-
Notifications
You must be signed in to change notification settings - Fork 19
/
net2net.py
279 lines (257 loc) · 13.6 KB
/
net2net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""
Implementation of Net2Net (http://arxiv.org/abs/1511.05641)
Numpy modules for Net2Net
- Net2Wider
- Net2Deeper
Written by Kyunghyun Paeng
"""
import numpy as np
class Net2Net(object):
def __init__(self, error=1e-4):
self._error_th = error
print('Net2Net module initialize...')
def deeper(self, weight, verification=True):
""" Net2Deeper operation
All weights & biases should be 'numpy' array.
If it is 'conv' type, weight.ndim = 4 (kH, kW, InChannel, OutChannel)
If it is 'fc' type, weight.ndim = 2 (In, Out)
Args:
weight: weight matrix where the layer to be deepened
Returns:
Identity matrix & bias fitted to input weight
"""
assert weight.ndim == 4 or weight.ndim == 2, 'Check weight.ndim'
if weight.ndim == 2:
deeper_w = np.eye(weight.shape[1])
deeper_b = np.zeros(weight.shape[1])
if verification:
err = np.abs(np.sum(np.dot(weight, deeper_w)-weight))
assert err < 1e-5, 'Verification failed: [ERROR] {}'.format(err)
else:
deeper_w = np.zeros((weight.shape[0], weight.shape[1], weight.shape[3], weight.shape[3]))
assert weight.shape[0] % 2 == 1 and weight.shape[1] % 2 == 1, 'Kernel size should be odd'
center_h = (weight.shape[0]-1)//2
center_w = (weight.shape[1]-1)//2
for i in range(weight.shape[3]):
tmp = np.zeros((weight.shape[0], weight.shape[1], weight.shape[3]))
tmp[center_h, center_w, i] = 1
deeper_w[:, :, :, i] = tmp
deeper_b = np.zeros(weight.shape[3])
if verification:
import scipy.signal
inputs = np.random.rand(weight.shape[0]*4, weight.shape[1]*4, weight.shape[2])
ori = np.zeros((weight.shape[0]*4, weight.shape[1]*4, weight.shape[3]))
new = np.zeros((weight.shape[0]*4, weight.shape[1]*4, weight.shape[3]))
for i in range(weight.shape[3]):
for j in range(inputs.shape[2]):
if j==0: tmp = scipy.signal.convolve2d(inputs[:,:,j], weight[:,:,j,i], mode='same')
else: tmp += scipy.signal.convolve2d(inputs[:,:,j], weight[:,:,j,i], mode='same')
ori[:,:,i] = tmp
for i in range(deeper_w.shape[3]):
for j in range(ori.shape[2]):
if j==0: tmp = scipy.signal.convolve2d(ori[:,:,j], deeper_w[:,:,j,i], mode='same')
else: tmp += scipy.signal.convolve2d(ori[:,:,j], deeper_w[:,:,j,i], mode='same')
new[:,:,i] = tmp
err = np.abs(np.sum(ori-new))
assert err < self._error_th, 'Verification failed: [ERROR] {}'.format(err)
return deeper_w, deeper_b
def wider(self, weight1, bias1, weight2, new_width, verification=True):
""" Net2Wider operation
All weights & biases should be 'numpy' array.
If it is 'conv' type, weight.ndim = 4 (kH, kW, InChannel, OutChannel)
If it is 'fc' type, weight.ndim = 2 (In, Out)
Args:
weight1: weight matrix of a target layer
bias1: biases of a target layer, bias1.ndim = 1
weight2: weight matrix of a next layer
new_width: It should be larger than old width.
(i.e., 'conv': weight1.OutChannel < new_width,
'fc' : weight1.Out < new_width )
Returns:
Transformed weights & biases (w1, b1, w2)
"""
# Check dimensions
assert bias1.squeeze().ndim==1, 'Check bias.ndim'
assert weight1.ndim == 4 or weight1.ndim == 2, 'Check weight1.ndim'
assert weight2.ndim == 4 or weight2.ndim == 2, 'Check weight2.ndim'
bias1 = bias1.squeeze()
if weight1.ndim == 2:
assert weight1.shape[1] == weight2.shape[0], 'Check shape of weight'
assert weight1.shape[1] == len(bias1), 'Check shape of bias'
assert weight1.shape[1] < new_width, 'new_width should be larger than old width'
return self._wider_fc(weight1, bias1, weight2, new_width, verification)
else:
assert weight1.shape[3] == weight2.shape[2], 'Check shape of weight'
assert weight1.shape[3] == len(bias1), 'Check shape of bias'
assert weight1.shape[3] < new_width, 'new_width should be larger than old width'
return self._wider_conv(weight1, bias1, weight2, new_width, verification)
def wider_rand(self, weight1, bias1, weight2, new_width):
""" Net2Wider operation with random pad (baseline)
All weights & biases should be 'numpy' array.
