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{ \"tail\": 100 }"
# </get_deployment_logs>
# <delete_endpoint>
curl --location --request DELETE "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN" || true
# </delete_endpoint>
The preceding YAML uses a general-purpose type (Standard_DS2_v2
) and a non-GPU Docker image (in the YAML, see the image
attribute). For GPU compute, choose a GPU compute type SKU and a GPU Docker image.
For supported general-purpose and GPU instance types, see Managed online endpoints supported VM SKUs. For a list of Azure Machine Learning CPU and GPU base images, see Azure Machine Learning base images.
Note
To use Kubernetes instead of managed endpoints as a compute target, see Introduction to Kubernetes compute target
Currently, you can specify only one model per deployment in the YAML. If you've more than one model, when you register the model, copy all the models as files or subdirectories into a folder that you use for registration. In your scoring script, use the environment variable AZUREML_MODEL_DIR
to get the path to the model root folder. The underlying directory structure is retained. For an example of deploying multiple models to one deployment, see Deploy multiple models to one deployment.
Tip
The format of the scoring script for online endpoints is the same format that's used in the preceding version of the CLI and in the Python SDK.
As noted earlier, the script specified in code_configuration.scoring_script
must have an init()
function and a run()
function.
As noted earlier, the script specified in CodeConfiguration(scoring_script="score.py")
must have an init()
function and a run()
function.
As noted earlier, the script specified in code_configuration.scoring_script
must have an init()
function and a run()
function. This example uses the score.py file.
When using a template for deployment, you must first upload the scoring file(s) to an Azure Blob store, and then register it:
- The following example uses the Azure CLI command
az storage blob upload-batch
to upload the scoring file(s):
set -x
#<get_access_token>
TOKEN=$(az account get-access-token --query accessToken -o tsv)
#</get_access_token>
# <create_variables>
SUBSCRIPTION_ID=$(az account show --query id | tr -d '\r"')
LOCATION=$(az ml workspace show --query location | tr -d '\r"')
RESOURCE_GROUP=$(az group show --query name | tr -d '\r"')
WORKSPACE=$(az configure -l | jq -r '.[] | select(.name=="workspace") | .value')
#</create_variables>
# <set_endpoint_name>
export ENDPOINT_NAME=endpoint-`echo $RANDOM`
# </set_endpoint_name>
#<api_version>
API_VERSION="2022-05-01"
#</api_version>
echo -e "Using:\nSUBSCRIPTION_ID=$SUBSCRIPTION_ID\nLOCATION=$LOCATION\nRESOURCE_GROUP=$RESOURCE_GROUP\nWORKSPACE=$WORKSPACE"
# define how to wait
wait_for_completion () {
operation_id=$1
status="unknown"
if [[ $operation_id == "" || -z $operation_id || $operation_id == "null" ]]; then
echo "operation id cannot be empty"
exit 1
fi
while [[ $status != "Succeeded" && $status != "Failed" ]]
do
echo "Getting operation status from: $operation_id"
operation_result=$(curl --location --request GET $operation_id --header "Authorization: Bearer $TOKEN")
# TODO error handling here
status=$(echo $operation_result | jq -r '.status')
echo "Current operation status: $status"
sleep 5
done
if [[ $status == "Failed" ]]
then
error=$(echo $operation_result | jq -r '.error')
echo "Error: $error"
fi
}
# <get_storage_details>
# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.accountName')
# </get_storage_details>
# <upload_code>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/score -s cli/endpoints/online/model-1/onlinescoring --account-name $AZURE_STORAGE_ACCOUNT
# </upload_code>
# <create_code>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/code-version.json \
--parameters \
workspaceName=$WORKSPACE \
codeAssetName="score-sklearn" \
codeUri="https://$AZURE_STORAGE_ACCOUNT.blob.core.windows.net/$AZUREML_DEFAULT_CONTAINER/score"
# </create_code>
# <upload_model>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/model -s cli/endpoints/online/model-1/model --account-name $AZURE_STORAGE_ACCOUNT
# </upload_model>
# <create_model>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/model-version.json \
--parameters \
workspaceName=$WORKSPACE \
modelAssetName="sklearn" \
modelUri="azureml://subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/workspaces/$WORKSPACE/datastores/$AZUREML_DEFAULT_DATASTORE/paths/model/sklearn_regression_model.pkl"
# </create_model>
# <read_condafile>
CONDA_FILE=$(cat cli/endpoints/online/model-1/environment/conda.yml)
# </read_condafile>
# <create_environment>
ENV_VERSION=$RANDOM
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/environment-version.json \
--parameters \
workspaceName=$WORKSPACE \
environmentAssetName=sklearn-env \
environmentAssetVersion=$ENV_VERSION \
dockerImage=mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1 \
condaFile="$CONDA_FILE"
# </create_environment>
# <create_endpoint>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint.json \
--parameters \
workspaceName=$WORKSPACE \
onlineEndpointName=$ENDPOINT_NAME \
identityType=SystemAssigned \
authMode=AMLToken \
location=$LOCATION
# </create_endpoint>
# <get_endpoint>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
# </get_endpoint>
# <create_deployment>
resourceScope="/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices"
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint-deployment.json \
--parameters \
workspaceName=$WORKSPACE \
location=$LOCATION \
onlineEndpointName=$ENDPOINT_NAME \
onlineDeploymentName=blue \
codeId="$resourceScope/workspaces/$WORKSPACE/codes/score-sklearn/versions/1" \
scoringScript=score.py \
environmentId="$resourceScope/workspaces/$WORKSPACE/environments/sklearn-env/versions/$ENV_VERSION" \
model="$resourceScope/workspaces/$WORKSPACE/models/score-sklearn/versions/1" \
endpointComputeType=Managed \
skuName=Standard_F2s_v2 \
skuCapacity=1
# </create_deployment>
# <get_deployment>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
scoringUri=$(echo $response | jq -r '.properties' | jq -r '.scoringUri')
