-
Notifications
You must be signed in to change notification settings - Fork 2
/
geneticAlgorithmTSN5G.py
1234 lines (1216 loc) · 75.6 KB
/
geneticAlgorithmTSN5G.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
This code defines the genetic algorithm that allows the use of a topology matrix (1 if
node i is linked to node j, 0 if not) in order to find the optimal solution in a TSN+5G
network for several restrictive flows from a source to a destination participating with its
own constraints (max. delay, period, frame length, transceptors' capacity). It will optimize
every flow's route and its scheduling based on its end-to-end maximum permissible delay
and bandwidth usage on the links. Scheduler is then made up by the revision of every flow's
normalized delay and the count of time within the gaps as explained in the, However, the
system of Size-Based Queuing Algorithm and the compression of scheduling of flows presented
in "No-wait Packet Scheduling for IEEE TSN" do not contemplate the existence of certain number
of phases in a so-called "hyperperiod" calculated with all flows' different periods, so might
lead to collisions. Additionally, the second publication is computationally far more expensive
with compression as it will have to re-schedule all routes in order to reduce de end-to-end
delay but also gaps. This work presents then a solution with Artificial Intelligence Genetic
Algorithms in a simpler scheduler to minimize the set of flows' maximum delays, overall the
most critical ones (higher periodicity and lower e2e delay); and, at the same time, reduce the
gaps so best-effort traffic and guard bands can fit in them in a large number of scheduled
flows with very restrictive parameters (Industry 4.0). Optionally, there is the possibility of
choosing a full-duplex or a half-duplex configuration taking into account the link's usage in
previous flows and the usage of left side scheduling, that means a flow arriving earlier can
be placed before all the already scheduled sequence. With this last configuration may happen
that a flow's slow down must be performed in order to reduce that delay so it spends no time
in queue, but there is no gap enough to satisfy the scrolling of time. Finally, this model
offers the possibility to use 5G logic bridges with guard band as solution of the NFVs
fluctuations, so additional delay is added in radioaccess.
@author Pablo Rodríguez Martín
(pablorodrimar@correo.ugr.es)
MSc. Telecommunication Engineering Final Project (TFM) - University of Granada
Title: Synchronous TSN Topologies Configuration for transportation of 5G Network Slices.
Machine Learning Optimization of Scheduler.
Date: September, 2022
"""
from scipy.io import savemat
from goto import with_goto
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
import random
import pygad
import copy
import math
import sys
import os
"""Class that implements the whole TSN network topology object from the given topology matrix,
links' capacities and flows' constraints files. It contains the nodes and ports that the flows
go through along the different phases within a calculated hyperperiod from periods (LCM)."""
class TSN_NETWORK:
# =========================================================================================
# INITIALIZATION
def __init__(self: object, path: list = [], reduceSpace: int = 4, pathLen: int = 4, \
bidirec: bool = 1, maxLenFrame: int = 1500) -> object:
#--------------------------------------------------------------------------------------
# DEFAULT: NULL
# 4 shortest paths
# 4 nodes per path (max.)
# Half-duplex
# 1500 Bytes
#--------------------------------------------------------------------------------------
# Matrix with the TSN network's topology contained
self.topology: list = self.readTopology(path)
# Number of nodes involved in the described topology
self.N: int = len(self.topology)
if(self.N != len(self.topology[0])):
print("ERROR: TOPOLOGY MATRIX MISMATCHES DIMENSIONS. INPUT MUST BE A SQUARE \
MATRIX OF NxN NODES")
return
#--------------------------------------------------------------------------------------
# Vector with the nodes' processing time delay. Different values may cause bottlenecks!
self.procDelay: list = self.readProcDelay(path)
if(self.N != len(self.procDelay)):
print("ERROR: PROCESSING DELAY VECTOR MISMATCHES DIMENSIONS.")
return
#--------------------------------------------------------------------------------------
# Matrix with guardband percentages between TSN and 5G nodes
self.fluctuations: list = []
if(mode5G):
self.fluctuations = self.readFluct(path)
if(self.N != len(self.fluctuations) or self.N != len(self.fluctuations[0])):
print("ERROR: FLUCTUATIONS VECTOR MISMATCHES DIMENSIONS.")
return
else:
self.fluctuations = np.zeros((self.N,self.N))
#--------------------------------------------------------------------------------------
# Matrix with radioaccess delay
self.radioDelay: list = []
if(mode5G):
files: str = os.listdir(path + "/Inputs/")
for file in files:
if(file.startswith('radioDelMatrix_node_')):
self.radioDelay.append(self.readRadioDelay(path, file))
else:
for zero_cnt in range(self.N):
self.radioDelay.append(np.zeros((self.N,self.N)))
#--------------------------------------------------------------------------------------
# Matrix with the flows' constraints e2e (src-dst, max. delay, tx period, frame size,
# talker's throughput, listener's throughput)
if(path):
flows: list = self.readFlows(path)
else:
print("ERROR: NO FLOWS FILE SPECIFIED")
return
if(flows):
flows = self.sortFlows(flows) # Sorted list of flows
self.flows: list = []
for flowLine in flows:
flow: object = FLOW(flowLine) # Call to flow object
self.flows.append(flow)
else:
print("ERROR: NO FLOWS' CONSTRAINTS SPECIFIED")
return
# Number of flows involved in the described topology
self.M: int = len(self.flows)
#--------------------------------------------------------------------------------------
# Vector with all flows' periods' Least Common Multiple (LCM) -- Hyperperiod
self.LCM: float = 1.0
self.minPeriod: float = 100000.0
self.order: float = 1e-3 # ms
for i in range(self.M):
period: int = int(self.flows[i].T_tx * 100 / self.order)
self.LCM = int((self.LCM * period) / (GCD(self.LCM, period))) # All flows' LCM
if(period <= self.minPeriod):
self.minPeriod = period
self.LCM = self.LCM * self.order / 100
self.minPeriod = self.minPeriod * self.order / 100
#--------------------------------------------------------------------------------------
# Precision of time: ns
self.precision: int = round(abs(math.log(10e-9, 10))+1)
#--------------------------------------------------------------------------------------
# Matrix with all possible flows' paths/routes e2e
self.reduceSpace: int = reduceSpace # Number of max paths per flow
self.pathLen: int = pathLen # Number of max nodes per path
self.pathFlows: list = []
for i in range(len(self.flows)):
calc: bool = 1
for j in range(len(self.pathFlows)):
if(self.pathFlows[j][0][0] == self.flows[i].src and \
self.pathFlows[j][0][-1] == self.flows[i].dst): # Already calculated
self.pathFlows.append(self.pathFlows[j])
calc = 0
break
if(calc): # Not calculated yet
self.pathFlows.append(self.listPaths(self.topology, self.flows[i], \
self.reduceSpace, self.pathLen))
#--------------------------------------------------------------------------------------
# Possibility of bidirectional links between nodes, so scheduling is shared for both
self.bidirec: bool = bidirec # 1 half-duplex links (symm. matrix), 0 full-duplex links
#--------------------------------------------------------------------------------------
# Network's biggest Ethernet frame size
self.maxLenFrame: int = maxLenFrame # Bytes
#--------------------------------------------------------------------------------------
# Resetting
self.nodes: list = []
self.reset()
