-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmain.py
369 lines (292 loc) · 14.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import gzip
import math
import pickle
import zlib
import io
import pandas as pd
import numpy as np
# import scipy.stats
from sklearn.preprocessing import LabelEncoder
import engines
from utils import *
np.random.seed(2016)
transformers = {}
def assert_uniq(series, name):
uniq = np.unique(series, return_counts=True)
print("assert_uniq", name, uniq)
def custom_one_hot(df, features, name, names, dtype=np.int8, check=False):
for n, val in names.items():
new_name = "%s_%s" % (name, n)
print(name, new_name)
df[new_name] = df[name].map(lambda x: 1 if x == val else 0).astype(dtype)
if check:
assert_uniq(df[new_name], new_name)
features.append(new_name)
def label_encode(df, features, name):
df[name] = df[name].astype('str')
if name in transformers: # test
df[name] = transformers[name].transform(df[name])
else: # train
transformers[name] = LabelEncoder()
df[name] = transformers[name].fit_transform(df[name])
features.append(name)
def encode_top(s, count=100, dtype=np.int8):
uniqs, freqs = np.unique(s, return_counts=True)
top = sorted(zip(uniqs,freqs), key=lambda vk: vk[1], reverse = True)[:count]
top_map = {uf[0]: l+1 for uf, l in zip(top, range(len(top)))}
return s.map(lambda x: top_map.get(x, 0)).astype(dtype)
def apply_transforms(train_df):
features = []
with Timer("apply transforms"):
label_encode(train_df, features, "canal_entrada")
# label_encode(train_df, features, "nomprov") # use cod_prov only
label_encode(train_df, features, "pais_residencia")
train_df["age"] = train_df["age"].fillna(0.0).astype(np.int16)
features.append("age")
train_df["renta"].fillna(1.0, inplace=True)
train_df["renta_top"] = encode_top(train_df["renta"])
assert_uniq(train_df["renta_top"], "renta_top")
features.append("renta_top")
train_df["renta"] = train_df["renta"].map(math.log)
features.append("renta")
train_df["antiguedad"] = train_df["antiguedad"].map(lambda x: 0.0 if x < 0 or math.isnan(x) else x+1.0).astype(np.int16)
features.append("antiguedad")
train_df["tipodom"] = train_df["tipodom"].fillna(0.0).astype(np.int8)
features.append("tipodom")
train_df["cod_prov"] = train_df["cod_prov"].fillna(0.0).astype(np.int8)
features.append("cod_prov")
train_df["fecha_dato_month"] = train_df["fecha_dato"].map(lambda x: int(x.split("-")[1])).astype(np.int8)
features.append("fecha_dato_month")
train_df["fecha_dato_year"] = train_df["fecha_dato"].map(lambda x: float(x.split("-")[0])).astype(np.int16)
features.append("fecha_dato_year")
train_df["fecha_alta_month"] = train_df["fecha_alta"].map(lambda x: 0.0 if x.__class__ is float else float(x.split("-")[1])).astype(np.int8)
features.append("fecha_alta_month")
train_df["fecha_alta_year"] = train_df["fecha_alta"].map(lambda x: 0.0 if x.__class__ is float else float(x.split("-")[0])).astype(np.int16)
features.append("fecha_alta_year")
train_df["fecha_dato_float"] = train_df["fecha_dato"].map(date_to_float)
train_df["fecha_alta_float"] = train_df["fecha_alta"].map(date_to_float)
train_df["dato_minus_alta"] = train_df["fecha_dato_float"] - train_df["fecha_alta_float"]