# </get_endpoint>
# <get_endpoint_access_token>
response=$(curl -H "Content-Length: 0" --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/token?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN")
accessToken=$(echo $response | jq -r '.accessToken')
# </get_endpoint_access_token>
# <score_endpoint>
curl --location --request POST $scoringUri \
--header "Authorization: Bearer $accessToken" \
--header "Content-Type: application/json" \
--data-raw @cli/endpoints/online/model-1/sample-request.json
# </score_endpoint>
# <get_deployment_logs>
curl --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue/getLogs?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{ \"tail\": 100 }"
# </get_deployment_logs>
# <delete_endpoint>
curl --location --request DELETE "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN" || true
# </delete_endpoint>
- The following example demonstrates how to register the code using a template:
set -x
#<get_access_token>
TOKEN=$(az account get-access-token --query accessToken -o tsv)
#</get_access_token>
# <create_variables>
SUBSCRIPTION_ID=$(az account show --query id | tr -d '\r"')
LOCATION=$(az ml workspace show --query location | tr -d '\r"')
RESOURCE_GROUP=$(az group show --query name | tr -d '\r"')
WORKSPACE=$(az configure -l | jq -r '.[] | select(.name=="workspace") | .value')
#</create_variables>
# <set_endpoint_name>
export ENDPOINT_NAME=endpoint-`echo $RANDOM`
# </set_endpoint_name>
#<api_version>
API_VERSION="2022-05-01"
#</api_version>
echo -e "Using:\nSUBSCRIPTION_ID=$SUBSCRIPTION_ID\nLOCATION=$LOCATION\nRESOURCE_GROUP=$RESOURCE_GROUP\nWORKSPACE=$WORKSPACE"
# define how to wait
wait_for_completion () {
operation_id=$1
status="unknown"
if [[ $operation_id == "" || -z $operation_id || $operation_id == "null" ]]; then
echo "operation id cannot be empty"
exit 1
fi
while [[ $status != "Succeeded" && $status != "Failed" ]]
do
echo "Getting operation status from: $operation_id"
operation_result=$(curl --location --request GET $operation_id --header "Authorization: Bearer $TOKEN")
# TODO error handling here
status=$(echo $operation_result | jq -r '.status')
echo "Current operation status: $status"
sleep 5
done
if [[ $status == "Failed" ]]
then
error=$(echo $operation_result | jq -r '.error')
echo "Error: $error"
fi
}
# <get_storage_details>
# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.accountName')
# </get_storage_details>
# <upload_code>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/score -s cli/endpoints/online/model-1/onlinescoring --account-name $AZURE_STORAGE_ACCOUNT
# </upload_code>
# <create_code>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/code-version.json \
--parameters \
workspaceName=$WORKSPACE \
codeAssetName="score-sklearn" \
codeUri="https://$AZURE_STORAGE_ACCOUNT.blob.core.windows.net/$AZUREML_DEFAULT_CONTAINER/score"
# </create_code>
# <upload_model>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/model -s cli/endpoints/online/model-1/model --account-name $AZURE_STORAGE_ACCOUNT
# </upload_model>
# <create_model>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/model-version.json \
--parameters \
workspaceName=$WORKSPACE \
modelAssetName="sklearn" \
modelUri="azureml://subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/workspaces/$WORKSPACE/datastores/$AZUREML_DEFAULT_DATASTORE/paths/model/sklearn_regression_model.pkl"
# </create_model>
# <read_condafile>
CONDA_FILE=$(cat cli/endpoints/online/model-1/environment/conda.yml)
# </read_condafile>
# <create_environment>
ENV_VERSION=$RANDOM
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/environment-version.json \
--parameters \
workspaceName=$WORKSPACE \
environmentAssetName=sklearn-env \
environmentAssetVersion=$ENV_VERSION \
dockerImage=mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1 \
condaFile="$CONDA_FILE"
# </create_environment>
# <create_endpoint>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint.json \
--parameters \
workspaceName=$WORKSPACE \
onlineEndpointName=$ENDPOINT_NAME \
identityType=SystemAssigned \
authMode=AMLToken \
location=$LOCATION
# </create_endpoint>
# <get_endpoint>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
# </get_endpoint>
# <create_deployment>
resourceScope="/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices"
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint-deployment.json \
--parameters \
workspaceName=$WORKSPACE \
location=$LOCATION \
onlineEndpointName=$ENDPOINT_NAME \
onlineDeploymentName=blue \
codeId="$resourceScope/workspaces/$WORKSPACE/codes/score-sklearn/versions/1" \
scoringScript=score.py \
environmentId="$resourceScope/workspaces/$WORKSPACE/environments/sklearn-env/versions/$ENV_VERSION" \
model="$resourceScope/workspaces/$WORKSPACE/models/score-sklearn/versions/1" \
endpointComputeType=Managed \
skuName=Standard_F2s_v2 \
skuCapacity=1
# </create_deployment>
# <get_deployment>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
scoringUri=$(echo $response | jq -r '.properties' | jq -r '.scoringUri')
# </get_endpoint>
# <get_endpoint_access_token>
response=$(curl -H "Content-Length: 0" --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/token?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN")
accessToken=$(echo $response | jq -r '.accessToken')
# </get_endpoint_access_token>
# <score_endpoint>
curl --location --request POST $scoringUri \
--header "Authorization: Bearer $accessToken" \
--header "Content-Type: application/json" \
--data-raw @cli/endpoints/online/model-1/sample-request.json
# </score_endpoint>
# <get_deployment_logs>
curl --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue/getLogs?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{ \"tail\": 100 }"
# </get_deployment_logs>
# <delete_endpoint>
curl --location --request DELETE "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN" || true
# </delete_endpoint>
This example uses the score.py file: score.py
import os
import logging
import json
import numpy
import joblib
def init():
"""
This function is called when the container is initialized/started, typically after create/update of the deployment.
