-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathTimeSVD.scala
226 lines (192 loc) · 6.64 KB
/
TimeSVD.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
package function
import function._
import scala.util.Random
import scala.math
import java.util.concurrent.TimeUnit
class TimeSVD extends TrainingModel {
val (beta) = (0.3)
val (gamma, lambda) = (0.0002, 0.2)
val numBins = 30
//b_u
val userDeviation = Array.fill(numUsers)(Random.nextDouble)
//b_u
val userDeviationT = Array.fill(numUsers)(collection.mutable.HashMap[Int, Double]())
ratingFile.foreach{ x =>
val t = days(x.timestamp, minStamp)
userDeviationT(x.userID - 1) += (t -> 0.0)
}
//b_i
val movieDeviation = Array.fill(numMovies)(Random.nextDouble)
//b_i-bin(t)
val movieDeviationT = Array.fill(numMovies)(Array.fill(numBins)(Random.nextDouble))
//alpha_u
val alpha = Array.fill(numUsers)(Random.nextDouble)
//alpahK_u
val alphaK = Array.fill(numUsers)(Array.fill(numFactors)(Random.nextDouble))
//p_u(t)
val timePreference = Array.fill(numUsers)( Array.fill(numFactors)(collection.mutable.HashMap[Int, Double]()) )
val ratedMovieOfUsers = ratings.map{ x =>
val s = x.size
for(i <- 0 until s if x(i) > 0.0)
yield i
}
val minStamp = ratingFile.reduceLeft( (a,b) => if (a.timestamp < b.timestamp) a else b).timestamp
val maxStamp = ratingFile.reduceLeft( (a,b) => if (a.timestamp > b.timestamp) a else b).timestamp
val numDays = days(maxStamp, minStamp) + 1
val times = Array.fill(numUsers)(Array.fill[Long](numMovies)(0))
//For the rating(u)(i) which we want to predict(to test), its timestamp is preserved
//另一種可能的作法是都設為現在的時間
ratingFile.foreach{ x => times(x.userID - 1)(x.movieID - 1) = x.timestamp }
val userMeanDate = Array.tabulate(ratedMovieOfUsers.size) { u =>
val sum: Double = ratedMovieOfUsers(u)
.map{ i => days(times(u)(i), minStamp)}
.foldLeft(0.0)(_+_)
if(ratedMovieOfUsers(u).size > 0)
sum / ratedMovieOfUsers(u).size
else
globalMeanDate
}
//mui
val overallAverage = {
var count = 0
var sum = 0.0
for(u <- 0 until numUsers ; i <- 0 until numMovies)
if(ratings(u)(i) > 0.0){
sum += ratings(u)(i)
count += 1
}
sum / count
}
val globalMeanDate = {
var count = 0
var sum = 0.0
for(u <- 0 until numUsers ; i <- 0 until numMovies)
if(ratings(u)(i) > 0.0){
sum += days(times(u)(i), minStamp)
count += 1
}
sum / count
}
def predict(userIndex: Int, movieIndex: Int) = {
val stamp = times(userIndex)(movieIndex)
val t = days(stamp, minStamp)
val binT = bin(t)
val bUT = if (userDeviationT(userIndex).contains(t)) userDeviationT(userIndex)(t) else 0.0
var sum = 0.0
for(k <- 0 until numFactors) {
val put = if (timePreference(userIndex)(k).contains(t))
timePreference(userIndex)(k)(t)
else
0.0
//q_i * ( p_u + alpha_u * dev_u(t) + p_u(t) )
sum += matrixQ(k)(movieIndex) *
(matrixP(userIndex)(k) +
alphaK(userIndex)(k) * dev(userIndex, t) +
put)
}
//!! check bui-contain
//prediction = mui + b_u + alaph_u * dev_u(t) + b_ut + b_i + b_i-bin(t) + q_i * ( p_u + alpha_u * dev_u(t) + p_u(t))
overallAverage +
userDeviation(userIndex) + alpha(userIndex) * dev(userIndex, t) + bUT +
movieDeviation(movieIndex) + movieDeviationT(movieIndex)(binT) + sum
}
private def gradientDescent(): Double = {
for(u <- 0 until numUsers ; i <- 0 until numMovies){
if (ratings(u)(i) > 0){ //??
