-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathprediction.py
79 lines (67 loc) · 2.96 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python3
import tensorflow as tf
import numpy as np
import os
import reader
from tensorflow.contrib import learn
tf.flags.DEFINE_string("input_path", '', "Data source for input file")
tf.flags.DEFINE_string("checkpoint_dir", '', "Checkpoint dir from training run")
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
tf.flags.DEFINE_string("output_path", '', "Directory to save results")
FLAGS = tf.flags.FLAGS
# FLAGS._parse_flags()
# print("\nParameters:")
# for attr, value in sorted(FLAGS.__flags.items()):
# print("{}={}".format(attr.upper(), value))
# print("")
# Load input data:
input_data = reader._read_data(FLAGS.input_path)
# Map data into vocabulary:
vocab_path = os.path.join(FLAGS.checkpoint_dir, '', "vocab")
vocab_processor = learn.preprocessing.VocabularyProcessor.restore(vocab_path)
input_id = np.array(list(vocab_processor.transform(input_data)))
# Create result file:
output_file = open(os.path.join(FLAGS.output_path, "results.txt"),'w')
# Evaluation:
print("\nEvaluating...\n")
checkpoint_file = tf.train.latest_checkpoint(os.path.join(
FLAGS.checkpoint_dir, "checkpoints")
)
graph = tf.Graph()
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
# Load the saved meta graph and restore variables:
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
# Get the placeholders from the graph by name:
input_x = graph.get_operation_by_name("input_x").outputs[0]
dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
# Tensors we want to evaluate:
predictions = graph.get_operation_by_name("output/predictions").outputs[0]
# Generate batches:
sn_length = reader._length(input_data)
max_length = max(sn_length)
mask = reader._mask(input_data, max_length)
batches = reader.batch_iter(input_id, max_length, mask)
batch_size = graph.get_operation_by_name("batch_size").outputs[0]
# Collect the predictions:
indx = 0
for batch in batches:
x_batch = batch[0]
z_batch = batch[1]
batch_predictions = sess.run(
predictions, {input_x: x_batch, batch_size: 1, dropout_keep_prob: 1.0}
)
words = input_data[indx].split()
# "E" stands for disfluent words and "F" for fluent words:
for i in range(sn_length[indx]):
label = 'E' if batch_predictions[i] == 1 else 'F'
output_file.write(words[i]+' '+label+' ')
output_file.write('\n')
indx += 1
print('\nEvaluation Done!')