You can write the logic here to perform init operations like caching the model in memory
"""
global model
# AZUREML_MODEL_DIR is an environment variable created during deployment.
# It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)
# Please provide your model's folder name if there is one
model_path = os.path.join(
os.getenv("AZUREML_MODEL_DIR"), "model/sklearn_regression_model.pkl"
)
# deserialize the model file back into a sklearn model
model = joblib.load(model_path)
logging.info("Init complete")
def run(raw_data):
"""
This function is called for every invocation of the endpoint to perform the actual scoring/prediction.
In the example we extract the data from the json input and call the scikit-learn model's predict()
method and return the result back
"""
logging.info("model 1: request received")
data = json.loads(raw_data)["data"]
data = numpy.array(data)
result = model.predict(data)
logging.info("Request processed")
return result.tolist()
The init()
function is called when the container is initialized or started. Initialization typically occurs shortly after the deployment is created or updated. Write logic here for global initialization operations like caching the model in memory (as we do in this example). The run()
function is called for every invocation of the endpoint and should do the actual scoring and prediction. In the example, we extract the data from the JSON input, call the scikit-learn model's predict()
method, and then return the result.
To save time debugging, we highly recommend that you test-run your endpoint locally. For more, see Debug online endpoints locally in Visual Studio Code.
Note
- To deploy locally, Docker Engine must be installed.
- Docker Engine must be running. Docker Engine typically starts when the computer starts. If it doesn't, you can troubleshoot Docker Engine.
Important
The goal of a local endpoint deployment is to validate and debug your code and configuration before you deploy to Azure. Local deployment has the following limitations:
- Local endpoints do not support traffic rules, authentication, or probe settings.
- Local endpoints support only one deployment per endpoint.
Tip
You can use Azure Machine Learning inference HTTP server Python package to debug your scoring script locally without Docker Engine. Debugging with the inference server helps you to debug the scoring script before deploying to local endpoints so that you can debug without being affected by the deployment container configurations.
First create an endpoint. Optionally, for a local endpoint, you can skip this step and directly create the deployment (next step), which will, in turn, create the required metadata. Deploying models locally is useful for development and testing purposes.
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --local -n $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --local -n blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME --local
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --local --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --local --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --local --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show --local -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --local -n blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --local --name $ENDPOINT_NAME --yes
# </delete_endpoint>
ml_client.online_endpoints.begin_create_or_update(endpoint, local=True)
The template doesn't support local endpoints. See the Azure CLI or Python tabs for steps to test the endpoint locally.
Now, create a deployment named blue
under the endpoint.
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --local -n $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --local -n blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME --local
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --local --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --local --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --local --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show --local -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --local -n blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --local --name $ENDPOINT_NAME --yes
# </delete_endpoint>
The --local
flag directs the CLI to deploy the endpoint in the Docker environment.
ml_client.online_deployments.begin_create_or_update(
deployment=blue_deployment, local=True
)
The local=True
flag directs the SDK to deploy the endpoint in the Docker environment.
The template doesn't support local endpoints. See the Azure CLI or Python tabs for steps to test the endpoint locally.
Tip
Use Visual Studio Code to test and debug your endpoints locally. For more information, see debug online endpoints locally in Visual Studio Code.
Check the status to see whether the model was deployed without error:
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --local -n $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --local -n blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME --local
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --local --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --local --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --local --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show --local -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --local -n blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --local --name $ENDPOINT_NAME --yes
# </delete_endpoint>
The output should appear similar to the following JSON. The provisioning_state
is Succeeded
.
{
"auth_mode": "key",
"location": "local",
"name": "docs-endpoint",
"properties": {},
"provisioning_state": "Succeeded",
"scoring_uri": "http://localhost:49158/score",
"tags": {},
"traffic": {}
}
ml_client.online_endpoints.get(name=local_endpoint_name, local=True)
The method returns ManagedOnlineEndpoint
entity. The provisioning_state
is Succeeded
.
ManagedOnlineEndpoint({'public_network_access': None, 'provisioning_state': 'Succeeded', 'scoring_uri': 'http://localhost:49158/score', 'swagger_uri': None, 'name': 'local-10061534497697', 'description': 'this is a sample local endpoint', 'tags': {}, 'properties': {}, 'id': None, 'Resource__source_path': None, 'base_path': '/path/to/your/working/directory', 'creation_context': None, 'serialize': <msrest.serialization.Serializer object at 0x7ffb781bccd0>, 'auth_mode': 'key', 'location': 'local', 'identity': None, 'traffic': {}, 'mirror_traffic': {}, 'kind': None})
The template doesn't support local endpoints. See the Azure CLI or Python tabs for steps to test the endpoint locally.
The following table contains the possible values for provisioning_state
:
State | Description |
---|---|
Creating | The resource is being created. |
Updating | The resource is being updated. |
Deleting | The resource is being deleted. |
Succeeded | The create/update operation was successful. |
Failed | The create/update/delete operation has failed. |
Invoke the endpoint to score the model by using the convenience command invoke
and passing query parameters that are stored in a JSON file:
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --local -n $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --local -n blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME --local
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --local --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --local --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --local --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show --local -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --local -n blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --local --name $ENDPOINT_NAME --yes
# </delete_endpoint>
If you want to use a REST client (like curl), you must have the scoring URI. To get the scoring URI, run az ml online-endpoint show --local -n $ENDPOINT_NAME
. In the returned data, find the scoring_uri
attribute. Sample curl based commands are available later in this doc.