# =========================================================================================
# Resets TSN simulation in order to perform a new one with the creation of nodes with their
# own ports according to the topology. Each node has its own ID, ports and process delay
# due to conmutation.
def reset(self: object) -> None:
#First deletes previous objects
aux1: int = len(self.nodes)
for i in range(aux1):
aux2: int = len(self.nodes[0].ports)
for j in range(aux2):
del self.nodes[0].ports[0]
del self.nodes[0]
#New objects
for x in range(self.N):
self.nodes.append(NODE(x, self.topology[x], self.procDelay[x], \
self.fluctuations[x], self.minPeriod, self.LCM))
# =========================================================================================
# Reads TSN topology through a matrix of linked nodes. 1 if node i is linked to node j,
# 0 if not. Matrix may not be symmetric but NxN, being N the total number of TSN nodes.
# A header with node's ID numbers is skipped.
def readTopology(self: object, path: list) -> list:
with open(path + '/Inputs/topologyMatrix.txt', 'r') as readM:
next(readM)
topologyMatrix: list = [[float(num) for num in line.split(',')] for line in readM]
return topologyMatrix
# =========================================================================================
# Reads the delay value in seconds that introduces each node for the frame processing.
# A header with node's ID numbers is skipped.
def readProcDelay(self: object, path: list) -> list:
with open(path + '/Inputs/procDelay.txt', 'r') as readM:
next(readM)
procDelay: list = [[float(num) for num in line.split(',')] for line in readM]
return procDelay[0]
# =========================================================================================
# Reads the list of 5G logical bridge's port's fluctuations as a percentage of the total
# length of the frames. This value acts as a factor for the guardbands in time assignement
# in the planification of every flow. It is set over the link from a 5G node to others.
def readFluct(self: object, path: list) -> list:
with open(path + '/Inputs/fluctMatrix.txt', 'r') as readM:
next(readM)
fluctuationsVector: list = [[float(num) for num in line.split(',')] for line in readM]
return fluctuationsVector
# =========================================================================================
# Reads the list of 5G logical bridge's wireless delay introduced by radioaccess from one
# virtual port to other. If flow does not go through wireless channel then this delay is
# set to 0.
def readRadioDelay(self: object, path: list, filename: str) -> list:
with open(path + '/Inputs/' + filename, 'r') as readM:
next(readM)
radioDelayVector: list = [[float(num) for num in line.split(',')] for line in readM]
return radioDelayVector
# =========================================================================================
# Reads the list of 5G-TSN flows within a constraints vector: source node, destination node,
# max. delay (s), transmission period (s), frame length (Bytes). Matrix may not be symmetric
# but NxN, being N the total number of TSN nodes. Period must be even and 2^x. A header with
# field names is omitted.
def readFlows(self: object, path: list) -> list:
with open(path + '/Inputs/FlowStates/' + flowState +'.txt', 'r') as readM:
next(readM)
flowsVector: list = [[float(num) for num in line.split(',')] for line in readM]
return flowsVector
# =========================================================================================
# Searches for every possible path/route in a flow from a source node to a destination
# node following the links in the topology matrix. Used method: Depth-First Search
# algorithm (DFS). Runs over every node neighbors, if the destination cannot be
# reached, the path will automatically be discarded with the visited list and pop's
# in the list.
def listPaths(self: object, topologyMatrix: list, flow: list, reduce: int, pathLen: int) -> list:
N: int = len(topologyMatrix[0]) # Number of nodes
src: int = int(flow.src) # Flow's source
dst: int = int(flow.dst) # Flow's destination
checkedList: list = [] # Visited list
paths2check: list = [] # Possible open paths
paths2check.append([src]) # Starts from the source
routes: list = [] # All-paths solution
#--------------------------------------------------------------------------------------
# Possible flow-paths discovery
while(len(paths2check) > 0):
path: list = paths2check.pop()
if(len(path) <= pathLen):
if(dst in path):
routes.append(path) # Solution path found
else:
if(path not in checkedList):
checkedList.append(path)
for node in range(N):
if(node not in path and topologyMatrix[path[-1]][node] > 0):
path.append(node)
paths2check.append(path[:]) # Adds a new possible path to explore
path.pop()
#--------------------------------------------------------------------------------------
# In case there is a reduction to a limited number of paths for every flow, shortest
# paths in a sorted list are selected
if(reduce and reduce <= len(routes)):
aux = sorted(routes, key=len)
aux = aux[:reduce]
routes = aux
return routes
# =========================================================================================
# Sorts the list of flows by its parameters, defining the order of scheduling in all the
# nodes in the topology involved in the different paths. Those parameters are:
# 1st) Transmission period, 2nd) Max. Delay, 3rd) source, 4th) destination, 5th) Frame size
def sortFlows(self: object, flows: list) -> list:
flows=sorted(flows, key = lambda x: (x[3], x[2], x[0], x[1], x[4]))
for i in range(len(flows)):