features.append("dato_minus_alta")
train_df["int_date"] = train_df["fecha_dato"].map(date_to_int).astype(np.int8)
custom_one_hot(train_df, features, "indresi", {"n":"N"})
custom_one_hot(train_df, features, "indext", {"s":"S"})
custom_one_hot(train_df, features, "conyuemp", {"n":"N"})
custom_one_hot(train_df, features, "sexo", {"h":"H", "v":"V"})
custom_one_hot(train_df, features, "ind_empleado", {"a":"A", "b":"B", "f":"F", "n":"N"})
custom_one_hot(train_df, features, "ind_nuevo", {"new":1})
custom_one_hot(train_df, features, "segmento", {"top":"01 - TOP", "particulares":"02 - PARTICULARES", "universitario":"03 - UNIVERSITARIO"})
custom_one_hot(train_df, features, "indfall", {"s":"S"})
train_df["ind_actividad_cliente"] = train_df["ind_actividad_cliente"].map(lambda x: 0.0 if math.isnan(x) else x+1.0).astype(np.int8)
features.append("ind_actividad_cliente")
custom_one_hot(train_df, features, "indrel", {"1":1, "99":99})
train_df["indrel_1mes"] = train_df["indrel_1mes"].map(lambda x: 5.0 if x == "P" else x).astype(float).fillna(0.0).astype(np.int8)
assert_uniq(train_df["indrel_1mes"], "indrel_1mes")
features.append("indrel_1mes")
custom_one_hot(train_df, features, "tiprel_1mes", {"a":"A", "i":"I", "p":"P", "r":"R"}, check=True)
return train_df, tuple(features)
def make_prev_df(train_df, step):
with Timer("make prev%s DF" % step):
prev_df = pd.DataFrame()
prev_df["ncodpers"] = train_df["ncodpers"]
prev_df["int_date"] = train_df["int_date"].map(lambda x: x+step).astype(np.int8)
prod_features = ["%s_prev%s" % (prod, step) for prod in products]
for prod, prev in zip(products, prod_features):
prev_df[prev] = train_df[prod]
return prev_df, tuple(prod_features)
def load_data(fname="../input/all_clean.csv"):
with Timer("load train csv"):
train_df = pd.read_csv(fname, dtype=dtypes)
with Timer("fill products NA"):
for prod in products:
train_df[prod] = train_df[prod].fillna(0.0).astype(np.int8)
train_df, features = apply_transforms(train_df)
prev_dfs = []
prod_features = None
use_features = frozenset([1,2])
for step in range(1,6):
prev1_train_df, prod1_features = make_prev_df(train_df, step)
prev_dfs.append(prev1_train_df)
if step in use_features:
features += prod1_features
if step == 1:
prod_features = prod1_features
return train_df, prev_dfs, features, prod_features
def join_with_prev(df, prev_df, how):
with Timer("join %s" % how):
assert set(df.columns.values.tolist()) & set(prev_df.columns.values.tolist()) == set(["ncodpers", "int_date"])
print("before join", len(df))
df = df.merge(prev_df, on=["ncodpers", "int_date"], how=how)
for f in set(prev_df.columns.values.tolist()) - set(["ncodpers", "int_date"]):
df[f] = df[f].astype(np.float16)
print("after join", len(df))
return df
def make_data():
train_df, prev_dfs, features, prod_features = load_data()
for i, prev_df in enumerate(prev_dfs):
with Timer("join train with prev%s" % (i+1)):
how = "inner" if i == 0 else "left"
train_df = join_with_prev(train_df, prev_df, how=how)