Invoke the endpoint to score the model by using the convenience command invoke and passing query parameters that are stored in a JSON file
ml_client.online_endpoints.invoke(
endpoint_name=local_endpoint_name,
request_file="../model-1/sample-request.json",
local=True,
)
If you want to use a REST client (like curl), you must have the scoring URI. To get the scoring URI, run the following code. In the returned data, find the scoring_uri
attribute. Sample curl based commands are available later in this doc.
endpoint = ml_client.online_endpoints.get(endpoint_name)
scoring_uri = endpoint.scoring_uri
The template doesn't support local endpoints. See the Azure CLI or Python tabs for steps to test the endpoint locally.
In the example score.py file, the run()
method logs some output to the console.
You can view this output by using the get-logs
command:
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --local -n $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --local -n blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME --local
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --local --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --local --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --local --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show --local -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --local -n blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --local --name $ENDPOINT_NAME --yes
# </delete_endpoint>
You can view this output by using the get_logs
method:
ml_client.online_deployments.get_logs(
name="blue", endpoint_name=local_endpoint_name, local=True, lines=50
)
The template doesn't support local endpoints. See the Azure CLI or Python tabs for steps to test the endpoint locally.
Next, deploy your online endpoint to Azure.
To create the endpoint in the cloud, run the following code:
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-moe-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --name blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml --all-traffic
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# supress printing secret
set +x
# <test_endpoint_using_curl_get_key>
ENDPOINT_KEY=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME -o tsv --query primaryKey)
# </test_endpoint_using_curl_get_key>
set -x
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header "Authorization: Bearer $ENDPOINT_KEY" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --name blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --name $ENDPOINT_NAME --yes --no-wait
# </delete_endpoint>
To create the deployment named blue
under the endpoint, run the following code:
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-moe-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --name blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml --all-traffic
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# supress printing secret
set +x
# <test_endpoint_using_curl_get_key>
ENDPOINT_KEY=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME -o tsv --query primaryKey)
# </test_endpoint_using_curl_get_key>
set -x
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header "Authorization: Bearer $ENDPOINT_KEY" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --name blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --name $ENDPOINT_NAME --yes --no-wait
# </delete_endpoint>
This deployment might take up to 15 minutes, depending on whether the underlying environment or image is being built for the first time. Subsequent deployments that use the same environment will finish processing more quickly.
Tip
- If you prefer not to block your CLI console, you may add the flag
--no-wait
to the command. However, this will stop the interactive display of the deployment status.
Important
The --all-traffic
flag in the above az ml online-deployment create
allocates 100% of the traffic to the endpoint to the newly created deployment. Though this is helpful for development and testing purposes, for production, you might want to open traffic to the new deployment through an explicit command. For example,
az ml online-endpoint update -n $ENDPOINT_NAME --traffic "blue=100"
-
Configure online endpoint:
[!TIP]
endpoint_name
: The name of the endpoint. It must be unique in the Azure region. For more information on the naming rules, see managed online endpoint limits.auth_mode
: Usekey
for key-based authentication. Useaml_token
for Azure Machine Learning token-based authentication. Akey
doesn't expire, butaml_token
does expire. For more information on authenticating, see Authenticate to an online endpoint.- Optionally, you can add description, tags to your endpoint.
# Creating a unique endpoint name with current datetime to avoid conflicts import datetime online_endpoint_name = "endpoint-" + datetime.datetime.now().strftime("%m%d%H%M%f") # create an online endpoint endpoint = ManagedOnlineEndpoint( name=online_endpoint_name, description="this is a sample online endpoint", auth_mode="key", tags={"foo": "bar"}, )
-
Create the endpoint:
Using the
MLClient
created earlier, we'll now create the Endpoint in the workspace. This command will start the endpoint creation and return a confirmation response while the endpoint creation continues.ml_client.online_endpoints.begin_create_or_update(endpoint)
-
Configure online deployment:
A deployment is a set of resources required for hosting the model that does the actual inferencing. We'll create a deployment for our endpoint using the
ManagedOnlineDeployment
class.model = Model(path="../model-1/model/sklearn_regression_model.pkl") env = Environment( conda_file="../model-1/environment/conda.yml", image="mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:latest", ) blue_deployment = ManagedOnlineDeployment( name="blue", endpoint_name=online_endpoint_name, model=model, environment=env, code_configuration=CodeConfiguration( code="../model-1/onlinescoring", scoring_script="score.py" ), instance_type="Standard_DS2_v2", instance_count=1, )
-
Create the deployment:
Using the
MLClient
created earlier, we'll now create the deployment in the workspace. This command will start the deployment creation and return a confirmation response while the deployment creation continues.ml_client.online_deployments.begin_create_or_update(blue_deployment)
[!TIP]
- If you prefer not to block your Python console, you may add the flag
no_wait=True
to the parameters. However, this will stop the interactive display of the deployment status.