flows[i].insert(0, i) # Inserts FlowID
return flows
# =========================================================================================
# Plots ports' phase scheduling on every node depending on the flows' paths.
def plotScheduling(self: object, nodeID: int, neighborID: int) -> None:
x: list = np.linspace(0, self.minPeriod, num = int(1e6)) # X-axis
y: list = [] # Y-axis
port: object
for port_ in self.nodes[nodeID].ports:
if(port_.neighborID == neighborID):
port = port_
print(" Gaps found in Node #" + str(nodeID) + ", Port #" + str(neighborID) + ": " \
+ str(port.gap))
print(" Guard band: " + str(port.perc_gb))
break
if(not port):
print("ERROR: NO PORT FOUND. PLEASE CHECK TOPOLOGY")
return 0
colors: list = ["b", "r", "g", "m", "c", "k", "y"] # List of colors
color_idx: int = 0
#--------------------------------------------------------------------------------------
# All flows scheduled in this port
fig, axs = plt.subplots(len(self.flows[0].schStart[0]))
fig.suptitle("Phase scheduling in Node #" + str(nodeID) + ", Port #" + str(neighborID))
count: int = 0
for ph in range(len(self.flows[0].schStart[0])):
for flow in port.schFlowID[ph]:
if(self.nodes[nodeID].id in self.flows[flow].pathNodes):
y = [] # New values for new flow
posNode = self.flows[flow].pathNodes.index(self.nodes[nodeID].id)
posPort = self.flows[flow].pathNodes.index(self.nodes[neighborID].id)
if(posNode > posPort and self.bidirec): # Node order in flow's route
pos = posPort
else:
pos = posNode
for i in x:
if((i >= self.flows[flow].schStart[pos][ph]) and \
(i <= self.flows[flow].schEnd[pos][ph])):
y.append(1) # Tx time
else:
y.append(0) # No Tx time
axs[count].plot(x, y, colors[color_idx], label = "Flow ID: " + \
str(self.flows[flow].id))
axs[count].legend(port.schFlowID[ph])
if(color_idx == (len(colors)-1)): # Color change
color_idx = 0
else:
color_idx += 1
plt.show(block = False)
x = [round((i + self.minPeriod), network.precision) for i in x] # Adds minimum period
color_idx = 0
count += 1
# =========================================================================================
"""Class that implements the TSN node/switch object from the given topology. Every node is
identified by an ID. Also, it has its own process time delay to conmute TSN frames and the
information about every port that connects itself with other nodes through that identifier."""
class NODE:
# =========================================================================================
# INITIALIZATION
def __init__(self, *args) -> object:
self.id: int = args[0] # Node's ID
self.neighbors: list = args[1] # Linked neighbors and their capacity
self.procDelay: float = args[2] # Node's processing time
self.fluctuations: list = args[3] # Values of fluctuations for ports
self.minPeriod: float = args[4] # Node's minimum period to schedule
self.LCM: float = args[5] # Node's LCM of periods
#--------------------------------------------------------------------------------------
# Node opens a Tx port with its neighbors by an identifier
self.ports: list = []
for id in range(len(self.neighbors)):
if(id != self.id and self.neighbors[id] > 0):
port: object = PORT([id, self.neighbors[id], self.fluctuations[id], \
self.minPeriod, self.LCM])
self.ports.append(port) # Adding port to node's port list
# =========================================================================================
"""Class that implements a specific port that connects the proper node with its neighbor,
identified with an ID. Every port is also chracterized by a vector for Time-Aware Shaper
scheduling with a scheduled start (lower bound) and end (upper bound) times."""
class PORT:
# =========================================================================================
# INITIALIZATION
def __init__(self, *args) -> object:
self.neighborID: int = args[0][0] # Port to neighbor node with ID i (next-hop)
self.speed: float = args[0][1] # Link speed to neighbor i (Gbps)
self.perc_gb: float = args[0][2] # Percentage of fluctuation GB
self.minPeriod: float = args[0][3] # Minimum period value
self.LCM: float = args[0][4] # LCM (hyperperiod)
self.schLW: list = [] # Scheduling time START/LOWERBOUND
self.schUP: list = [] # Scheduling time END/UPPERBOUND
self.latArrTime: list = [] # Latest arrival to port queue
self.lastGB: list = []
self.schFlowID: list = [] # Scheduled Flow IDs
self.gap: list = [] # Not scheduled gaps
#--------------------------------------------------------------------------------------
# Scheduling is divided in phases with a duration of minimum period of all flows
for phase in range(int(self.LCM / self.minPeriod)):
self.schLW.append(0)
self.schUP.append(0)
self.latArrTime.append([])
self.lastGB.append(0)
self.schFlowID.append([])
self.gap.append([])
# =========================================================================================
# Merges gaps in case both two gaps have consecutive intervals.
def mergeGaps(self: object, ph: int) -> None:
listGaps: list = self.gap[ph]
if(len(listGaps) > 0):
listGaps = list(filter(lambda x: x, listGaps)) # Removes empty values
listGaps = sorted(listGaps, key = lambda x: x[0]) # Sort gaps by time
toRemoveList: list = []
for gap in listGaps:
if(gap != listGaps[-1]):
for otherGap in listGaps[listGaps.index(gap)+1: ]:
if(gap[1] == otherGap[0]):
listGaps[listGaps.index(gap)] = [gap[0], otherGap[1]] # Unique gap
toRemoveList.append(otherGap)
break
#-----------------------------------------------------------------------------------
# Deletes all gaps that have been merged into another
for remGap in range(len(toRemoveList)): # Removes those which have been used to merge
try:
listGaps.remove(toRemoveList[remGap])
except ValueError:
pass
self.gap[ph] = listGaps[ : ]
# =========================================================================================
"""Class that implements a flow characterized by its constraints (ID, source & destination
nodes, max. delay, transmission period and frame length). It also contains the scheduling
times on every node."""