If it is 'conv' type, weight.ndim = 4 (kH, kW, InChannel, OutChannel)
If it is 'fc' type, weight.ndim = 2 (In, Out)
Args:
weight1: weight matrix of a target layer
bias1: biases of a target layer, bias1.ndim = 1
weight2: weight matrix of a next layer
new_width: It should be larger than old width.
(i.e., 'conv': weight1.OutChannel < new_width,
'fc' : weight1.Out < new_width )
Returns:
Transformed weights & biases (w1, b1, w2)
"""
# Check dimensions
assert bias1.squeeze().ndim==1, 'Check bias.ndim'
assert weight1.ndim == 4 or weight1.ndim == 2, 'Check weight1.ndim'
assert weight2.ndim == 4 or weight2.ndim == 2, 'Check weight2.ndim'
bias1 = bias1.squeeze()
if weight1.ndim == 2:
assert weight1.shape[1] == weight2.shape[0], 'Check shape of weight'
assert weight1.shape[1] == len(bias1), 'Check shape of bias'
assert weight1.shape[1] < new_width, 'new_width should be larger than old width'
return self._wider_fc_rand(weight1, bias1, weight2, new_width)
else:
assert weight1.shape[3] == weight2.shape[2], 'Check shape of weight'
assert weight1.shape[3] == len(bias1), 'Check shape of bias'
assert weight1.shape[3] < new_width, 'new_width should be larger than old width'
return self._wider_conv_rand(weight1, bias1, weight2, new_width)
def _wider_conv(self, teacher_w1, teacher_b1, teacher_w2, new_width, verification):
rand = np.random.randint(teacher_w1.shape[3], size=(new_width-teacher_w1.shape[3]))
replication_factor = np.bincount(rand)
student_w1 = teacher_w1.copy()
student_w2 = teacher_w2.copy()
student_b1 = teacher_b1.copy()
# target layer update (i)
for i in range(len(rand)):
teacher_index = rand[i]
new_weight = teacher_w1[:, :, :, teacher_index]
new_weight = new_weight[:, :, :, np.newaxis]
student_w1 = np.concatenate((student_w1, new_weight), axis=3)
student_b1 = np.append(student_b1, teacher_b1[teacher_index])
# next layer update (i+1)
for i in range(len(rand)):
teacher_index = rand[i]
factor = replication_factor[teacher_index] + 1
assert factor > 1, 'Error in Net2Wider'
new_weight = teacher_w2[:, :, teacher_index, :]*(1./factor)
new_weight_re = new_weight[:, :, np.newaxis, :]
student_w2 = np.concatenate((student_w2, new_weight_re), axis=2)
student_w2[:, :, teacher_index, :] = new_weight
if verification:
import scipy.signal
inputs = np.random.rand(teacher_w1.shape[0]*4, teacher_w1.shape[1]*4, teacher_w1.shape[2])
ori1 = np.zeros((teacher_w1.shape[0]*4, teacher_w1.shape[1]*4, teacher_w1.shape[3]))
ori2 = np.zeros((teacher_w1.shape[0]*4, teacher_w1.shape[1]*4, teacher_w2.shape[3]))
new1 = np.zeros((teacher_w1.shape[0]*4, teacher_w1.shape[1]*4, student_w1.shape[3]))
new2 = np.zeros((teacher_w1.shape[0]*4, teacher_w1.shape[1]*4, student_w2.shape[3]))
for i in range(teacher_w1.shape[3]):
for j in range(inputs.shape[2]):
if j==0: tmp = scipy.signal.convolve2d(inputs[:,:,j], teacher_w1[:,:,j,i], mode='same')
else: tmp += scipy.signal.convolve2d(inputs[:,:,j], teacher_w1[:,:,j,i], mode='same')
ori1[:,:,i] = tmp + teacher_b1[i]
for i in range(teacher_w2.shape[3]):
for j in range(ori1.shape[2]):
if j==0: tmp = scipy.signal.convolve2d(ori1[:,:,j], teacher_w2[:,:,j,i], mode='same')
else: tmp += scipy.signal.convolve2d(ori1[:,:,j], teacher_w2[:,:,j,i], mode='same')
ori2[:,:,i] = tmp
for i in range(student_w1.shape[3]):
for j in range(inputs.shape[2]):
if j==0: tmp = scipy.signal.convolve2d(inputs[:,:,j], student_w1[:,:,j,i], mode='same')
else: tmp += scipy.signal.convolve2d(inputs[:,:,j], student_w1[:,:,j,i], mode='same')
new1[:,:,i] = tmp + student_b1[i]
for i in range(student_w2.shape[3]):
for j in range(new1.shape[2]):
if j==0: tmp = scipy.signal.convolve2d(new1[:,:,j], student_w2[:,:,j,i], mode='same')
