-
Notifications
You must be signed in to change notification settings - Fork 754
/
ecdsa.rs
632 lines (553 loc) · 20.2 KB
/
ecdsa.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Simple ECDSA secp256k1 API.
use crate::crypto::{
CryptoType, CryptoTypeId, DeriveError, DeriveJunction, Pair as TraitPair, PublicBytes,
SecretStringError, SignatureBytes,
};
#[cfg(not(feature = "std"))]
use k256::ecdsa::{SigningKey as SecretKey, VerifyingKey};
#[cfg(feature = "std")]
use secp256k1::{
ecdsa::{RecoverableSignature, RecoveryId},
Message, PublicKey, SecretKey, SECP256K1,
};
#[cfg(not(feature = "std"))]
use sp_std::vec::Vec;
/// An identifier used to match public keys against ecdsa keys
pub const CRYPTO_ID: CryptoTypeId = CryptoTypeId(*b"ecds");
/// The byte length of public key
pub const PUBLIC_KEY_SERIALIZED_SIZE: usize = 33;
/// The byte length of signature
pub const SIGNATURE_SERIALIZED_SIZE: usize = 65;
#[doc(hidden)]
pub struct EcdsaTag;
/// The secret seed.
///
/// The raw secret seed, which can be used to create the `Pair`.
type Seed = [u8; 32];
/// The ECDSA compressed public key.
pub type Public = PublicBytes<PUBLIC_KEY_SERIALIZED_SIZE, EcdsaTag>;
impl Public {
/// Create a new instance from the given full public key.
///
/// This will convert the full public key into the compressed format.
pub fn from_full(full: &[u8]) -> Result<Self, ()> {
let mut tagged_full = [0u8; 65];
let full = if full.len() == 64 {
// Tag it as uncompressed public key.
tagged_full[0] = 0x04;
tagged_full[1..].copy_from_slice(full);
&tagged_full
} else {
full
};
#[cfg(feature = "std")]
let pubkey = PublicKey::from_slice(&full);
#[cfg(not(feature = "std"))]
let pubkey = VerifyingKey::from_sec1_bytes(&full);
pubkey.map(|k| k.into()).map_err(|_| ())
}
}
#[cfg(feature = "std")]
impl From<PublicKey> for Public {
fn from(pubkey: PublicKey) -> Self {
Self::from(pubkey.serialize())
}
}
#[cfg(not(feature = "std"))]
impl From<VerifyingKey> for Public {
fn from(pubkey: VerifyingKey) -> Self {
Self::try_from(&pubkey.to_sec1_bytes()[..])
.expect("Valid key is serializable to [u8; 33]. qed.")
}
}
#[cfg(feature = "full_crypto")]
impl From<Pair> for Public {
fn from(x: Pair) -> Self {
x.public()
}
}
/// A signature (a 512-bit value, plus 8 bits for recovery ID).
pub type Signature = SignatureBytes<SIGNATURE_SERIALIZED_SIZE, EcdsaTag>;
impl Signature {
/// Recover the public key from this signature and a message.
pub fn recover<M: AsRef<[u8]>>(&self, message: M) -> Option<Public> {
self.recover_prehashed(&sp_crypto_hashing::blake2_256(message.as_ref()))
}
/// Recover the public key from this signature and a pre-hashed message.
pub fn recover_prehashed(&self, message: &[u8; 32]) -> Option<Public> {
#[cfg(feature = "std")]
{
let rid = RecoveryId::from_i32(self.0[64] as i32).ok()?;
let sig = RecoverableSignature::from_compact(&self.0[..64], rid).ok()?;
let message =
Message::from_digest_slice(message).expect("Message is a 32 bytes hash; qed");
SECP256K1.recover_ecdsa(&message, &sig).ok().map(Public::from)
}
#[cfg(not(feature = "std"))]
{
let rid = k256::ecdsa::RecoveryId::from_byte(self.0[64])?;
let sig = k256::ecdsa::Signature::from_bytes((&self.0[..64]).into()).ok()?;
VerifyingKey::recover_from_prehash(message, &sig, rid).map(Public::from).ok()
}
}
}
#[cfg(not(feature = "std"))]
impl From<(k256::ecdsa::Signature, k256::ecdsa::RecoveryId)> for Signature {
fn from(recsig: (k256::ecdsa::Signature, k256::ecdsa::RecoveryId)) -> Signature {
let mut r = Self::default();
r.0[..64].copy_from_slice(&recsig.0.to_bytes());
r.0[64] = recsig.1.to_byte();
r
}
}
#[cfg(feature = "std")]
impl From<RecoverableSignature> for Signature {
fn from(recsig: RecoverableSignature) -> Signature {
let mut r = Self::default();
let (recid, sig) = recsig.serialize_compact();
r.0[..64].copy_from_slice(&sig);
// This is safe due to the limited range of possible valid ids.
r.0[64] = recid.to_i32() as u8;
r
}
}
/// Derive a single hard junction.
fn derive_hard_junction(secret_seed: &Seed, cc: &[u8; 32]) -> Seed {
use codec::Encode;
("Secp256k1HDKD", secret_seed, cc).using_encoded(sp_crypto_hashing::blake2_256)
}
/// A key pair.