class FLOW:
# =========================================================================================
# INITIALIZATION
def __init__(self, *args) -> object:
self.id: int = int(args[0][0]) # Flow's ID
self.src: int = int(args[0][1]) # Flow's source
self.dst: int = int(args[0][2]) # Flow's destination
self.maxDelay: float = args[0][3] # Flow's upper bound time delay (s)
self.T_tx: float = args[0][4] # Flow's transmission period (s)
self.length: int = int(args[0][5] * 8) # Flow's frame's length (bits)
self.talkerSpeed: float = args[0][6] # Flow's talker speed
self.listenerSpeed: float = args[0][7] # Flow's listener speed
self.pathNodes: list = [] # Flow's scheduling nodes in a path [pos]
self.schStart: list = [] # Flow's start time in a node [pos]
self.schEnd: list = [] # Flow's start time in a node [pos]
# =========================================================================================
# Updates de route of a flow after finding all possible paths within a topology and
# selected one of them in a chromosome. It also resets scheduling times.
def updateRoute(self: object, route: list) -> object:
self.pathNodes = route
self.schStart = []
self.schEnd = []
# =========================================================================================
"""-----------------------------------------------------------------------------------------"""
# Calculates the Greatest Common Divisor and returns the result. It is used to subsequently
# compute the topology's LCM value.
def GCD(a: int, b: int) -> int:
temp: int = 0
while(b != 0):
temp = b
b = a % b
a = temp
return a
"""-----------------------------------------------------------------------------------------"""
# Initializes the very first chromosome with a subset of random paths, one per each flow (gene).
def initializeChromosome(possiblePathFlows: list) -> list:
chromosome: list = []
for i in range(len(possiblePathFlows)):
chromosome.append(random.randrange(len(possiblePathFlows[i]))) # Random index for gene
return chromosome
"""-----------------------------------------------------------------------------------------"""
# Performs the scheduling for an unique flow over all nodes in the path selected. Two main
# cases can be distinguished:
# - Time of post-processing > Time of upper bound (new gap)
# - Time of post-processing < Time of upper bound
# · Time of Tx end < Time of lower bound (opt, new gap if no compression)
# · Time of Tx end > Time of lower bound
@ with_goto
def scheduling(path: list, flowID: int) -> bool:
time: float = 0.0 # Will accquire the value of the hyperperiod in case flow times goes out
initialized: bool = 0 # 1 if flow's path's first node scheduled, 0 if not
t0: list = [] # Arrival time to port's queue (dim = number of phases)
for i in range(len(path)-1): # Nodes (last node is not scheduled, only sent to listener)
for port in network.nodes[path[i]].ports:
if(port.neighborID == path[i+1]): # Ports
#------------------------------------------------------------------------------
# Arrival time to node + SW processing delay
if(not initialized):
# CASE: FLOW'S FIRST NODE SCHEDULING
for ph in range(int(network.LCM / network.minPeriod)):
t0.append(0) # Any time restriction, as many 0's as phases
else:
# CASE: NOT FLOW'S FIRST NODE SCHEDULING
for node_port in network.nodes[path[i]].ports:
if(node_port.neighborID == network.nodes[path[i-1]].id):
src_port: int = network.nodes[path[i]].ports.index(node_port)
elif(node_port.neighborID == network.nodes[path[i+1]].id):
dst_port: int = network.nodes[path[i]].ports.index(node_port)
for ph in range(len(t0)):
if(network.flows[flowID].schEnd[i-1][ph] != 0):
t0[ph] = (network.flows[flowID].schEnd[i-1][ph] + \
network.nodes[path[i]].procDelay + \
network.radioDelay[path[i]][src_port][dst_port]) # Prev. node end time + Bridge delay
t0[ph] = np.round(t0[ph], network.precision)
#------------------------------------------------------------------------------
# Adaptation of global hyperperiod to phase time (first schedulable)
idx: int = next((i for i, x in enumerate(t0) if x), None) # First sched phase
if(idx is None):
idx = 0
phase: int = int(t0[idx] / network.minPeriod)
for ph in range(len(t0)):
t0[ph] = round((t0[ph] % network.minPeriod), network.precision)
#------------------------------------------------------------------------------
# Current port's Guard Band
guardBand: float = port.perc_gb * network.flows[flowID].length / port.speed
#------------------------------------------------------------------------------
# Previous node's port's Guard Band (equal to current's in case same speed)
guardBand_p: float
if(initialized):
guardBand_p = prev_port.perc_gb * network.flows[flowID].length / prev_port.speed
#------------------------------------------------------------------------------
# No flow's phases scheduled yet in this port
j: int = 0 # Number of phase after first scheduling
scheduled: int = 0 # +1 if scheduled in phase, 0 if not
phChange: bool = 1 # Possibility to continue next hyper
phVectorStart: list = [] # Flow's phases' start time
phVectorEnd: list = [] # Flow's phases' end time
for ph in range(int(network.LCM / network.minPeriod)):
phVectorStart.append(0) # As many 0's as phases
phVectorEnd.append(0)
#------------------------------------------------------------------------------
t1: float # Tx start time
t2: float # Tx end time
#------------------------------------------------------------------------------
# ASSIGNS TIME SCHEDULE FOR EVERY PHASE IN PORT
while((phase+j) < (int(network.LCM / network.minPeriod))):
if(j * (network.minPeriod / network.order) % \
(network.flows[flowID].T_tx / network.order) == 0 and \
scheduled < (network.LCM / network.flows[flowID].T_tx)): # T
t0_gb: list
label .begin
if(initialized):
# Previous hop's port's GB is added
t0_gb = [round((ph + guardBand_p), network.precision) for ph in t0]
else:
