-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPresentazione.tex.backup
531 lines (403 loc) · 13.6 KB
/
Presentazione.tex.backup
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
%% LyX 1.6.1 created this file. For more info, see http://www.lyx.org/.
%% Do not edit unless you really know what you are doing.
\documentclass[10pt,italian,compact]{beamer}
\usepackage[3D]{movie15}
\usepackage{babel}
\usepackage{ae,aecompl}
\usepackage[T1]{fontenc}
\usepackage[latin9]{inputenc}
\setcounter{tocdepth}{2}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{verbatim}
%\includeonlyframes{current_frame}
\makeatletter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Textclass specific LaTeX commands.
% this default might be overridden by plain title style
\newcommand\makebeamertitle{\frame{\maketitle}}%
\AtBeginDocument{
\let\origtableofcontents=\tableofcontents
\def\tableofcontents{\@ifnextchar[{\origtableofcontents}{\gobbletableofcontents}}
\def\gobbletableofcontents#1{\origtableofcontents}
}
\newcommand\itemat[2]{\only<{#1}>{\begin{enumerate} \setcounter{enumi}{#1} \item{#2} \end{enumerate}}}
\renewcommand\emph[2]{\textcolor{#1}{\textbf{{#2}}}}
\newcommand\lyxframe[1]{\begin{frame}[fragile]{#1}}
\setcounter{MaxMatrixCols}{15}
\newcommand\hidetext[2]{\colorbox{#1}{\textcolor{#1}{#2}}}
\setlength{\parskip}{0pt} % 1ex plus 0.5ex minus 0.2ex}
\setlength{\parindent}{0pt}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.
\usepackage{xcolor}
\usepackage{multicol}
%
%\usetheme{Darmstadt}
\usetheme{Frankfurt}
%+++spartano, ok
%\usetheme{Madrid}
%+++ senza boxes, ma carino
%\usetheme{Pittsburgh}
%+ square
%\usetheme{Rochester}
%\usetheme{Singapore}
%super tipico
%\usetheme{Warsaw}
%\usepackage{pstcol,pst-node,pst-tree}
% or ...
%\usecolortheme{albatross}
%\usecolortheme{beaver}
%\usecolortheme{beetle}
%arancione,vivace
%\usecolortheme{crane}
%identico al default
%\usecolortheme{dolphin}
%come il default, piu delicato
%\usecolortheme{rose}
%tutto grigio....
%\usecolortheme{seagull}
% come default, header piu chiaro
%\usecolortheme{seahorse}
%tutto uguale, header arancione!!!
%\usecolortheme{wolverine}
%\useoutertheme{infolines}
\useoutertheme[subsection=false]{miniframes}
%\useoutertheme{shadow}
%carino
%\useoutertheme{smoothbars}
%\useoutertheme{split}
%\useoutertheme{tree}
%\useoutertheme{default}
%\usepackage{euler}
%
\setbeamercovered{transparent=15}
\setbeamertemplate{navigation symbols}{}
\useinnertheme{circles}
% or whatever (possibly just delete it)
%\usefonttheme{structuresmallcapsserif}
\setbeamerfont{headline}{size=\footnotesize}
\definecolor{A}{rgb}{0.09,0.9,0.9}
\definecolor{C}{rgb}{0.9,0.09,0.09}
\definecolor{E}{rgb}{0.9,0.686842,0.431053}
\definecolor{D}{rgb}{0.175263,0.686842,0.9}
\definecolor{G}{rgb}{0.431053,0.9,0.09}
\definecolor{F}{rgb}{0.9,0.9,0.175263}
\definecolor{I}{rgb}{0.09,0.09,0.9}
\definecolor{H}{rgb}{0.09,0.09,0.09}
\definecolor{K}{rgb}{0.260526,0.772105,0.09}
\definecolor{L}{rgb}{0.09,0.09,0.9}
\definecolor{N}{rgb}{0.9,0.857368,0.9}
\definecolor{Q}{rgb}{0.345789,0.9,0.09}
\definecolor{P}{rgb}{0.601579,0.09,0.516316}
\definecolor{R}{rgb}{0.9,0.260526,0.601579}
\definecolor{T}{rgb}{0.857368,0.345789,0.9}
\definecolor{W}{rgb}{0.9,0.09,0.9}
\definecolor{V}{rgb}{0.9,0.09,0.09}
\makeatother
\begin{document}
\title{Sviluppi Teorici e Applicativi delle Metriche Entropiche di Rohlin}
\author{Dawid Crivelli\\
}
\date{26 Aprile 2012}
\makebeamertitle
\section{Distanze Entropiche}