# Various aggregates to try
# for prod in products:
# print()
# print(prod)
# #prev1_bin = (train_df[prod + "_prev1"] != 1).astype(np.int8)
# for begin, end in [(2,5),(1,4)]:
# prods = ["%s_prev%s" % (prod, i) for i in range(begin,end+1)]
# mp_df = train_df.as_matrix(columns=prods)
# print(prods)
#
# stdf = "%s_std_%s_%s" % (prod,begin,end)
# train_df[stdf] = np.nanstd(mp_df, axis=1) # * prev1_bin
#
# maxf = "%s_max_%s_%s"%(prod,begin,end)
# train_df[maxf] = np.nanmax(mp_df, axis=1).astype(np.int8)
#
# # minf = "%s_min_%s_%s"%(prod,begin,end)
# # train_df[minf] = np.nanmin(mp_df, axis=1).astype(np.int8)
#
# chf = "%s_ch_%s_%s"%(prod,begin,end)
# train_df[chf] = np.sum(np.invert(np.isclose(mp_df[:,1:], mp_df[:,:-1], equal_nan=True)), axis=1, dtype=np.int8)
#
# sumf = "%s_sum_%s_%s"%(prod,begin,end)
# train_df[sumf] = np.nansum(mp_df, axis=1, dtype=np.int8)
#
# skewf = "%s_skew_%s_%s"%(prod,begin,end)
# train_df[skewf] = scipy.stats.skew(mp_df, axis=1)
#
# features += (stdf,maxf,chf,sumf,skewf)
for prod in products:
print()
print(prod)
for begin, end in [(1,3),(1,5),(2,5)]:
prods = ["%s_prev%s" % (prod, i) for i in range(begin,end+1)]
mp_df = train_df.as_matrix(columns=prods)
print(prods)
stdf = "%s_std_%s_%s" % (prod,begin,end)
train_df[stdf] = np.nanstd(mp_df, axis=1) # * prev1_bin
features += (stdf,)
for prod in products:
print()
print(prod)
for begin, end in [(2,3),(2,5)]:
prods = ["%s_prev%s" % (prod, i) for i in range(begin,end+1)]
mp_df = train_df.as_matrix(columns=prods)
print(prods)
minf = "%s_min_%s_%s"%(prod,begin,end)
train_df[minf] = np.nanmin(mp_df, axis=1).astype(np.int8)
maxf = "%s_max_%s_%s"%(prod,begin,end)
train_df[maxf] = np.nanmax(mp_df, axis=1).astype(np.int8)
features += (minf,maxf,)
with Timer("Remove unused columns"):
leave_columns = ["ncodpers", "int_date", "fecha_dato"] + list(products) + list(features)
assert len(leave_columns) == len(set(leave_columns))
train_df = train_df[leave_columns]
return train_df, features, prod_features
def make_submission(f, Y_test, C):
Y_ret = []
with Timer("make submission"):
f.write("ncodpers,added_products\n".encode('utf-8'))
for c, y_test in zip(C, Y_test):
y_prods = [(y,p,ip) for y,p,ip in zip(y_test, products, range(len(products)))]
y_prods = sorted(y_prods, key=lambda a: a[0], reverse=True)[:7]
Y_ret.append([ip for y,p,ip in y_prods])
y_prods = [p for y,p,ip in y_prods]
f.write(("%s,%s\n" % (int(c), " ".join(y_prods))).encode('utf-8'))
return Y_ret
def train_predict(all_df, features, prod_features, str_date, cv):
test_date = date_to_int(str_date)
train_df = all_df[all_df.int_date < test_date]
test_df = pd.DataFrame(all_df[all_df.int_date == test_date])
print(sorted(set(train_df.columns.values.tolist())))
print(len(train_df.columns.values.tolist()), len(set(train_df.columns.values.tolist())))
print(len(features),len(set(features)))
X = []
Y = []
for i, prod in enumerate(products):
prev = prod + "_prev1"
prX = train_df[(train_df[prod] == 1) & (train_df[prev] == 0)]
prY = np.zeros(prX.shape[0], dtype=np.int8) + i
X.append(prX)
Y.append(prY)
print(prod, prX.shape)
XY = pd.concat(X)
Y = np.hstack(Y)
XY["y"] = Y
XY["url"] = np.zeros(len(XY), dtype=np.int8)
del train_df
del all_df
XY["ncodepers_fecha_dato"] = XY["ncodpers"].astype(str) + XY["fecha_dato"]