# blue deployment takes 100 traffic endpoint.traffic = {"blue": 100} ml_client.online_endpoints.begin_create_or_update(endpoint)
- If you prefer not to block your Python console, you may add the flag
- The following example demonstrates using the template to create an online endpoint:
set -x
#<get_access_token>
TOKEN=$(az account get-access-token --query accessToken -o tsv)
#</get_access_token>
# <create_variables>
SUBSCRIPTION_ID=$(az account show --query id | tr -d '\r"')
LOCATION=$(az ml workspace show --query location | tr -d '\r"')
RESOURCE_GROUP=$(az group show --query name | tr -d '\r"')
WORKSPACE=$(az configure -l | jq -r '.[] | select(.name=="workspace") | .value')
#</create_variables>
# <set_endpoint_name>
export ENDPOINT_NAME=endpoint-`echo $RANDOM`
# </set_endpoint_name>
#<api_version>
API_VERSION="2022-05-01"
#</api_version>
echo -e "Using:\nSUBSCRIPTION_ID=$SUBSCRIPTION_ID\nLOCATION=$LOCATION\nRESOURCE_GROUP=$RESOURCE_GROUP\nWORKSPACE=$WORKSPACE"
# define how to wait
wait_for_completion () {
operation_id=$1
status="unknown"
if [[ $operation_id == "" || -z $operation_id || $operation_id == "null" ]]; then
echo "operation id cannot be empty"
exit 1
fi
while [[ $status != "Succeeded" && $status != "Failed" ]]
do
echo "Getting operation status from: $operation_id"
operation_result=$(curl --location --request GET $operation_id --header "Authorization: Bearer $TOKEN")
# TODO error handling here
status=$(echo $operation_result | jq -r '.status')
echo "Current operation status: $status"
sleep 5
done
if [[ $status == "Failed" ]]
then
error=$(echo $operation_result | jq -r '.error')
echo "Error: $error"
fi
}
# <get_storage_details>
# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.accountName')
# </get_storage_details>
# <upload_code>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/score -s cli/endpoints/online/model-1/onlinescoring --account-name $AZURE_STORAGE_ACCOUNT
# </upload_code>
# <create_code>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/code-version.json \
--parameters \
workspaceName=$WORKSPACE \
codeAssetName="score-sklearn" \
codeUri="https://$AZURE_STORAGE_ACCOUNT.blob.core.windows.net/$AZUREML_DEFAULT_CONTAINER/score"
# </create_code>
# <upload_model>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/model -s cli/endpoints/online/model-1/model --account-name $AZURE_STORAGE_ACCOUNT
# </upload_model>
# <create_model>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/model-version.json \
--parameters \
workspaceName=$WORKSPACE \
modelAssetName="sklearn" \
modelUri="azureml://subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/workspaces/$WORKSPACE/datastores/$AZUREML_DEFAULT_DATASTORE/paths/model/sklearn_regression_model.pkl"
# </create_model>
# <read_condafile>
CONDA_FILE=$(cat cli/endpoints/online/model-1/environment/conda.yml)
# </read_condafile>
# <create_environment>
ENV_VERSION=$RANDOM
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/environment-version.json \
--parameters \
workspaceName=$WORKSPACE \
environmentAssetName=sklearn-env \
environmentAssetVersion=$ENV_VERSION \
dockerImage=mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1 \
condaFile="$CONDA_FILE"
# </create_environment>
# <create_endpoint>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint.json \
--parameters \
workspaceName=$WORKSPACE \
onlineEndpointName=$ENDPOINT_NAME \
identityType=SystemAssigned \
authMode=AMLToken \
location=$LOCATION
# </create_endpoint>
# <get_endpoint>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
# </get_endpoint>
# <create_deployment>
resourceScope="/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices"
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint-deployment.json \
--parameters \
workspaceName=$WORKSPACE \
location=$LOCATION \
onlineEndpointName=$ENDPOINT_NAME \
onlineDeploymentName=blue \
codeId="$resourceScope/workspaces/$WORKSPACE/codes/score-sklearn/versions/1" \
scoringScript=score.py \
environmentId="$resourceScope/workspaces/$WORKSPACE/environments/sklearn-env/versions/$ENV_VERSION" \
model="$resourceScope/workspaces/$WORKSPACE/models/score-sklearn/versions/1" \
endpointComputeType=Managed \
skuName=Standard_F2s_v2 \
skuCapacity=1
# </create_deployment>
# <get_deployment>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
scoringUri=$(echo $response | jq -r '.properties' | jq -r '.scoringUri')
# </get_endpoint>
# <get_endpoint_access_token>
response=$(curl -H "Content-Length: 0" --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/token?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN")
accessToken=$(echo $response | jq -r '.accessToken')
# </get_endpoint_access_token>
# <score_endpoint>
curl --location --request POST $scoringUri \
--header "Authorization: Bearer $accessToken" \
--header "Content-Type: application/json" \
--data-raw @cli/endpoints/online/model-1/sample-request.json
# </score_endpoint>
# <get_deployment_logs>
curl --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue/getLogs?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{ \"tail\": 100 }"
# </get_deployment_logs>
# <delete_endpoint>
curl --location --request DELETE "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN" || true
# </delete_endpoint>
- After the endpoint has been created, the following example demonstrates how to deploy the model to the endpoint:
set -x
#<get_access_token>
TOKEN=$(az account get-access-token --query accessToken -o tsv)
#</get_access_token>
# <create_variables>
SUBSCRIPTION_ID=$(az account show --query id | tr -d '\r"')
LOCATION=$(az ml workspace show --query location | tr -d '\r"')
RESOURCE_GROUP=$(az group show --query name | tr -d '\r"')
WORKSPACE=$(az configure -l | jq -r '.[] | select(.name=="workspace") | .value')
#</create_variables>
# <set_endpoint_name>
export ENDPOINT_NAME=endpoint-`echo $RANDOM`
# </set_endpoint_name>
#<api_version>
API_VERSION="2022-05-01"
#</api_version>
echo -e "Using:\nSUBSCRIPTION_ID=$SUBSCRIPTION_ID\nLOCATION=$LOCATION\nRESOURCE_GROUP=$RESOURCE_GROUP\nWORKSPACE=$WORKSPACE"
# define how to wait
wait_for_completion () {
operation_id=$1
status="unknown"
if [[ $operation_id == "" || -z $operation_id || $operation_id == "null" ]]; then
echo "operation id cannot be empty"