\lyxframe{Distanza di Rohlin}
Distanza non tra configurazioni, ma tra \emph{black}{partizioni}\\
\bigskip{}
Requisiti:
\begin{itemize}
\item uno spazio di probabilit\`a: $(\mathbf{M},\mathcal{M},\mu)$
\item un criterio per partizionare (relazione di equivalenza)
\item usiamo $\mathbf{M}$ discreto
\end{itemize}
\bigskip{}
Ogni sequenza, reticolo, grafo => array con relazioni non locali
\medskip{}
\begin{columns}
\column{0.38\textwidth}
\center{\includegraphics[width=1\textwidth]{presentazione-immagini/reticolo-semplice3}}\null
\column{0.24\textwidth}
\center{da $\mathcal{C}(\mathbf{M})$ a $\mathcal{Z}(\mathbf{M})$}\null
\column{0.38\textwidth}
\center{\includegraphics[width=1\textwidth]{presentazione-immagini/reticolo-semplice4}}\null
\end{columns}
\end{frame}
\lyxframe{Complessit\`a di una partizione}
\begin{comment}
Ad ogni partizione corrispondono configurazioni diverse:\\
\begin{center}
{\tt\{
\colorbox{red}{AAAA}
\colorbox{green}{BB}
\colorbox{blue}{CCC}
\colorbox{red}{AAAA}
\}}\\
{\tt\{
\colorbox{red}{BBBB}
\colorbox{green}{ZZ}
\colorbox{blue}{AAA}
\colorbox{red}{FFFF}
\}}
\end{center}
\end{comment}
Partizione $\Longleftrightarrow$ scomposizione in \emph{black}{atomi} disgiunti di \textit{misura} $\mu(A_k)$
\bigskip{}
Rappresentazione associando ad ogni sito un'etichetta (atomo):\\
\[\mathrm{A}=\{\underbrace{(1,2,3,4)}_{A_1},\underbrace{(5,6)}_{A_2},\underbrace{(7,8,9)}_{A_3},\underbrace{(10,11,12,13)}_{A_4}\}\]
\medskip{}
\[\mathrm{A}=
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\colorbox{red}{1} & \colorbox{red}{1} & \colorbox{red}{1} & \colorbox{red}{1} & \colorbox{green}{2} & \colorbox{green}{2} & \colorbox{blue}{3} & \colorbox{blue}{3} & \colorbox{blue}{3} & \colorbox{orange}{4} & \colorbox{orange}{4} & \colorbox{orange}{4} & \colorbox{orange}{4} \\
\end{bmatrix}
\]
\bigskip{}
\emph{black}{Entropia di Shannon}: misura della complessit\`a di una partizione
\[H(A)=\sum_k^n \mu(A_k) \log\left(\mu(A_k)\right)\]
\begin{center}
\begin{tabular}{ll}
H=$\log(n)$ (max) & $\Leftrightarrow$ partizione con n atomi equivalenti\\
H=0 (min) & $\Leftrightarrow$ partizione banale $\nu$
\end{tabular}
\end{center}
\end{frame}
\lyxframe{Partizionamento}
\center{un partizione \`e una relazione di equivalenza}, $i \sim j \Longleftrightarrow i,j \in A_k$
\bigskip{}
\begin{overprint}
\only<1>{\center{\includegraphics[height=0.5\textheight]{presentazione-immagini/reticolo-semplice2}}}
\only<2>{\center{\includegraphics[height=0.5\textheight]{presentazione-immagini/reticolo-bond}}}
\end{overprint}
relazione locale(tra vicini) => partizione globale\\
=> colorazione di grafi, algoritmo Hoshen-Kopelman $\mathcal{O} (N\log(N))$
\end{frame}
\begin{frame}
\frametitle{Ordinamento parziale e fattori}
\begin{columns}
\column{0.35\textwidth}
\begin{block}{Ordinamento}
\begin{itemize}
\item $\alpha$ \`e \emph{black}{fattore} di $\beta$
\item $\beta$ \`e pi\`u fine di $\alpha$
\item $H(\alpha) < H(\beta)$
\end{itemize}
\end{block}
\bigskip{}
\begin{exampleblock}{Prodotto}
\begin{itemize}
\item propriet\`a associativa
\item elemento neutro $\nu$
\item ogni partizione \`e prodotto di fattori
\item ``\emph{black}{minimo comune multiplo}''
\end{itemize}
\end{exampleblock}
\column{0.65\textwidth}
\vspace{-0.5cm}
\center{\includegraphics[width=1\textwidth]{presentazione-immagini/fattori1}}\null
\vspace{0.8cm}
\center{\includegraphics[width=1\textwidth]{presentazione-immagini/fattori2}}\null
\end{columns}
\end{frame}