//唯有ratings(u)(i) > 0 時,stamp才不為0、t才會合理
val stamp = times(u)(i)
val t = days(stamp, minStamp)
val binT = bin(t)
val bit = movieDeviationT(i)(binT)
if(!userDeviationT(u).contains(t))
userDeviationT(u) += (t -> 0.0)
val eui = ratings(u)(i) - predict(u,i)
val but = userDeviationT(u)(t) +
gamma * (eui - lambda * userDeviationT(u)(t))
//update b_u
userDeviation(u) += gamma * (eui - lambda * userDeviation(u))
//update alpha_u
alpha(u) += gamma * (eui * dev(u, t) - lambda * alpha(u))
//update b_ut
userDeviationT(u) += (t -> but)
//update b_i
movieDeviation(i) += gamma * (eui - lambda * movieDeviation(i))
//update b_i-bin(t)
movieDeviationT(i)(binT) += gamma * (eui - lambda * bit)
for(k <- 0 until numFactors){
val pu = matrixP(u)(k)
val qi = matrixQ(k)(i)
val alphaU = alphaK(u)(k)
if(!timePreference(u)(k).contains(t))
timePreference(u)(k) += (t -> 0.0)
val put = timePreference(u)(k)(t) +
gamma * (eui * qi - lambda * timePreference(u)(k)(t))
//update p_u
matrixP(u)(k) += gamma * ( eui * qi - lambda * pu)
//update q_i
matrixQ(k)(i) += gamma * ( eui * (pu + alphaU * dev(u,t) + put) - lambda * qi )
//update alpha_uk
alphaK(u)(k) += gamma * ( eui * qi * dev(u, t) - lambda * alphaU)
//update p_ku(t)
timePreference(u)(k) += (t -> put)
}
}
}
var error = 0.0
for(u <- 0 until numUsers; i <- 0 until numMovies){
if (ratings(u)(i) > 0){ //??
val eui = ratings(u)(i) - predict(u,i)
error += eui * eui
val stamp = times(u)(i)
val t = days(stamp, minStamp)
val binT = bin(t)
val bit = movieDeviationT(i)(binT)
val bu = userDeviation(u)
val au = alpha(u)
val but = if(userDeviationT(u).contains(t)) userDeviationT(u)(t) else 0.0
val bi = movieDeviation(i)
error += (lambda/2.0) *
( bu * bu + au * au + but * but + bi * bi + bit * bit)
for(k <- 0 until numFactors){
val auk = alphaK(u)(k)
val pu = matrixP(u)(k)
val qi = matrixQ(k)(i)
val put = if (timePreference(u)(k).contains(t))
timePreference(u)(k)(t)
else
0.0
error += (lambda/2.0) * ( auk * auk + pu * pu + qi * qi + put * put)
}
}
}
error
}
//def days(d1: Long, d2: Long) = (TimeUnit.SECONDS.toDays(math.abs(d1 - d2))).toInt
def days(d1: Long, d2: Long) = (TimeUnit.MILLISECONDS.toDays(math.abs(d1 - d2))).toInt
def bin(day: Int) = (numBins.toDouble * day / numDays.toDouble ).toInt
def dev(u: Int, t: Int) = math.signum(t - userMeanDate(u)) * math.pow(math.abs(t - userMeanDate(u)), beta)
/*
var last = math.abs(gradientDescent())
var loop = true
var i = 1
while(loop){
val err = math.abs(gradientDescent())
println("Training step " + i + " : error = " + err)
if(err > last)
loop = false
last = err
i += 1
}
*/
var min = math.abs(gradientDescent())
var step = 0
for(i <- 1 to steps){
val err = math.abs(gradientDescent())
println("Training step " + i + " : error = " + err)
if(err < min){
min = err
step = i
}
}
println("min error : " + min + " at step " + step)
} //end of class TimeSVD