exit 1
fi
while [[ $status != "Succeeded" && $status != "Failed" ]]
do
echo "Getting operation status from: $operation_id"
operation_result=$(curl --location --request GET $operation_id --header "Authorization: Bearer $TOKEN")
# TODO error handling here
status=$(echo $operation_result | jq -r '.status')
echo "Current operation status: $status"
sleep 5
done
if [[ $status == "Failed" ]]
then
error=$(echo $operation_result | jq -r '.error')
echo "Error: $error"
fi
}
# <get_storage_details>
# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.accountName')
# </get_storage_details>
# <upload_code>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/score -s cli/endpoints/online/model-1/onlinescoring --account-name $AZURE_STORAGE_ACCOUNT
# </upload_code>
# <create_code>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/code-version.json \
--parameters \
workspaceName=$WORKSPACE \
codeAssetName="score-sklearn" \
codeUri="https://$AZURE_STORAGE_ACCOUNT.blob.core.windows.net/$AZUREML_DEFAULT_CONTAINER/score"
# </create_code>
# <upload_model>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/model -s cli/endpoints/online/model-1/model --account-name $AZURE_STORAGE_ACCOUNT
# </upload_model>
# <create_model>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/model-version.json \
--parameters \
workspaceName=$WORKSPACE \
modelAssetName="sklearn" \
modelUri="azureml://subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/workspaces/$WORKSPACE/datastores/$AZUREML_DEFAULT_DATASTORE/paths/model/sklearn_regression_model.pkl"
# </create_model>
# <read_condafile>
CONDA_FILE=$(cat cli/endpoints/online/model-1/environment/conda.yml)
# </read_condafile>
# <create_environment>
ENV_VERSION=$RANDOM
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/environment-version.json \
--parameters \
workspaceName=$WORKSPACE \
environmentAssetName=sklearn-env \
environmentAssetVersion=$ENV_VERSION \
dockerImage=mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1 \
condaFile="$CONDA_FILE"
# </create_environment>
# <create_endpoint>
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint.json \
--parameters \
workspaceName=$WORKSPACE \
onlineEndpointName=$ENDPOINT_NAME \
identityType=SystemAssigned \
authMode=AMLToken \
location=$LOCATION
# </create_endpoint>
# <get_endpoint>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
# </get_endpoint>
# <create_deployment>
resourceScope="/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices"
az deployment group create -g $RESOURCE_GROUP \
--template-file arm-templates/online-endpoint-deployment.json \
--parameters \
workspaceName=$WORKSPACE \
location=$LOCATION \
onlineEndpointName=$ENDPOINT_NAME \
onlineDeploymentName=blue \
codeId="$resourceScope/workspaces/$WORKSPACE/codes/score-sklearn/versions/1" \
scoringScript=score.py \
environmentId="$resourceScope/workspaces/$WORKSPACE/environments/sklearn-env/versions/$ENV_VERSION" \
model="$resourceScope/workspaces/$WORKSPACE/models/score-sklearn/versions/1" \
endpointComputeType=Managed \
skuName=Standard_F2s_v2 \
skuCapacity=1
# </create_deployment>
# <get_deployment>
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN")
operation_id=$(echo $response | jq -r '.properties' | jq -r '.properties' | jq -r '.AzureAsyncOperationUri')
wait_for_completion $operation_id
scoringUri=$(echo $response | jq -r '.properties' | jq -r '.scoringUri')
# </get_endpoint>
# <get_endpoint_access_token>
response=$(curl -H "Content-Length: 0" --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/token?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN")
accessToken=$(echo $response | jq -r '.accessToken')
# </get_endpoint_access_token>
# <score_endpoint>
curl --location --request POST $scoringUri \
--header "Authorization: Bearer $accessToken" \
--header "Content-Type: application/json" \
--data-raw @cli/endpoints/online/model-1/sample-request.json
# </score_endpoint>
# <get_deployment_logs>
curl --location --request POST "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME/deployments/blue/getLogs?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{ \"tail\": 100 }"
# </get_deployment_logs>
# <delete_endpoint>
curl --location --request DELETE "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/onlineEndpoints/$ENDPOINT_NAME?api-version=$API_VERSION" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $TOKEN" || true
# </delete_endpoint>
Tip
- Use Troubleshooting online endpoints deployment to debug errors.
The show
command contains information in provisioning_status
for endpoint and deployment:
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-moe-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --name blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml --all-traffic
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# supress printing secret
set +x
# <test_endpoint_using_curl_get_key>
ENDPOINT_KEY=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME -o tsv --query primaryKey)
# </test_endpoint_using_curl_get_key>
set -x
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header "Authorization: Bearer $ENDPOINT_KEY" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --name blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --name $ENDPOINT_NAME --yes --no-wait
# </delete_endpoint>
You can list all the endpoints in the workspace in a table format by using the list
command:
az ml online-endpoint list --output table
Check the status to see whether the model was deployed without error:
ml_client.online_endpoints.get(name=online_endpoint_name)
You can list all the endpoints in the workspace in a table format by using the list
method:
for endpoint in ml_client.online_endpoints.list():
print(endpoint.name)
The method returns list (iterator) of ManagedOnlineEndpoint
entities. You can get other information by specifying parameters.
For example, output the list of endpoints like a table:
print("Kind\tLocation\tName")
print("-------\t----------\t------------------------")
for endpoint in ml_client.online_endpoints.list():
print(f"{endpoint.kind}\t{endpoint.location}\t{endpoint.name}")
Tip
While templates are useful for deploying resources, they can't be used to list, show, or invoke resources.