\begin{frame}{Prodotti tra partizioni}
Partizione prodotto $\gamma = \alpha \vee \beta$, pi\`u fine: \emph{black}{unione} dei bordi
\bigskip{}
\hspace{0.075\textwidth}\includegraphics[width=0.85\textwidth]{presentazione-immagini/prodotto}
\bigskip{}
Partizione intersezione $\sigma = \alpha \wedge \beta$, meno fine: \emph{black}{intersezione} dei bordi\\
\bigskip{}
\hspace{0.075\textwidth}\includegraphics[width=0.67\textwidth]{presentazione-immagini/intersezione}
\center{\`e il ``\emph{black}{massimo comune divisore}''}
\end{frame}
\begin{frame}{Distanza di Rohlin}
Distanza tra partizioni, tramite l'entropia del prodotto:
\[d_R(\alpha,\beta) = 2\,H(\alpha \vee \beta) - H(\alpha) - H(\beta)\]
Partizioni simili hanno piccola distanza:
\medskip{}
\begin{center}
\includegraphics[width=0.7\textwidth]{presentazione-immagini/distanze}
\end{center}
\bigskip{}
Funziona perch\'e:
\begin{itemize}
\item prodotto idempotente $\alpha \vee \alpha = \alpha$ \\
\item l'entropia del prodotto \`e crescente $H(\alpha \vee \beta)\geq H(\alpha),\; \forall \beta$
\end{itemize}
\bigskip{}
Distanza piccola per partizioni estramemente frammentate...
\end{frame}
\begin{frame}{Riduzione e amplificazione della distanza}
Ridurre le partizioni: eliminare il pi\`u possibile fattori comuni
\bigskip{}
Definiamo una mappa dalle partizioni alle ridotte
\[\alpha\otimes\beta\xrightarrow{\text{riduzione}}\hat{\alpha}(\alpha,\beta)\otimes\hat{\beta}(\alpha,\beta)\]
\begin{alertblock}{Algoritmo}
\begin{itemize}
\item scomposizione delle due partizioni in fattori
\item confronto dei fattori tra le due partizioni
\item scelta e scarto
\item ricomposizione di ciascuna
\end{itemize}
\end{alertblock}
\bigskip{}
La distanza \`e sempre amplificata: \[R = \frac{d_R(\hat{\alpha}\otimes\hat{\beta})}{d_R(\alpha\otimes\beta)} \geq 1\]
\end{frame}
\begin{frame}{Confronto tra diverse riduzioni}
{\small
\begin{columns}
\column{0.5\textwidth}
\begin{block}{Fattori lineari}
\begin{itemize}
\item \emph{black}{solo} partizioni lineari connesse
\item ottimale come riduzione
\item semplicissimo da implementare
\end{itemize}
\end{block}
\column{0.5\textwidth}
\begin{block}{Fattori dicotomici semplici}
\begin{itemize}
\item ovunque applicabile
\item oneroso computazionalmente
\item peggiore nel caso lineare
\end{itemize}
\end{block}
\end{columns}
}
\bigskip{}
\hspace{-0.25cm}\includegraphics[width=1\textwidth]{presentazione-immagini/confronto_riduzioni}
\end{frame}
\begin{frame}
\frametitle{Definizione topologica della distanza}
Funzionale entropia indipendente dalla misura $\mu$:
\[H_\text{top} = \log(n) \qquad \text{n \`e il numero di atomi}\]
Una distanza di Rohlin opportunamente definita:
\[d_{\text{top}}(\alpha,\beta) = 2 \log (n_{\alpha \vee \beta}) - \log (n_{\alpha}) - \log (n_{\beta}) \]
\bigskip{}
\center{
\includegraphics[height=0.35\textheight]{presentazione-immagini/nr_coperture_dist_top}
}\null
\end{frame}
\section{Sequenze biologiche}
\begin{frame}{Proteine dell'influenza H3N2}
\begin{columns}
\column{0.5\textwidth}
\begin{itemize}
\item proteine come stringhe
\item approccio \textit{black box}
\item sequenze lunghe 566
\item alfabeto di 24 lettere
\item solo 10\% mutazioni
\item \emph{black}{antigenic drift}
\end{itemize}
\column{0.5\textwidth}
\includegraphics[height=0.5\textheight]{immagini/swine-flu}
%\center{\small{Struttura del virus}}
\end{columns}
\medskip{}
Sequenze a confronto:
\medskip{}
\includegraphics[width=1\textwidth]{presentazione-immagini/seq_lines2}