#[derive(Clone)]
pub struct Pair {
public: Public,
secret: SecretKey,
}
impl TraitPair for Pair {
type Public = Public;
type Seed = Seed;
type Signature = Signature;
/// Make a new key pair from secret seed material. The slice must be 32 bytes long or it
/// will return `None`.
///
/// You should never need to use this; generate(), generate_with_phrase
fn from_seed_slice(seed_slice: &[u8]) -> Result<Pair, SecretStringError> {
#[cfg(feature = "std")]
{
let secret = SecretKey::from_slice(seed_slice)
.map_err(|_| SecretStringError::InvalidSeedLength)?;
Ok(Pair { public: PublicKey::from_secret_key(&SECP256K1, &secret).into(), secret })
}
#[cfg(not(feature = "std"))]
{
let secret = SecretKey::from_slice(seed_slice)
.map_err(|_| SecretStringError::InvalidSeedLength)?;
Ok(Pair { public: VerifyingKey::from(&secret).into(), secret })
}
}
/// Derive a child key from a series of given junctions.
fn derive<Iter: Iterator<Item = DeriveJunction>>(
&self,
path: Iter,
_seed: Option<Seed>,
) -> Result<(Pair, Option<Seed>), DeriveError> {
let mut acc = self.seed();
for j in path {
match j {
DeriveJunction::Soft(_cc) => return Err(DeriveError::SoftKeyInPath),
DeriveJunction::Hard(cc) => acc = derive_hard_junction(&acc, &cc),
}
}
Ok((Self::from_seed(&acc), Some(acc)))
}
/// Get the public key.
fn public(&self) -> Public {
self.public
}
/// Sign a message.
#[cfg(feature = "full_crypto")]
fn sign(&self, message: &[u8]) -> Signature {
self.sign_prehashed(&sp_crypto_hashing::blake2_256(message))
}
/// Verify a signature on a message. Returns true if the signature is good.
fn verify<M: AsRef<[u8]>>(sig: &Signature, message: M, public: &Public) -> bool {
sig.recover(message).map(|actual| actual == *public).unwrap_or_default()
}
/// Return a vec filled with raw data.
fn to_raw_vec(&self) -> Vec<u8> {
self.seed().to_vec()
}
}
impl Pair {
/// Get the seed for this key.
pub fn seed(&self) -> Seed {
#[cfg(feature = "std")]
{
self.secret.secret_bytes()
}
#[cfg(not(feature = "std"))]
{
self.secret.to_bytes().into()
}
}
/// Exactly as `from_string` except that if no matches are found then, the the first 32
/// characters are taken (padded with spaces as necessary) and used as the MiniSecretKey.
#[cfg(feature = "std")]
pub fn from_legacy_string(s: &str, password_override: Option<&str>) -> Pair {
Self::from_string(s, password_override).unwrap_or_else(|_| {
let mut padded_seed: Seed = [b' '; 32];
let len = s.len().min(32);
padded_seed[..len].copy_from_slice(&s.as_bytes()[..len]);
Self::from_seed(&padded_seed)
})
}
/// Sign a pre-hashed message
#[cfg(feature = "full_crypto")]
pub fn sign_prehashed(&self, message: &[u8; 32]) -> Signature {
#[cfg(feature = "std")]
{
let message =
Message::from_digest_slice(message).expect("Message is a 32 bytes hash; qed");
SECP256K1.sign_ecdsa_recoverable(&message, &self.secret).into()
}
#[cfg(not(feature = "std"))]
{
// Signing fails only if the `message` number of bytes is less than the field length
// (unfallible as we're using a fixed message length of 32).
self.secret
.sign_prehash_recoverable(message)
.expect("Signing can't fail when using 32 bytes message hash. qed.")
.into()
}
}
/// Verify a signature on a pre-hashed message. Return `true` if the signature is valid
/// and thus matches the given `public` key.
pub fn verify_prehashed(sig: &Signature, message: &[u8; 32], public: &Public) -> bool {
match sig.recover_prehashed(message) {
Some(actual) => actual == *public,
None => false,
}
}
/// Verify a signature on a message. Returns true if the signature is good.