The show
command contains information in provisioning_status
for endpoint and deployment:
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-moe-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --name blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml --all-traffic
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# supress printing secret
set +x
# <test_endpoint_using_curl_get_key>
ENDPOINT_KEY=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME -o tsv --query primaryKey)
# </test_endpoint_using_curl_get_key>
set -x
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header "Authorization: Bearer $ENDPOINT_KEY" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --name blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --name $ENDPOINT_NAME --yes --no-wait
# </delete_endpoint>
You can list all the endpoints in the workspace in a table format by using the list
command:
az ml online-endpoint list --output table
Check the logs to see whether the model was deployed without error:
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-moe-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --name blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml --all-traffic
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# supress printing secret
set +x
# <test_endpoint_using_curl_get_key>
ENDPOINT_KEY=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME -o tsv --query primaryKey)
# </test_endpoint_using_curl_get_key>
set -x
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header "Authorization: Bearer $ENDPOINT_KEY" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --name blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --name $ENDPOINT_NAME --yes --no-wait
# </delete_endpoint>
By default, logs are pulled from inference-server. To see the logs from storage-initializer (it mounts assets like model and code to the container), add the --container storage-initializer
flag.
You can view this output by using the get_logs
method:
ml_client.online_deployments.get_logs(
name="blue", endpoint_name=online_endpoint_name, lines=50
)
By default, logs are pulled from inference-server. To see the logs from storage-initializer (it mounts assets like model and code to the container), add the container_type="storage-initializer"
option.
ml_client.online_deployments.get_logs(
name="blue", endpoint_name=online_endpoint_name, lines=50, container_type="storage-initializer"
)
Tip
While templates are useful for deploying resources, they can't be used to list, show, or invoke resources.
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-moe-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --name blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml --all-traffic
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# supress printing secret
set +x
# <test_endpoint_using_curl_get_key>
ENDPOINT_KEY=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME -o tsv --query primaryKey)
# </test_endpoint_using_curl_get_key>
set -x
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header "Authorization: Bearer $ENDPOINT_KEY" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --name blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --name $ENDPOINT_NAME --yes --no-wait
# </delete_endpoint>
By default, logs are pulled from inference-server. To see the logs from storage-initializer (it mounts assets like model and code to the container), add the --container storage-initializer
flag.
For more information on deployment logs, see Get container logs.
You can use either the invoke
command or a REST client of your choice to invoke the endpoint and score some data:
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-moe-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --name blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml --all-traffic
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# supress printing secret
set +x
# <test_endpoint_using_curl_get_key>
ENDPOINT_KEY=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME -o tsv --query primaryKey)
# </test_endpoint_using_curl_get_key>
set -x
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header "Authorization: Bearer $ENDPOINT_KEY" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --name blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --name $ENDPOINT_NAME --yes --no-wait
# </delete_endpoint>
The following example shows how to get the key used to authenticate to the endpoint:
Tip
You can control which Azure Active Directory security principals can get the authentication key by assigning them to a custom role that allows Microsoft.MachineLearningServices/workspaces/onlineEndpoints/token/action
and Microsoft.MachineLearningServices/workspaces/onlineEndpoints/listkeys/action
. For more information, see Manage access to an Azure Machine Learning workspace.
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-moe-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --name blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml --all-traffic
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# supress printing secret
set +x
# <test_endpoint_using_curl_get_key>
ENDPOINT_KEY=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME -o tsv --query primaryKey)
# </test_endpoint_using_curl_get_key>
set -x
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header "Authorization: Bearer $ENDPOINT_KEY" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --name blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --name $ENDPOINT_NAME --yes --no-wait
# </delete_endpoint>
Next, use curl to score data.
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-moe-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --name blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml --all-traffic
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# supress printing secret
set +x
# <test_endpoint_using_curl_get_key>
ENDPOINT_KEY=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME -o tsv --query primaryKey)
# </test_endpoint_using_curl_get_key>
set -x
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header "Authorization: Bearer $ENDPOINT_KEY" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --name blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --name $ENDPOINT_NAME --yes --no-wait
# </delete_endpoint>
Notice we use show
and get-credentials
commands to get the authentication credentials. Also notice that we're using the --query
flag to filter attributes to only what we need. To learn more about --query
, see Query Azure CLI command output.
To see the invocation logs, run get-logs
again.
For information on authenticating using a token, see Authenticate to online endpoints.
Using the MLClient
created earlier, we'll get a handle to the endpoint. The endpoint can be invoked using the invoke
command with the following parameters:
endpoint_name
- Name of the endpointrequest_file
- File with request datadeployment_name
- Name of the specific deployment to test in an endpoint
We'll send a sample request using a json file.
# test the blue deployment with some sample data
ml_client.online_endpoints.invoke(
endpoint_name=online_endpoint_name,
deployment_name="blue",
request_file="../model-1/sample-request.json",
)
Tip
While templates are useful for deploying resources, they can't be used to list, show, or invoke resources.
You can use either the invoke
command or a REST client of your choice to invoke the endpoint and score some data:
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file cli/endpoints/online/model-1/sample-request.json
If you want to update the code, model, or environment, update the YAML file, and then run the az ml online-endpoint update
command.
Note
If you update instance count and along with other model settings (code, model, or environment) in a single update
command: first the scaling operation will be performed, then the other updates will be applied. In production environment is a good practice to perform these operations separately.
To understand how update
works:
-
Open the file online/model-1/onlinescoring/score.py.
-
Change the last line of the
init()
function: Afterlogging.info("Init complete")
, addlogging.info("Updated successfully")
. -
Save the file.