# No GB is added (only in fitness delay eval.)
t0_gb = t0[ : ]
if(port.schUP[phase+j] < t0_gb[phase+j]):
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CASE 1: TIME START > UPPERBOUND
t1 = t0_gb[phase+j] # No queue time, just GB waiting
t2 = t1 + (network.flows[flowID].length / port.speed) # Tx time
t1 = round(t1, network.precision)
t2 = round(t2, network.precision)
if((initialized and (network.minPeriod - (t2 + guardBand)) >= 0) or \
(not initialized and (network.minPeriod - (t2 + guardBand)) >= \
margin * network.minPeriod)):
aux: bool = 0 # No gaps yet
if(not port.schFlowID[phase+j] and leftSide):
# Updates LW only in case it's the first flow for this phase
port.schLW[phase+j] = t1 # Port LW updated
# --- BIDIRECTIONAL ---
# Inside
if(network.bidirec):
for next_port in network.nodes[port.neighborID].ports:
if(next_port.neighborID == path[i]):
next_port.schLW[phase+j] = t1 # Neighbor LW update
break
# Outside
else:
# Gap (saved counting last GB)
port.gap[phase+j].append([port.schUP[phase+j], t1])
if(guardBand > 0):
port.gap[phase+j].append([t2, round((t2 + guardBand), \
network.precision)])
port.mergeGaps(phase+j)
aux = 1 # New gap from last UP
if(network.bidirec):
for next_port in network.nodes[port.neighborID].ports:
if(next_port.neighborID == path[i]):
if(aux):
# Gap saved (saved counting last GB)
next_port.gap[phase+j].append([port.schUP[phase+j], t1])
if(guardBand > 0):
next_port.gap[phase+j].append([t2, round((t2 + guardBand), \
network.precision)])
next_port.mergeGaps(phase+j)
next_port.schUP[phase+j] = round((t2 + guardBand), \
network.precision) # Neighbor's port's UP updated
next_port.lastGB[phase+j] = guardBand
next_port.schFlowID[phase+j].append(flowID) # FLOW ID
next_port.latArrTime[phase+j] = t0_gb[phase+j] # New last arrival time
break
#----------------------
port.schUP[phase+j] = round((t2 + guardBand), network.precision)
port.lastGB[phase+j] = guardBand
port.schFlowID[phase+j].append(flowID) # FLOW ID
scheduled += 1 # Port's phase is scheduled
port.latArrTime[phase+j] = t0[phase+j] # New last arrival time
phVectorStart[phase+j] = round(((phase+j) * network.minPeriod + t1 + \
time), network.precision)
phVectorEnd[phase+j] = round(((phase+j) * network.minPeriod + t2 + \
time), network.precision)
j += 1 # Phase is scheduled
else:
# IF NOT POSSIBLE, DO IT NEXT PHASE (phase+=1, keep j)
if(not scheduled and not initialized and
network.flows[flowID].T_tx != network.minPeriod):
# This case will not happen, as it would already be initialized
phase += 1 # New phase but not schedule count
if((phase+j) != (int(network.LCM / network.minPeriod))):
t0[phase+j] = 0 # Starts with 0 in new phase
else:
# Cannot accomplish periodicity after first phase scheduled
if(debug):
print("FLOW #" + str(flowID) + " COULD NOT BE SCHEDULED IN NODE #" + \
str(network.nodes[path[i]].id))
return 0
else:
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# CASE 2: TIME START < UPPERBOUND -- Only lowerbound is updated
tpp: float = t0_gb[phase+j] + (network.flows[flowID].length / \
port.speed) + guardBand # Tx time
if(tpp <= port.schLW[phase+j] and leftSide and initialized):
# SUBCASE: CAN BE PLACED BEFORE ALL SEQUENCE
if(compression): # With left compression
t1 = port.schLW[phase+j] - guardBand - \
(network.flows[flowID].length / port.speed)
t2 = port.schLW[phase+j] - guardBand
else:
t1 = t0_gb[phase+j] # Without left compression
t2 = tpp - guardBand
t1 = round(t1, network.precision)
t2 = round(t2, network.precision)
if(not compression):
port.gap[phase+j].append([t2, port.schLW[phase+j]]) # Gap saved
# --- BIDIRECTIONAL ---
if(network.bidirec):
for next_port in network.nodes[port.neighborID].ports:
if(next_port.neighborID == path[i]):
if(not compression):
next_port.gap[phase+j].append([t2, \
next_port.schLW[phase+j]]) # Gap saved
next_port.schLW[phase+j] = t1 # Neighbor LW update
next_port.schFlowID[phase+j].append(flowID)
break
#----------------------
port.schLW[phase+j] = t1 # Port's LW updated
port.schFlowID[phase+j].append(flowID) # FLOW ID
scheduled += 1 # Port's phase is scheduled
phVectorStart[phase+j] = round(((phase+j) * network.minPeriod + t1 + \
time), network.precision)
phVectorEnd[phase+j] = round(((phase+j) * network.minPeriod + t2 + \
time), network.precision)
j += 1 # Phase is scheduled
else:
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# SUBCASE 1: CANNOT BE PLACED BEFORE ALL SEQUENCE -- Only upperbound is updated