/// Parses Signature using parse_overflowing_slice.
#[deprecated(note = "please use `verify` instead")]
pub fn verify_deprecated<M: AsRef<[u8]>>(sig: &Signature, message: M, pubkey: &Public) -> bool {
let message =
libsecp256k1::Message::parse(&sp_crypto_hashing::blake2_256(message.as_ref()));
let parse_signature_overflowing = |x: [u8; SIGNATURE_SERIALIZED_SIZE]| {
let sig = libsecp256k1::Signature::parse_overflowing_slice(&x[..64]).ok()?;
let rid = libsecp256k1::RecoveryId::parse(x[64]).ok()?;
Some((sig, rid))
};
let (sig, rid) = match parse_signature_overflowing(sig.0) {
Some(sigri) => sigri,
_ => return false,
};
match libsecp256k1::recover(&message, &sig, &rid) {
Ok(actual) => pubkey.0 == actual.serialize_compressed(),
_ => false,
}
}
}
// The `secp256k1` backend doesn't implement cleanup for their private keys.
// Currently we should take care of wiping the secret from memory.
// NOTE: this solution is not effective when `Pair` is moved around memory.
// The very same problem affects other cryptographic backends that are just using
// `zeroize`for their secrets.
#[cfg(feature = "std")]
impl Drop for Pair {
fn drop(&mut self) {
self.secret.non_secure_erase()
}
}
impl CryptoType for Public {
type Pair = Pair;
}
impl CryptoType for Signature {
type Pair = Pair;
}
impl CryptoType for Pair {
type Pair = Pair;
}
#[cfg(test)]
mod test {
use super::*;
use crate::crypto::{
set_default_ss58_version, PublicError, Ss58AddressFormat, Ss58AddressFormatRegistry,
Ss58Codec, DEV_PHRASE,
};
use serde_json;
#[test]
fn default_phrase_should_be_used() {
assert_eq!(
Pair::from_string("//Alice///password", None).unwrap().public(),
Pair::from_string(&format!("{}//Alice", DEV_PHRASE), Some("password"))
.unwrap()
.public(),
);
}
#[test]
fn seed_and_derive_should_work() {
let seed = array_bytes::hex2array_unchecked(
"9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
);
let pair = Pair::from_seed(&seed);
assert_eq!(pair.seed(), seed);
let path = vec![DeriveJunction::Hard([0u8; 32])];
let derived = pair.derive(path.into_iter(), None).ok().unwrap();
assert_eq!(
derived.0.seed(),
array_bytes::hex2array_unchecked::<_, 32>(
"b8eefc4937200a8382d00050e050ced2d4ab72cc2ef1b061477afb51564fdd61"
)
);
}
#[test]
fn test_vector_should_work() {
let pair = Pair::from_seed(&array_bytes::hex2array_unchecked(
"9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
));
let public = pair.public();
assert_eq!(
public,
Public::from_full(
&array_bytes::hex2bytes_unchecked("8db55b05db86c0b1786ca49f095d76344c9e6056b2f02701a7e7f3c20aabfd913ebbe148dd17c56551a52952371071a6c604b3f3abe8f2c8fa742158ea6dd7d4"),
).unwrap(),
);
let message = b"";
let signature = array_bytes::hex2array_unchecked("3dde91174bd9359027be59a428b8146513df80a2a3c7eda2194f64de04a69ab97b753169e94db6ffd50921a2668a48b94ca11e3d32c1ff19cfe88890aa7e8f3c00");
let signature = Signature::from_raw(signature);
assert!(pair.sign(&message[..]) == signature);
assert!(Pair::verify(&signature, &message[..], &public));
}
#[test]
fn test_vector_by_string_should_work() {
let pair = Pair::from_string(
"0x9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
None,
)
.unwrap();
let public = pair.public();
assert_eq!(
public,
Public::from_full(
&array_bytes::hex2bytes_unchecked("8db55b05db86c0b1786ca49f095d76344c9e6056b2f02701a7e7f3c20aabfd913ebbe148dd17c56551a52952371071a6c604b3f3abe8f2c8fa742158ea6dd7d4"),
).unwrap(),
);
let message = b"";
let signature = array_bytes::hex2array_unchecked("3dde91174bd9359027be59a428b8146513df80a2a3c7eda2194f64de04a69ab97b753169e94db6ffd50921a2668a48b94ca11e3d32c1ff19cfe88890aa7e8f3c00");
let signature = Signature::from_raw(signature);
assert!(pair.sign(&message[..]) == signature);
assert!(Pair::verify(&signature, &message[..], &public));
}
#[test]
fn generated_pair_should_work() {
let (pair, _) = Pair::generate();
