-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathexp1_transfer.py
49 lines (38 loc) · 1.83 KB
/
exp1_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = False
import pickle
from nn.nn_utils import save_model
from exp_yf.yt_dataset import get_yt_loaders
from models.yt import YT_Small
from nn.pkt import knowledge_transfer_handcrafted
from nn.hint_transfer import unsupervised_hint_transfer_handcrafted
from nn.retrieval_evaluation import retrieval_evaluation
def perform_kt_transfer(kt_type='hint', epochs=10):
results = []
for i in range(5):
train_loader, test_loader, database_loader = get_yt_loaders(batch_size=128, feature_type='transfer', seed=i)
net = YT_Small()
net.cuda()
if kt_type == 'hint':
unsupervised_hint_transfer_handcrafted(net, train_loader, epochs=epochs, lr=0.0001)
elif kt_type == 'kt':
knowledge_transfer_handcrafted(net, train_loader, epochs=epochs, lr=0.0001)
elif kt_type == 'kt_optimal':
knowledge_transfer_handcrafted(net, train_loader, epochs=epochs, lr=0.001)
elif kt_type == 'kt_supervised':
knowledge_transfer_handcrafted(net, train_loader, epochs=epochs, lr=0.0001, supervised_weight=0.001)
save_model(net, 'models/' + kt_type + '_' + str(i) + '.model')
train_loader, test_loader, database_loader = get_yt_loaders(batch_size=128, feature_type='image', seed=i)
cur_res = retrieval_evaluation(net, database_loader, test_loader)
results.append(cur_res)
print(cur_res)
with open('results/' + kt_type + '.pickle', 'wb') as f:
pickle._dump(results, f, protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == '__main__':
perform_kt_transfer('hint')
perform_kt_transfer('kt')
perform_kt_transfer('kt_supervised')
## Additional experiments
# KT is also stable when a larger learning rate is used
perform_kt_transfer('kt_optimal')