Skip to content

Latest commit

 

History

History
103 lines (83 loc) · 2.87 KB

README.md

File metadata and controls

103 lines (83 loc) · 2.87 KB

Net2Net : Accelerating Learning via Knowledge Transfer

  • Numpy-based Net2Net module

    • Net2Wider
    • Net2Deeper
  • Net2Net using Tensorflow

    • Test in MNIST dataset

Dependencies

  • Net2Net core module

    • Numpy
    • Scipy
  • Tensorflow examples

    • Tensorflow
    • Slim

Results

  • Baseline architecture

    5x5x32(conv1)-pool1-5x5x64(conv2)-pool2-1024(fc1)-10(fc2)
    
  • [EXP 1] Train a teacher network

    [Iter: 100] Validation Accuracy : 0.8732
    [Iter: 200] Validation Accuracy : 0.9025
    [Iter: 300] Validation Accuracy : 0.9313
    [Iter: 400] Validation Accuracy : 0.9408
    [Iter: 500] Validation Accuracy : 0.9363
    [Iter: 600] Validation Accuracy : 0.9466
    [Iter: 700] Validation Accuracy : 0.9379
    [Iter: 800] Validation Accuracy : 0.9582
    [Iter: 900] Validation Accuracy : 0.9583
    
  • [EXP 2] Train a student network (Net2Wider)

    • of filters in 'conv1' layer [32->128]

    [Iter: 100] Validation Accuracy : 0.9136
    [Iter: 200] Validation Accuracy : 0.9689
    [Iter: 300] Validation Accuracy : 0.9645
    [Iter: 400] Validation Accuracy : 0.9757
    [Iter: 500] Validation Accuracy : 0.9762
    [Iter: 600] Validation Accuracy : 0.9757
    [Iter: 700] Validation Accuracy : 0.9752
    [Iter: 800] Validation Accuracy : 0.9765
    [Iter: 900] Validation Accuracy : 0.9777
    
  • [EXP 3] Net2Wider baseline (Random pad)

    [Iter: 100] Validation Accuracy : 0.9255
    [Iter: 200] Validation Accuracy : 0.9361
    [Iter: 300] Validation Accuracy : 0.9418
    [Iter: 400] Validation Accuracy : 0.9551
    [Iter: 500] Validation Accuracy : 0.9608
    [Iter: 600] Validation Accuracy : 0.9653
    [Iter: 700] Validation Accuracy : 0.9677
    [Iter: 800] Validation Accuracy : 0.9659
    [Iter: 900] Validation Accuracy : 0.9690
    
  • [EXP 4] Train a student network (Net2Deeper)

    • Insert a new layer after 'conv1' layer
    [Iter: 100] Validation Accuracy : 0.9673
    [Iter: 200] Validation Accuracy : 0.9646
    [Iter: 300] Validation Accuracy : 0.9718
    [Iter: 400] Validation Accuracy : 0.9731
    [Iter: 500] Validation Accuracy : 0.9765
    [Iter: 600] Validation Accuracy : 0.9612
    [Iter: 700] Validation Accuracy : 0.9783
    [Iter: 800] Validation Accuracy : 0.9812
    [Iter: 900] Validation Accuracy : 0.9785
    
  • [EXP 5] Net2Deeper baseline (Random initialization)

    [Iter: 100] Validation Accuracy : 0.9057
    [Iter: 200] Validation Accuracy : 0.9059
    [Iter: 300] Validation Accuracy : 0.9446
    [Iter: 400] Validation Accuracy : 0.9489
    [Iter: 500] Validation Accuracy : 0.9541
    [Iter: 600] Validation Accuracy : 0.9581
    [Iter: 700] Validation Accuracy : 0.9607
    [Iter: 800] Validation Accuracy : 0.9499
    [Iter: 900] Validation Accuracy : 0.9663
    

Notes

  • All parameters are fixed except new weights from Net2Net.
  • The Net2Net core module (net2net.py) can be used in various deep learning libraries (theano, caffe etc.) because it has only numpy dependency.