let public = pair.public();
let message = b"Something important";
let signature = pair.sign(&message[..]);
assert!(Pair::verify(&signature, &message[..], &public));
assert!(!Pair::verify(&signature, b"Something else", &public));
}
#[test]
fn seeded_pair_should_work() {
let pair = Pair::from_seed(b"12345678901234567890123456789012");
let public = pair.public();
assert_eq!(
public,
Public::from_full(
&array_bytes::hex2bytes_unchecked("5676109c54b9a16d271abeb4954316a40a32bcce023ac14c8e26e958aa68fba995840f3de562156558efbfdac3f16af0065e5f66795f4dd8262a228ef8c6d813"),
).unwrap(),
);
let message = array_bytes::hex2bytes_unchecked("2f8c6129d816cf51c374bc7f08c3e63ed156cf78aefb4a6550d97b87997977ee00000000000000000200d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a4500000000000000");
let signature = pair.sign(&message[..]);
println!("Correct signature: {:?}", signature);
assert!(Pair::verify(&signature, &message[..], &public));
assert!(!Pair::verify(&signature, "Other message", &public));
}
#[test]
fn generate_with_phrase_recovery_possible() {
let (pair1, phrase, _) = Pair::generate_with_phrase(None);
let (pair2, _) = Pair::from_phrase(&phrase, None).unwrap();
assert_eq!(pair1.public(), pair2.public());
}
#[test]
fn generate_with_password_phrase_recovery_possible() {
let (pair1, phrase, _) = Pair::generate_with_phrase(Some("password"));
let (pair2, _) = Pair::from_phrase(&phrase, Some("password")).unwrap();
assert_eq!(pair1.public(), pair2.public());
}
#[test]
fn generate_with_phrase_should_be_recoverable_with_from_string() {
let (pair, phrase, seed) = Pair::generate_with_phrase(None);
let repair_seed = Pair::from_seed_slice(seed.as_ref()).expect("seed slice is valid");
assert_eq!(pair.public(), repair_seed.public());
assert_eq!(pair.secret, repair_seed.secret);
let (repair_phrase, reseed) =
Pair::from_phrase(phrase.as_ref(), None).expect("seed slice is valid");
assert_eq!(seed, reseed);
assert_eq!(pair.public(), repair_phrase.public());
assert_eq!(pair.secret, repair_phrase.secret);
let repair_string = Pair::from_string(phrase.as_str(), None).expect("seed slice is valid");
assert_eq!(pair.public(), repair_string.public());
assert_eq!(pair.secret, repair_string.secret);
}
#[test]
fn password_does_something() {
let (pair1, phrase, _) = Pair::generate_with_phrase(Some("password"));
let (pair2, _) = Pair::from_phrase(&phrase, None).unwrap();
assert_ne!(pair1.public(), pair2.public());
assert_ne!(pair1.secret, pair2.secret);
}
#[test]
fn ss58check_roundtrip_works() {
let pair = Pair::from_seed(b"12345678901234567890123456789012");
let public = pair.public();
let s = public.to_ss58check();
println!("Correct: {}", s);
let cmp = Public::from_ss58check(&s).unwrap();
assert_eq!(cmp, public);
}
#[test]
fn ss58check_format_check_works() {
let pair = Pair::from_seed(b"12345678901234567890123456789012");
let public = pair.public();
let format = Ss58AddressFormatRegistry::Reserved46Account.into();
let s = public.to_ss58check_with_version(format);
assert_eq!(Public::from_ss58check_with_version(&s), Err(PublicError::FormatNotAllowed));
}
#[test]
fn ss58check_full_roundtrip_works() {
let pair = Pair::from_seed(b"12345678901234567890123456789012");
let public = pair.public();
let format = Ss58AddressFormatRegistry::PolkadotAccount.into();
let s = public.to_ss58check_with_version(format);
let (k, f) = Public::from_ss58check_with_version(&s).unwrap();
assert_eq!(k, public);
assert_eq!(f, format);
let format = Ss58AddressFormat::custom(64);
let s = public.to_ss58check_with_version(format);
let (k, f) = Public::from_ss58check_with_version(&s).unwrap();
assert_eq!(k, public);
assert_eq!(f, format);
}
#[test]
fn ss58check_custom_format_works() {
// We need to run this test in its own process to not interfere with other tests running in
// parallel and also relying on the ss58 version.