# Check first if arrival time to node is possible
if(t0_gb[phase+j] < port.schUP[phase+j] and initialized and not scheduled): # Check path
dif: float = round((port.schUP[phase+j] - t0_gb[phase+j]), network.precision)
dif_alt: float = round((port.latArrTime[phase+j] - t0[phase+j]), network.precision)
if(port.latArrTime[phase+j] and dif_alt > dif): # To avoid FIFO non-compliance
dif = dif_alt
isPossible: bool = slowDown(flowID, path, dif, i, guardBand)
if(not isPossible):
if(debug):
print("FLOW #" + str(flowID) + " COULD NOT BE SCHEDULED IN NODE #" + \
str(network.nodes[path[i]].id) + " DUE TO SHORT GAP INTERVAL")
return 0
# Update t0 from previous node
for ph in range(len(t0)):
if(network.flows[flowID].schEnd[i-1][ph] != 0):
# Prev. node end time + Bridge delay
t0[ph] = (network.flows[flowID].schEnd[i-1][ph] + \
network.nodes[path[i]].procDelay + \
network.radioDelay[path[i]][src_port][dst_port])
t0[ph] = round((t0[ph] % network.minPeriod), network.precision)
goto .begin # In case it is slowed down so now t1=t0_gb > schUP
#---------------------------------------------------------------
t1 = port.schUP[phase+j]
t2 = t1 + (network.flows[flowID].length / port.speed)
t1 = round(t1, network.precision)
t2 = round(t2, network.precision)
if((initialized and (network.minPeriod - (t2 + guardBand)) >= 0) or \
(not initialized and (network.minPeriod - (t2 + guardBand)) >= \
margin * network.minPeriod)):
# --- BIDIRECTIONAL ---
if(network.bidirec):
for next_port in network.nodes[port.neighborID].ports:
if(next_port.neighborID == path[i]):
if(guardBand > 0):
next_port.gap[phase+j].append([t2, round((t2 + guardBand), \
network.precision)])
next_port.schUP[phase+j] = round((t2 + guardBand), \
network.precision) # Neighbor's port's UP updated
next_port.lastGB[phase+j] = guardBand
next_port.schFlowID[phase+j].append(flowID) # FLOW ID
next_port.latArrTime[phase+j] = t0[phase+j] # New last arrival time
break
#----------------------
if(guardBand > 0):
port.gap[phase+j].append([t2, round((t2 + guardBand), network.precision)])
port.schUP[phase+j] = round((t2 + guardBand), network.precision) # Port's UP updated
port.lastGB[phase+j] = guardBand
port.schFlowID[phase+j].append(flowID) # FLOW ID
scheduled += 1 # Port's phase is scheduled
port.latArrTime[phase+j] = t0_gb[phase+j] # New last arrival time
phVectorStart[phase+j] = round(((phase+j) * network.minPeriod + t1 + \
time), network.precision)
phVectorEnd[phase+j] = round(((phase+j) * network.minPeriod + t2 + \
time), network.precision)
j += 1 # Phase is scheduled
else:
# IF NOT POSSIBLE, DO IT NEXT PHASE (phase+=1, keep j)
if(not scheduled and not initialized and
network.flows[flowID].T_tx != network.minPeriod):
phase += 1 # New phase but not schedule count
if((phase+j) != (int(network.LCM / network.minPeriod))):
t0[phase+j] = 0 # Starts with 0 in new phase
else:
# Cannot accomplish periodicity after first phase scheduled
if(debug):
print("FLOW #" + str(flowID) + " COULD NOT BE SCHEDULED IN NODE #" + \
str(network.nodes[path[i]].id))
return 0
else:
j += 1 # Phase is not scheduled
#--------------------------------------------------------------------------
# Goes back with the start (with t0=0, but more delay)
if((phase+j) == (int(network.LCM / network.minPeriod)) \
and j < int(network.LCM / network.minPeriod) and \
scheduled < int(network.LCM / network.flows[flowID].T_tx)):
if(phChange):
# Goes back to 1st phase [0], only once
phase = -j # To make phase+j=0
time = round((time + network.LCM), network.precision) # Sums hyperperiod
phChange = 0 # No come back again
else:
if(debug):
print("FLOW #" + str(flowID) + " COULD NOT BE SCHEDULED IN NODE #" + \
str(network.nodes[path[i]].id))
return 0
#------------------------------------------------------------------------------
# FLOW SCHEDULING TIMES
if(scheduled == int(network.LCM / network.flows[flowID].T_tx)):
# Only if all periods/phases were scheduled
network.flows[flowID].schStart.append(phVectorStart) # START
network.flows[flowID].schEnd.append(phVectorEnd) # END
if(debug and not conf_sol):
print("FLOW #" + str(flowID) + " WAS SUCCESFULLY SCHEDULED IN NODE #" + \
str(network.nodes[path[i]].id))
else:
if(debug and not conf_sol):
print("FLOW #" + str(flowID) + " COULD NOT BE SCHEDULED IN NODE #" + \
str(network.nodes[path[i]].id) + "(t1=" + str(t1) + ", t2=" + str(t2) + ")")
return 0
break
initialized = 1 # First scheduled
prev_port = copy.copy(port) # Port saved
return 1
"""-----------------------------------------------------------------------------------------"""