else: tmp += scipy.signal.convolve2d(new1[:,:,j], student_w2[:,:,j,i], mode='same')
new2[:,:,i] = tmp
err = np.abs(np.sum(ori2-new2))
assert err < self._error_th, 'Verification failed: [ERROR] {}'.format(err)
return student_w1, student_b1, student_w2
def _wider_conv_rand(self, teacher_w1, teacher_b1, teacher_w2, new_width):
size = new_width-teacher_w1.shape[3]
student_w1 = teacher_w1.copy()
student_w2 = teacher_w2.copy()
student_b1 = teacher_b1.copy()
# target layer update (i)
for i in range(size):
shape = teacher_w1[:,:,:,0].shape
new_weight = np.random.normal(0, 0.1, size=shape)
new_weight = new_weight[:, :, :, np.newaxis]
student_w1 = np.concatenate((student_w1, new_weight), axis=3)
student_b1 = np.append(student_b1, 0.1)
# next layer update (i+1)
for i in range(size):
shape = teacher_w2[:,:,0,:].shape
new_weight = np.random.normal(0, 0.1, size=shape)
new_weight_re = new_weight[:, :, np.newaxis, :]
student_w2 = np.concatenate((student_w2, new_weight_re), axis=2)
return student_w1, student_b1, student_w2
def _wider_fc(self, teacher_w1, teacher_b1, teacher_w2, new_width, verification):
rand = np.random.randint(teacher_w1.shape[1], size=(new_width-teacher_w1.shape[1]))
replication_factor = np.bincount(rand)
student_w1 = teacher_w1.copy()
student_w2 = teacher_w2.copy()
student_b1 = teacher_b1.copy()
# target layer update (i)
for i in range(len(rand)):
teacher_index = rand[i]
new_weight = teacher_w1[:, teacher_index]
new_weight = new_weight[:, np.newaxis]
student_w1 = np.concatenate((student_w1, new_weight), axis=1)
student_b1 = np.append(student_b1, teacher_b1[teacher_index])
# next layer update (i+1)
for i in range(len(rand)):
teacher_index = rand[i]
factor = replication_factor[teacher_index] + 1
assert factor > 1, 'Error in Net2Wider'
new_weight = teacher_w2[teacher_index,:]*(1./factor)
new_weight = new_weight[np.newaxis, :]
student_w2 = np.concatenate((student_w2, new_weight), axis=0)
student_w2[teacher_index,:] = new_weight
if verification:
inputs = np.random.rand(1, teacher_w1.shape[0])
ori1 = np.dot(inputs, teacher_w1) + teacher_b1
ori2 = np.dot(ori1, teacher_w2)
new1 = np.dot(inputs, student_w1) + student_b1
new2 = np.dot(new1, student_w2)
err = np.abs(np.sum(ori2-new2))
assert err < self._error_th, 'Verification failed: [ERROR] {}'.format(err)
return student_w1, student_b1, student_w2
def _wider_fc_rand(self, teacher_w1, teacher_b1, teacher_w2, new_width):
size = new_width-teacher_w1.shape[1]
student_w1 = teacher_w1.copy()
student_w2 = teacher_w2.copy()
student_b1 = teacher_b1.copy()
# target layer update (i)
for i in range(size):
shape = teacher_w1[:,0].shape
new_weight = np.random.normal(0, 0.1, size=shape)
new_weight = new_weight[:, np.newaxis]
student_w1 = np.concatenate((student_w1, new_weight), axis=1)
student_b1 = np.append(student_b1, 0.1)
# next layer update (i+1)
for i in range(size):
shape = teacher_w2[0,:].shape
new_weight = np.random.normal(0, 0.1, size=shape)
new_weight = new_weight[np.newaxis, :]
student_w2 = np.concatenate((student_w2, new_weight), axis=0)
return student_w1, student_b1, student_w2
if __name__ == '__main__':
""" Net2Net Class Test """
obj = Net2Net()
w1 = np.random.rand(100, 50)
obj.deeper(w1)
print('Succeed: Net2Deeper (fc)')
w1 = np.random.rand(3,3,16,32)
obj.deeper(w1)
print('Succeed: Net2Deeper (conv)')
w1 = np.random.rand(100, 50)
b1 = np.random.rand(50,1)
w2 = np.random.rand(50, 10)
obj.wider(w1, b1, w2, 70)
print('Succeed: Net2Wider (fc)')
w1 = np.random.rand(3,3,16,32)
b1 = np.random.rand(32)
w2 = np.random.rand(3,3,32,64)
obj.wider(w1, b1, w2, 48)
print('Succeed: Net2Wider (conv)')