if std::env::var("RUN_CUSTOM_FORMAT_TEST") == Ok("1".into()) {
use crate::crypto::Ss58AddressFormat;
// temp save default format version
let default_format = crate::crypto::default_ss58_version();
// set current ss58 version is custom "200" `Ss58AddressFormat::Custom(200)`
set_default_ss58_version(Ss58AddressFormat::custom(200));
// custom addr encoded by version 200
let addr = "4pbsSkWcBaYoFHrKJZp5fDVUKbqSYD9dhZZGvpp3vQ5ysVs5ybV";
Public::from_ss58check(addr).unwrap();
set_default_ss58_version(default_format);
// set current ss58 version to default version
let addr = "KWAfgC2aRG5UVD6CpbPQXCx4YZZUhvWqqAJE6qcYc9Rtr6g5C";
Public::from_ss58check(addr).unwrap();
println!("CUSTOM_FORMAT_SUCCESSFUL");
} else {
let executable = std::env::current_exe().unwrap();
let output = std::process::Command::new(executable)
.env("RUN_CUSTOM_FORMAT_TEST", "1")
.args(&["--nocapture", "ss58check_custom_format_works"])
.output()
.unwrap();
let output = String::from_utf8(output.stdout).unwrap();
assert!(output.contains("CUSTOM_FORMAT_SUCCESSFUL"));
}
}
#[test]
fn signature_serialization_works() {
let pair = Pair::from_seed(b"12345678901234567890123456789012");
let message = b"Something important";
let signature = pair.sign(&message[..]);
let serialized_signature = serde_json::to_string(&signature).unwrap();
// Signature is 65 bytes, so 130 chars + 2 quote chars
assert_eq!(serialized_signature.len(), SIGNATURE_SERIALIZED_SIZE * 2 + 2);
let signature = serde_json::from_str(&serialized_signature).unwrap();
assert!(Pair::verify(&signature, &message[..], &pair.public()));
}
#[test]
fn signature_serialization_doesnt_panic() {
fn deserialize_signature(text: &str) -> Result<Signature, serde_json::error::Error> {
serde_json::from_str(text)
}
assert!(deserialize_signature("Not valid json.").is_err());
assert!(deserialize_signature("\"Not an actual signature.\"").is_err());
// Poorly-sized
assert!(deserialize_signature("\"abc123\"").is_err());
}
#[test]
fn sign_prehashed_works() {
let (pair, _, _) = Pair::generate_with_phrase(Some("password"));
// `msg` shouldn't be mangled
let msg = [0u8; 32];
let sig1 = pair.sign_prehashed(&msg);
let sig2: Signature = {
#[cfg(feature = "std")]
{
let message = Message::from_digest_slice(&msg).unwrap();
SECP256K1.sign_ecdsa_recoverable(&message, &pair.secret).into()
}
#[cfg(not(feature = "std"))]
{
pair.secret
.sign_prehash_recoverable(&msg)
.expect("signing may not fail (???). qed.")
.into()
}
};
assert_eq!(sig1, sig2);
// signature is actually different
let sig2 = pair.sign(&msg);
assert_ne!(sig1, sig2);
// using pre-hashed `msg` works
let msg = b"this should be hashed";
let sig1 = pair.sign_prehashed(&sp_crypto_hashing::blake2_256(msg));
let sig2 = pair.sign(msg);
assert_eq!(sig1, sig2);
}
#[test]
fn verify_prehashed_works() {
let (pair, _, _) = Pair::generate_with_phrase(Some("password"));
// `msg` and `sig` match
let msg = sp_crypto_hashing::blake2_256(b"this should be hashed");
let sig = pair.sign_prehashed(&msg);
assert!(Pair::verify_prehashed(&sig, &msg, &pair.public()));
// `msg` and `sig` don't match
let msg = sp_crypto_hashing::blake2_256(b"this is a different message");
assert!(!Pair::verify_prehashed(&sig, &msg, &pair.public()));
}
#[test]
fn recover_prehashed_works() {
let (pair, _, _) = Pair::generate_with_phrase(Some("password"));
// recovered key matches signing key
let msg = sp_crypto_hashing::blake2_256(b"this should be hashed");
let sig = pair.sign_prehashed(&msg);
let key = sig.recover_prehashed(&msg).unwrap();
assert_eq!(pair.public(), key);
// recovered key is useable
assert!(Pair::verify_prehashed(&sig, &msg, &key));
// recovered key and signing key don't match
let msg = sp_crypto_hashing::blake2_256(b"this is a different message");
let key = sig.recover_prehashed(&msg).unwrap();
assert_ne!(pair.public(), key);
}
}