-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathRundeopt.m
executable file
·96 lines (76 loc) · 3.59 KB
/
Rundeopt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
%********************************************************************
% Script file for the initialization and run of the differential
% evolution optimizer.
%********************************************************************
clc;
% F_VTR "Value To Reach" (stop when ofunc < F_VTR)
F_VTR = -1000000;
% I_D number of parameters of the objective function
I_D = 5;
% FVr_minbound,FVr_maxbound vector of lower and bounds of initial population
% the algorithm seems to work especially well if [FVr_minbound,FVr_maxbound]
% covers the region where the global minimum is expected
% *** note: these are no bound constraints!! ***
FVr_minbound = [0 0 0 0 0];
FVr_maxbound = [1 1 1 1 1];
% FVr_minbound = [10 0.25 0.25];
% FVr_maxbound = [200 0.75 0.75];
I_bnd_constr = 0; %1: use bounds as bound constraints, 0: no bound constraints
% I_NP number of population members
I_NP = 10*I_D; %pretty high number - needed for demo purposes only
% I_itermax maximum number of iterations (generations)
I_itermax = 200;
% F_weight DE-stepsize F_weight ex [0, 2]
F_weight = 0.8;
% F_CR crossover probabililty constant ex [0, 1]
F_CR = 0.9;
% I_strategy 1 --> DE/rand/1:
% the classical version of DE.
% 2 --> DE/local-to-best/1:
% a version which has been used by quite a number
% of scientists. Attempts a balance between robustness
% and fast convergence.
% 3 --> DE/best/1 with jitter:
% taylored for small population sizes and fast convergence.
% Dimensionality should not be too high.
% 4 --> DE/rand/1 with per-vector-dither:
% Classical DE with dither to become even more robust.
% 5 --> DE/rand/1 with per-generation-dither:
% Classical DE with dither to become even more robust.
% Choosing F_weight = 0.3 is a good start here.
% 6 --> DE/rand/1 either-or-algorithm:
% Alternates between differential mutation and three-point-
% recombination.
I_strategy = 2;
% I_refresh intermediate output will be produced after "I_refresh"
% iterations. No intermediate output will be produced
% if I_refresh is < 1
I_refresh = 0;
% I_plotting Will use plotting if set to 1. Will skip plotting otherwise.
I_plotting = 0;
%-----Problem dependent constant values for plotting----------------
if (I_plotting == 1)
FVc_xx = [-3:0.25:3]';
FVc_yy = [-3:0.25:3]';
[FVr_x,FM_y]=meshgrid(FVc_xx',FVc_yy') ;
FM_meshd = peaks(FVr_x,FM_y);
S_struct.FVc_xx = FVc_xx;
S_struct.FVc_yy = FVc_yy;
S_struct.FM_meshd = FM_meshd;
end
S_struct.I_NP = I_NP;
S_struct.F_weight = F_weight;
S_struct.F_CR = F_CR;
S_struct.I_D = I_D;
S_struct.FVr_minbound = FVr_minbound;
S_struct.FVr_maxbound = FVr_maxbound;
S_struct.I_bnd_constr = I_bnd_constr;
S_struct.I_itermax = I_itermax;
S_struct.F_VTR = F_VTR;
S_struct.I_strategy = I_strategy;
S_struct.I_refresh = I_refresh;
S_struct.I_plotting = I_plotting;
%********************************************************************
% Start of optimization
%********************************************************************
[FVr_x,S_y,I_nf] = deopt('objfun',S_struct);