# Applies a delay to the same flow in the previous node if it is possible to do so. This is
# performed due to the TSN queing system's limits, as it uses FIFO queues, so frames must
# arrive to port's queue after the one awaiting to be sent. Delayed dif value, which is the
# difference between new flow's arrival time and previous flow's arrival time.
def slowDown(flowID: int, path: list, dif: float, nodeStart: int, guardBand: float) -> bool:
rePath: list = path[ :nodeStart+1] # All previous nodes
modifNodes: list = [] # List of modified nodes
modifNodes.append(network.nodes[rePath[nodeStart]].id) # Current node
done: int = 0 # Changes to 1 if at least one node's port's scheduling delay was performed
possibleSD: bool = 0 # 1 if slow down was possible, 0 if not
#------------------------------------------------------------------------------------------
for k in range(len(rePath)-2, -1, -1): # All previous nodes, current one as last port
for rePort in network.nodes[rePath[k]].ports:
if(rePort.neighborID == rePath[k+1]):
for ph in range(len(rePort.schLW)):
rePort.mergeGaps(ph)
if(flowID in rePort.schFlowID[ph]): # Periodicity
possibleSD = 0
lwFlow: float = round((network.flows[flowID].schStart[k][ph] % \
network.minPeriod), network.precision)
upFlow: float = round((network.flows[flowID].schEnd[k][ph] % \
network.minPeriod), network.precision)
lwPort: float = round(rePort.schLW[ph], network.precision)
upPort: float = round(rePort.schUP[ph], network.precision)
if(round((upFlow + rePort.lastGB[ph]), network.precision) == upPort): # At the end
if(network.minPeriod - round((upPort + dif), network.precision) >= 0):
# Port
if(rePort.perc_gb > 0):
rePort.gap[ph][-1] = [round((rePort.gap[ph][-1][0] + dif), network.precision), \
round((rePort.gap[ph][-1][1] + dif), network.precision)]
rePort.gap[ph].append([lwFlow, round((lwFlow + dif), network.precision)]) # New gap
rePort.schUP[ph] = round((rePort.schUP[ph] + dif), network.precision)
rePort.mergeGaps(ph)
# --- BIDIRECTIONAL ---
if(network.bidirec):
for next_rePort in network.nodes[rePort.neighborID].ports:
if(next_rePort.neighborID == rePath[k]):
if(next_rePort.perc_gb > 0):
next_rePort.gap[ph][-1] = [round((next_rePort.gap[ph][-1][0] + dif), network.precision), \
round((next_rePort.gap[ph][-1][1] + dif), network.precision)]
next_rePort.gap[ph].append([lwFlow, round((lwFlow + dif), network.precision)]) # New gap
next_rePort.schUP[ph] = round((next_rePort.schUP[ph] + \
dif), network.precision)
next_rePort.mergeGaps(ph)
break
#----------------------
# Flow
network.flows[flowID].schStart[k][ph] = round((network.flows[flowID].schStart[k][ph] + \
dif), network.precision)
network.flows[flowID].schEnd[k][ph] = round((network.flows[flowID].schEnd[k][ph] + \
dif), network.precision)
possibleSD = 1 # Delayed
else:
if(debug):
print("LIMIT NOT ENOUGH IN NODE #" + str(network.nodes[rePath[k]].id))
return 0
else:
if(lwFlow == lwPort): # At the beginning (only used if leftSide=1)
for n in range(len(rePort.gap[ph])):
if(upFlow == rePort.gap[ph][n][0]):
if(round((rePort.gap[ph][n][1] - rePort.gap[ph][n][0]), \
network.precision) >= (dif + guardBand)):
# Port
rePort.gap[ph][n] = [(upFlow + dif), rePort.gap[ph][n][1]] # Gap reduced
rePort.schLW[ph] += dif
# --- BIDIRECTIONAL ---
if(network.bidirec):
for next_rePort in network.nodes[rePort.neighborID].ports:
if(next_rePort.neighborID == rePath[k]):
next_rePort.gap[ph][n] = [(upFlow + dif), \
next_rePort.gap[ph][n][1]]
next_rePort.schLW[ph] += dif
break
#----------------------
# Flow
network.flows[flowID].schStart[k][ph] += dif
network.flows[flowID].schEnd[k][ph] += dif
possibleSD = 1 # Delayed
break
else:
if(debug):
print("GAP NOT ENOUGH")
else:
if(debug):
print("GAP NOT POSSIBLE")
else:
# This case is not possible
return 0
break
#------------------------------------------------------------------------------------------
# Inserts node as modified
if(possibleSD):
modifNodes.insert(0, network.nodes[rePath[k]].id) # Modified nodes
done += 1
else:
if(done > 0): # At least one previous node has been modified
break
else:
if(debug):
print("NO GAP TO DELAY")
return 0 # No node has been modified, flow cannot be scheduled
#------------------------------------------------------------------------------------------
# Setting all node's last arrival time
init: bool = 0 # Last (first) node was reached, very first t0
if(done):
if(done == len(rePath)-1): # Very first scheduled node
init = 1
for v in range(len(modifNodes)-1):
for chgPort in network.nodes[modifNodes[v]].ports:
if(chgPort.neighborID == modifNodes[v+1]):
for phas in range(len(chgPort.latArrTime)):
if(init):
# Very first node start time
chgPort.latArrTime[phas] = round((network.flows[flowID].schStart[v][phas] % \
network.minPeriod), network.precision)
else:
# Last node's end time
chgPort.latArrTime[phas] = round((network.flows[flowID].schEnd[v-1][phas] % \
network.minPeriod), network.precision)
init = 0
return 1
"""-----------------------------------------------------------------------------------------"""