\end{frame}
\begin{frame}[fragile]
\frametitle{Hamming \`e poco adatto}
\begin{columns}[b]
\column{0.65\textwidth}
\begin{semiverbatim}
A=\{GHHAVPNGT\textbf{{\color{red}{L}}}VKTITTG\emph{red}{R}ICGDP\emph{red}{H}CDGFQNK\emph{red}{E}W\}
B=\{GHHAVPNGT\emph{red}{I}VKTITTG\emph{red}{E}ICGDP\emph{red}{Q}CDGFQNK\emph{red}{K}W\}
\end{semiverbatim}
\column{0.35\textwidth}
$d_H(A,B)$= \#differenze
$d_H(A,B)=4$
\end{columns}
\bigskip{}
\begin{columns}
\column{0.65\textwidth}
\visible<2->{\includegraphics[width=0.9\textwidth]{grafici/clusters_hamming2}}
\column{0.35\textwidth}
\visible<2->{
\begin{block}{Antigenic drift}
$d_H \propto t$
\end{block}
}
\end{columns}
\end{frame}
\begin{frame}{Utilizzo misure entropiche}
\begin{overprint}
\begin{enumerate}
\item<1-> Selezione N sequenze da un database (FluDB, NCBI) e allineamento
\item<2-> Partizionamento delle sequenze
\item<3-> Calcolo matrice $d_{ij}$ delle $N(N-1)/2$ distanze tra partizioni
\medskip{}
\item<4-> N punti, distanti tra di loro $d_{ij}$ --- grafo completo tra le sequenze\medskip{}
\end{enumerate}
\begin{center}
\visible<4->{\includegraphics[height=0.55\textheight,keepaspectratio=true]{grafici/matrice-distanze}}
\end{center}
\end{overprint}
\end{frame}
\begin{frame}
\frametitle{Clustering di sequenze}
Suddivisione di N sequenze in p \emph{blue}{clusters}
\bigskip{}
\begin{center}
\includegraphics[height=0.55\textheight,keepaspectratio=true]{immagini/dendrogramma}
% dendrogramma.png: 1287x784 pixel, 100dpi, 32.69x19.91 cm, bb=0 0 927 564
``Clustering gerarchico agglomerativo''
\end{center}
\bigskip{}
Altri algoritmi: risultati qualitativamente indistinguibili
\end{frame}
\begin{frame}
\frametitle{Distanza e partizionamento ottimale}
\begin{columns}
\column{0.5\textwidth}
\begin{overprint}
\begin{block}{Partizioni di segmenti omogenei}
\begin{center}
\includegraphics[width=1\textwidth,keepaspectratio=true]{presentazione-immagini/partizioni1}
$d_R = 0.13$
\end{center}
\end{block}
\bigskip{}
\begin{block}<2->{Partizioni ridotte}
\begin{center}
\visible<2->{\includegraphics[width=1\textwidth,keepaspectratio=true]{presentazione-immagini/partizioni2}
$d_R = 1.07$}
\end{center}
\end{block}
\end{overprint}
\column{0.5\textwidth}
\includegraphics<3->[width=1\textwidth,keepaspectratio=true]{presentazione-immagini/clustering_finale}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Partizionamento alternativo}
\end{frame}
\section{Sistemi magnetici}
\begin{frame}
\frametitle{Sequenze lineari di spin (Ising 1D) }
\[H=-\sum_{i}\, J_{i,i+1}\sigma_{i}\sigma_{i+1}\qquad i\in\left\{ 1,\dots,L\right\} \]
variabili di \emph{blue}{link} $l_{i}=\sigma_{i}\sigma_{i+1}\qquad i\in\left\{ 1,\dots,L-1\right\} $
\[H=-J\sum_{i}l_{i}\]
\[l_{i}=\sigma_{i}\sigma_{i+1}\Longrightarrow {\sigma_{i}}=l_{i}\sigma_{i}\]
\begin{align}
\left\langle \sigma_{i}\,\sigma_{i+r}\right\rangle &=\frac{1}{Z}\sum_{\sigma}\sigma_{i}\,\sigma_{i+r}\,\exp\left(\beta\sum_{k}l_{k}(\sigma)\right)\\
&=\exp\left(-\frac{r}{\xi}\right)\qquad\text{con }\xi=-\frac{1}{\log\left(\tanh\beta J\right)}
\end{align}
\end{frame}
\begin{frame}
\frametitle{Clusters di spin $\Longleftrightarrow$ Clusters di link}
\end{frame}
\begin{frame}
\frametitle{Lunghezza di correlazione tra partizioni}
\end{frame}
\begin{frame}
\frametitle{Variazione in temperatura}
\end{frame}
\begin{frame}
\frametitle{Tipi di disordine}
\end{frame}
\begin{frame}
\frametitle{Ising 2D, reticolo quadrato}
\end{frame}
\end{document}