-
Run this command:
az ml online-deployment update -n blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml
[!Note] Updating by using YAML is declarative. That is, changes in the YAML are reflected in the underlying Azure Resource Manager resources (endpoints and deployments). A declarative approach facilitates GitOps: All changes to endpoints and deployments (even
instance_count
) go through the YAML.[!TIP] With the
update
command, you can use the--set
parameter in the Azure CLI to override attributes in your YAML or to set specific attributes without passing the YAML file. Using--set
for single attributes is especially valuable in development and test scenarios. For example, to scale up theinstance_count
value for the first deployment, you could use the--set instance_count=2
flag. However, because the YAML isn't updated, this technique doesn't facilitate GitOps. -
Because you modified the
init()
function (init()
runs when the endpoint is created or updated), the messageUpdated successfully
will be in the logs. Retrieve the logs by running:
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-moe-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --name blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml --all-traffic
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# supress printing secret
set +x
# <test_endpoint_using_curl_get_key>
ENDPOINT_KEY=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME -o tsv --query primaryKey)
# </test_endpoint_using_curl_get_key>
set -x
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header "Authorization: Bearer $ENDPOINT_KEY" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --name blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --name $ENDPOINT_NAME --yes --no-wait
# </delete_endpoint>
The update
command also works with local deployments. Use the same az ml online-deployment update
command with the --local
flag.
If you want to update the code, model, or environment, update the configuration, and then run the MLClient
's online_deployments.begin_create_or_update
module/method.
Note
If you update instance count and along with other model settings (code, model, or environment) in a single begin_create_or_update
method: first the scaling operation will be performed, then the other updates will be applied. In production environment is a good practice to perform these operations separately.
To understand how begin_create_or_update
works:
-
Open the file online/model-1/onlinescoring/score.py.
-
Change the last line of the
init()
function: Afterlogging.info("Init complete")
, addlogging.info("Updated successfully")
. -
Save the file.
-
Run the method:
ml_client.online_deployments.begin_create_or_update(blue_deployment)
-
Because you modified the
init()
function (init()
runs when the endpoint is created or updated), the messageUpdated successfully
will be in the logs. Retrieve the logs by running:ml_client.online_deployments.get_logs( name="blue", endpoint_name=online_endpoint_name, lines=50 )
The begin_create_or_update
method also works with local deployments. Use the same method with the local=True
flag.
There currently is not an option to update the deployment using an ARM template.
Note
The above is an example of inplace rolling update.
- For managed online endpoint, the same deployment is updated with the new configuration, with 20% nodes at a time, i.e. if the deployment has 10 nodes, 2 nodes at a time will be updated.
- For Kubernetes online endpoint, the system will iterately create a new deployment instance with the new configuration and delete the old one.
- For production usage, you might want to consider blue-green deployment, which offers a safer alternative.
Autoscale automatically runs the right amount of resources to handle the load on your application. Managed online endpoints support autoscaling through integration with the Azure monitor autoscale feature. To configure autoscaling, see How to autoscale online endpoints.
To view metrics and set alerts based on your SLA, complete the steps that are described in Monitor online endpoints.
The get-logs
command for CLI or the get_logs
method for SDK provides only the last few hundred lines of logs from an automatically selected instance. However, Log Analytics provides a way to durably store and analyze logs. For more information on using logging, see Monitor online endpoints
[!INCLUDE Email Notification Include]
If you aren't going use the deployment, you should delete it by running the following code (it deletes the endpoint and all the underlying deployments):
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-moe-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --name blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml --all-traffic
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# supress printing secret
set +x
# <test_endpoint_using_curl_get_key>
ENDPOINT_KEY=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME -o tsv --query primaryKey)
# </test_endpoint_using_curl_get_key>
set -x
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header "Authorization: Bearer $ENDPOINT_KEY" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --name blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --name $ENDPOINT_NAME --yes --no-wait
# </delete_endpoint>
ml_client.online_endpoints.begin_delete(name=online_endpoint_name)
set -e
# <set_endpoint_name>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
# </set_endpoint_name>
export ENDPOINT_NAME=endpt-moe-`echo $RANDOM`
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f endpoints/online/managed/sample/endpoint.yml
# </create_endpoint>
# <create_deployment>
az ml online-deployment create --name blue --endpoint $ENDPOINT_NAME -f endpoints/online/managed/sample/blue-deployment.yml --all-traffic
# </create_deployment>
# <get_status>
az ml online-endpoint show -n $ENDPOINT_NAME
# </get_status>
# check if create was successful
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
deploy_status=`az ml online-deployment show --name blue --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment completed successfully"
else
echo "Deployment failed"
exit 1
fi
# <test_endpoint>
az ml online-endpoint invoke --name $ENDPOINT_NAME --request-file endpoints/online/model-1/sample-request.json
# </test_endpoint>
# supress printing secret
set +x
# <test_endpoint_using_curl_get_key>
ENDPOINT_KEY=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME -o tsv --query primaryKey)
# </test_endpoint_using_curl_get_key>
set -x
# <test_endpoint_using_curl>
SCORING_URI=$(az ml online-endpoint show -n $ENDPOINT_NAME -o tsv --query scoring_uri)
curl --request POST "$SCORING_URI" --header "Authorization: Bearer $ENDPOINT_KEY" --header 'Content-Type: application/json' --data @endpoints/online/model-1/sample-request.json
# </test_endpoint_using_curl>
# <get_logs>
az ml online-deployment get-logs --name blue --endpoint $ENDPOINT_NAME
# </get_logs>
# <delete_endpoint>
az ml online-endpoint delete --name $ENDPOINT_NAME --yes --no-wait
# </delete_endpoint>
Try safe rollout of your models as a next step:
To learn more, review these articles:
- Deploy models with REST
- Create and use online endpoints in the studio
- How to autoscale managed online endpoints
- Use batch endpoints for batch scoring
- Access Azure resources from an online endpoint with a managed identity
- Troubleshoot online endpoints deployment
- Enable network isolation with managed online endpoints
- View costs for an Azure Machine Learning managed online endpoint