# Fitness function evaluates the result of applying a chromosome solution to the whole TSN
# network, as it schedules flows with their own path selected by the genetic algorithm. It
# uses the chromosome solution and its index in the population. The chromosome solution is
# a list of values that contains, for each flow, the index of the path in a list of possible
# paths found for it. It returns the fitness value of a given chromosome.
def fitness_func(sol_chr: list, chr_pop_idx: int) -> float:
#------------------------------------------------------------------------------------------
# Extraction of path chromosomes given index chromosomes
chr: list = []
for gen in range(len(sol_chr)):
chr.append(network.pathFlows[gen][sol_chr[gen]]) # Extracts the path for flows
#------------------------------------------------------------------------------------------
# Network initialization (only nodes and ports are reset)
network.reset()
#------------------------------------------------------------------------------------------
# Flows' scheduling
delay: list = []
delay_mean: float = 0
delay_eval: float = 0
delay_norm: float
delay_flow: float
if(debug):
print("\n-- FLOWS' TIMES --")
for numFlow in range(len(chr)):
path: list = chr[numFlow]
network.flows[numFlow].updateRoute(path) # Flow reset
if(debug):
print("\nFlow: " + str(network.flows[numFlow].id) + ", Path: " + str(path) + \
" (Max. Delay = " + str(round((network.flows[numFlow].maxDelay / network.order), 2)) + \
" ms, Period = " + str(round((network.flows[numFlow].T_tx / network.order), 2)) + \
" ms, Size = " + str(int(network.flows[numFlow].length / 8)) + " Bytes)")
possible: bool = scheduling(path, numFlow) # Flow scheduling on its corresponding path
if(possible):
if(debug):
print(" Start time for flow #" + str(numFlow) + " per node: " + \
str(network.flows[numFlow].schStart))
print(" End time for flow #" + str(numFlow) + " per node: " + \
str(network.flows[numFlow].schEnd))
#------------------------------------------------------------------------------------------
# --- DELAY EVALUATION ---
# Highest value of time in last node
delay1: float = network.flows[numFlow].schEnd[-1][np.max(np.nonzero(network.flows[numFlow].schEnd[-1]))]
# Highest value of time in first node
delay2: float
try:
delay2 = network.flows[numFlow].schStart[0][np.max(np.nonzero((network.flows[numFlow].schStart[0])))]
except ValueError:
delay2 = 0
pass
# Total delay is the difference of the first and the last scheduled times in the TSN network
# plus the SW's processing delay in the first and last nodes plus the talker and listener
# throughput. Also, first node's guard band must be considered. Flow's max. delay normalization
node_init: int = network.flows[numFlow].pathNodes[0]
for p in network.nodes[node_init].ports:
if(p.neighborID == network.flows[numFlow].pathNodes[1]):
port_init: object = p
delay_flow = (abs(delay1 - delay2) + \
(network.nodes[network.flows[numFlow].pathNodes[0]].procDelay) + \
(network.nodes[network.flows[numFlow].pathNodes[-1]].procDelay) + \
(network.flows[numFlow].length / network.flows[numFlow].talkerSpeed) * \
(1 + port_init.perc_gb) + \
(network.flows[numFlow].length / network.flows[numFlow].listenerSpeed))
if(debug):
print(" End-to-end delay: " + str(round(delay_flow, network.precision)))
if(delay_flow <= network.flows[numFlow].maxDelay):
delay_mean += delay_flow
delay_norm = (delay_flow / network.flows[numFlow].maxDelay)
delay.append(delay_norm)
delay_eval += (delay_flow / network.flows[numFlow].length / len(network.flows[numFlow].pathNodes))
else:
if(debug):
print("FLOW #" + str(numFlow) + " EXCEEDED ITS MAXIMUM DELAY: " + str(chr))
return 0
else:
if(debug):
print("NO POSSIBLE SCHEDULING IN THIS CHROMOSOME")
return 0 # fitness=0 too low
delay_norm: float = (sum(delay) / network.M)
delay_mean = (delay_mean / network.M)
delay_eval = (delay_eval / network.M)
#------------------------------------------------------------------------------------------
# --- GAP EVALUATION ---
count: float = 0.0 # Gap counter
gap_norm: float = 0.0 # General gap counter
cnt_ph: int = 0 # Phase counter
for node_ in network.nodes:
for port_ in node_.ports:
for ph in range(len(port_.gap)):
if(len(port_.gap[ph]) > 0): # Gaps observed
cnt_ph += 1
port_.mergeGaps(ph) # Sort
gapVal: float
gapped: int = 0
for gap in port_.gap[ph]:
# Delete last GB
if(gap[1] == port_.schUP[ph]):
del port_.gap[ph][-1]
if(len(port_.gap[ph]) == 0 and not gapped):
cnt_ph -= 1
break
else:
# Gap fitting max. size Ethernet frame
if(gap[0] != 0.0):
gapVal = (gap[1] - gap[0])
if((gapVal / (network.maxLenFrame / port_.speed)) > 1):
count += (network.maxLenFrame / port_.speed) # GB
else:
count += gapVal # The whole gap
gapped = 1
if(not leftSide):
# Space left + first gap next ph**
gapVal = (network.minPeriod - (port_.schUP[ph] - port_.lastGB[ph]))
if(len(port_.gap[ph]) > 0):
if(port_.gap[ph][0][0] == 0.0):
gapVal += (port_.gap[ph][0][1] - port_.gap[ph][0][0]) # First gap
if((gapVal / (network.maxLenFrame / port_.speed)) > 1):
count += (network.maxLenFrame / port_.speed) # GB
else:
count += gapVal # The whole gap
else:
# Space left + first space next ph (not a gap)
gapVal = port_.schLW[ph] + (network.minPeriod - \
(port_.schUP[ph] - port_.lastGB[ph]))
if((gapVal / (network.maxLenFrame / port_.speed)) > 1):
count += (network.maxLenFrame / port_.speed) # GB
else:
count += gapVal # The whole gap
if(network.bidirec):
count = 0.5 * count # Counted twice
gap_norm = (count / ((cnt_ph) * network.minPeriod))
gap_norm = (gap_norm) # Correction
usage: float = ((1 - gap_norm) * 100)
#------------------------------------------------------------------------------------------
if(debug):
print("\n || Average Delay: " + str(delay_mean) + \
" s || Network Link Usage: " + str(usage) + \
" % || Norma-sized delay: " + str(delay_eval * 512 * 3)) # 512 aprox. average size
#------------------------------------------------------------------------------------------
# --- FITNESS FUNCTION EVALUATION ---
fitness: float
#print("DELAY: " + str(WEIGHT_DELAY * delay_norm))
#print("GAPS: " + str(WEIGHT_GAP * gap_norm * correction))
fitness = ((WEIGHT_DELAY * delay_norm + WEIGHT_GAP * gap_norm * correction))
fitness = (1.0 / (fitness + 1e-10)) # Fitness maximized by PyGAD
return fitness