-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathutils.py
90 lines (74 loc) · 2.22 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import math
import time
import numpy as np
class Timer:
def __init__(self, text=None):
self.text = text
def __enter__(self):
self.cpu = time.clock()
self.time = time.time()
if self.text:
print("{}...".format(self.text))
return self
def __exit__(self, *args):
self.cpu = time.clock() - self.cpu
self.time = time.time() - self.time
if self.text:
print("%s: cpu %0.2f, time %0.2f\n" % (self.text, self.cpu, self.time))
def date_to_int(str_date):
Y, M, D = [int(a) for a in str_date.strip().split("-")] # "2016-05-28"
int_date = (int(Y) - 2015) * 12 + int(M)
assert 1 <= int_date <= 12 + 6
return int_date
# "2016-05-28" or "" or nan
def date_to_float(str_date):
if str_date.__class__ is float and math.isnan(str_date) or str_date == "":
return np.nan
Y, M, D = [int(a) for a in str_date.strip().split("-")]
float_date = float(Y) * 12 + float(M)
return float_date
products = (
"ind_ahor_fin_ult1",
"ind_aval_fin_ult1",
"ind_cco_fin_ult1" ,
"ind_cder_fin_ult1",
"ind_cno_fin_ult1" ,
"ind_ctju_fin_ult1",
"ind_ctma_fin_ult1",
"ind_ctop_fin_ult1",
"ind_ctpp_fin_ult1",
"ind_deco_fin_ult1",
"ind_deme_fin_ult1",
"ind_dela_fin_ult1",
"ind_ecue_fin_ult1",
"ind_fond_fin_ult1",
"ind_hip_fin_ult1" ,
"ind_plan_fin_ult1",
"ind_pres_fin_ult1",
"ind_reca_fin_ult1",
"ind_tjcr_fin_ult1",
"ind_valo_fin_ult1",
"ind_viv_fin_ult1" ,
"ind_nomina_ult1" ,
"ind_nom_pens_ult1",
"ind_recibo_ult1" ,
)
dtypes = {
"fecha_dato": str,
"ncodpers": int,
"conyuemp": str, # Spouse index. 1 if the customer is spouse of an employee
}
def apk(actual, predicted, k=10, default=1.0):
if len(predicted)>k:
predicted = predicted[:k]
score = 0.0
num_hits = 0.0
for i,p in enumerate(predicted):
if p in actual and p not in predicted[:i]:
num_hits += 1.0
score += num_hits / (i+1.0)
if not actual:
return default
return score / min(len(actual), k)
def mapk(actual, predicted, k=10, default=1.0):
return np.mean([apk(a,p,k,default) for a,p in zip(actual, predicted)])