uniqs, counts = np.unique(XY["ncodepers_fecha_dato"], return_counts=True)
weights = np.exp(1/counts - 1)
print(np.unique(counts, return_counts=True))
print(np.unique(weights, return_counts=True))
wdf = pd.DataFrame()
wdf["ncodepers_fecha_dato"] = uniqs
wdf["counts"] = counts
wdf["weight"] = weights
print("before merge", len(XY))
XY = XY.merge(wdf, on="ncodepers_fecha_dato")
print("after merge", len(XY))
print(XY.shape)
mask = np.random.rand(len(XY)) < 0.8
XY_train = XY[mask]
XY_validate = XY[~mask]
with Timer("prepare test data"):
test_df["y"] = test_df["ncodpers"]
test_df["url"] = np.zeros(len(test_df), dtype=np.int8)
test_df["weight"] = np.ones(len(test_df), dtype=np.int8)
Y_prev = test_df.as_matrix(columns=prod_features)
C = test_df.as_matrix(columns=["ncodpers"])
for prod in products:
prev = prod + "_prev1"
padd = prod + "_add"
test_df[padd] = test_df[prod] - test_df[prev]
test_add_mat = test_df.as_matrix(columns=[prod + "_add" for prod in products])
test_add_list = [list() for i in range(len(C))]
assert test_add_mat.shape == (len(C), len(products))
count = 0
for c in range(len(C)):
for p in range(len(products)):
if test_add_mat[c,p] > 0:
test_add_list[c].append(p)
count += 1
if cv:
max_map7 = mapk(test_add_list, test_add_list, 7, 0.0)
map7coef = float(len(test_add_list)) / float(sum([int(bool(a)) for a in test_add_list]))
print("Max MAP@7", str_date, max_map7, max_map7*map7coef)
with Timer("LightGBM"):
Y_test_lgbm = engines.lightgbm(XY_train, XY_validate, test_df, features, XY_all = XY,
restore = (str_date == "2016-06-28")
)
test_add_list_lightgbm = make_submission(io.BytesIO() if cv else gzip.open("tmp/%s.lightgbm.csv.gz" % str_date, "wb"),
Y_test_lgbm - Y_prev, C)
if cv:
map7lightgbm = mapk(test_add_list, test_add_list_lightgbm, 7, 0.0)
print("LightGBMlib MAP@7", str_date, map7lightgbm, map7lightgbm*map7coef)
with Timer("XGBoost"):
Y_test_xgb = engines.xgboost(XY_train, XY_validate, test_df, features, XY_all = XY,
restore = (str_date == "2016-06-28")
)
test_add_list_xgboost = make_submission(io.BytesIO() if cv else gzip.open("tmp/%s.xgboost.csv.gz" % str_date, "wb"),
Y_test_xgb - Y_prev, C)
if cv:
map7xgboost = mapk(test_add_list, test_add_list_xgboost, 7, 0.0)
print("XGBoost MAP@7", str_date, map7xgboost, map7xgboost*map7coef)
Y_test = np.sqrt(np.multiply(Y_test_xgb, Y_test_lgbm))
test_add_list_xl = make_submission(io.BytesIO() if cv else gzip.open("tmp/%s.xgboost-lightgbm.csv.gz" % str_date, "wb"),
Y_test - Y_prev, C)
if cv:
map7xl = mapk(test_add_list, test_add_list_xl, 7, 0.0)
print("XGBoost+LightGBM MAP@7", str_date, map7xl, map7xl*map7coef)
if __name__ == "__main__":
if True:
all_df, features, prod_features = make_data()
with Timer("save data"):
all_df.to_pickle("tmp/cv_data.pickle")
pickle.dump((features, prod_features), open("tmp/cv_meta.pickle", "wb"))
else:
with Timer("restore data"):
all_df = pd.read_pickle("tmp/cv_data.pickle")
(features, prod_features) = pickle.load(open("tmp/cv_meta.pickle", "rb"))
train_predict(all_df, features, prod_features, "2016-05-28", cv=True)
train_predict(all_df, features, prod_features, "2016-06-28", cv=False)