-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_maf.py
227 lines (182 loc) · 8.97 KB
/
train_maf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import argparse
import os
import sys
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.optim import Adam, Adamax
from NormalizingFlows import MaskedAutoregressiveFlow
def flatten(x):
return x.view(x.size(0), -1)
def unflatten(x, size=(1, 28, 28)):
return x.view(x.size(0), *size)
def preprocess(x):
return flatten(x) - 0.5
def postprocess(x):
return (unflatten(x) + 0.5).clamp(0., 1.)
def get_dataset(dataset='mnist', train=True, class_id=None):
if dataset == 'mnist':
dataset = datasets.MNIST('data/MNIST', train=train, download=True,
transform=transforms.Compose([
#transforms.Resize((32, 32)),
transforms.ToTensor(),
]))
elif dataset == 'fashion':
dataset = datasets.FashionMNIST('data/FashionMNIST', train=train, download=True,
transform=transforms.Compose([
#transforms.Resize((32, 32)),
transforms.ToTensor(),
]))
else:
print('dataset {} is not available'.format(dataset))
if class_id != -1:
class_id = int(class_id)
if train:
idx = (dataset.train_labels == class_id)
dataset.train_labels = dataset.train_labels[idx]
dataset.train_data = dataset.train_data[idx]
else:
idx = (dataset.test_labels == class_id)
dataset.test_labels = dataset.test_labels[idx]
dataset.test_data = dataset.test_data[idx]
return dataset
def train(maf, optimizer, hps):
maf.train()
torch.manual_seed(hps.seed)
np.random.seed(hps.seed)
# Create log dir
logdir = os.path.abspath(hps.log_dir) + "/"
if not os.path.exists(logdir):
os.mkdir(logdir)
dataset = get_dataset(dataset=hps.problem, train=True, class_id=hps.class_id)
train_loader = DataLoader(dataset=dataset, batch_size=hps.n_batch_train, shuffle=True)
best_bits_per_dim = np.inf
for epoch in range(1, hps.epochs+1):
bits_list = []
for batch_id, (x, y) in enumerate(train_loader):
x = preprocess(x).to(hps.device)
x = x + torch.empty(x.size()).uniform_(0, 1/hps.n_bins).to(hps.device) # add small uniform noise
y = y.to(hps.device)
loglikelihood = torch.zeros(x.size(0)).to(hps.device)
n_pixels = np.prod(x.size()[1:])
loglikelihood += -np.log(hps.n_bins) * n_pixels
optimizer.zero_grad()
log_probs, u = maf(x)
loglikelihood += log_probs
# Generative loss
bits_x = (- loglikelihood) / (np.log(2.) * n_pixels) # bits per pixel
mean_bits_x = bits_x.mean()
mean_bits_x.backward()
optimizer.step()
bits_list.append(mean_bits_x.cpu().item())
# sampling images.
save_image(postprocess(x), os.path.join(hps.log_dir, 'maf_epoch{}_original.png'.format(epoch)))
x_reverse = maf.reverse(u)
save_image(postprocess(x_reverse), os.path.join(hps.log_dir, 'maf_epoch{}_reverse.png'.format(epoch)))
x_sample = maf.reverse(torch.randn(u.size()).to(hps.device))
save_image(postprocess(x_sample), os.path.join(hps.log_dir, 'maf_epoch{}_sample.png'.format(epoch)))
cur_bits_per_dim = np.mean(bits_list)
print('Epoch {}, mean bits_per_dim: {:.4f}'.format(epoch, cur_bits_per_dim))
if cur_bits_per_dim < best_bits_per_dim:
best_bits_per_dim = cur_bits_per_dim
checkpoint = {'model_state': maf.state_dict(),
'bits_per_dim': best_bits_per_dim,
'hps': hps
}
suffix = '' if hps.class_id == -1 else '_{}'.format(hps.class_id)
torch.save(checkpoint, os.path.join(hps.log_dir, 'maf_{}{}.pth'.format(hps.problem, suffix)))
print('==> New optimal model saved !!!')
if __name__ == "__main__":
# This enables a ctr-C without triggering errors
import signal
signal.signal(signal.SIGINT, lambda x, y: sys.exit(0))
parser = argparse.ArgumentParser()
parser.add_argument("--verbose", action='store_true', help="Verbose mode")
parser.add_argument("--inference", action="store_true",
help="Use in inference mode")
parser.add_argument("--translation_attack", action="store_true",
help="perform translation attack")
parser.add_argument("--reverse_attack", action="store_true",
help="perform reverse attack")
parser.add_argument("--gradient_attack", action="store_true",
help="perform gradient attack")
parser.add_argument("--sample", action="store_true",
help="Use in sample mode")
parser.add_argument("--log_dir", type=str,
default='./logs', help="Location to save logs")
# Dataset hyperparams:
parser.add_argument("--problem", type=str, default='mnist',
help="Problem (mnist/fashion/cifar10/imagenet")
parser.add_argument("--n_classes", type=int,
default=10, help="number of classes of dataset.")
parser.add_argument("--infer_problem", type=str, default='mnist',
help="Problem (mnist/cifar10/imagenet")
parser.add_argument("--class_id", type=int,
default=-1, help="single class_id for training.")
parser.add_argument("--infer_class_id", type=int,
default=-1, help="single class_id for inference.")
parser.add_argument("--data_dir", type=str, default='data',
help="Location of data")
# Optimization hyperparams:
parser.add_argument("--n_batch_train", type=int,
default=64, help="Minibatch size")
parser.add_argument("--n_batch_test", type=int,
default=50, help="Minibatch size")
parser.add_argument("--optimizer", type=str,
default="adamax", help="adam or adamax")
parser.add_argument("--lr", type=float, default=0.0002,
help="Base learning rate")
parser.add_argument("--beta1", type=float, default=.9, help="Adam beta1")
parser.add_argument("--polyak_epochs", type=float, default=1,
help="Nr of averaging epochs for Polyak and beta2")
parser.add_argument("--weight_decay", type=float, default=1.,
help="Weight decay. Switched off by default.")
parser.add_argument("--epochs", type=int, default=10,
help="Total number of training epochs")
# Model hyperparams:
parser.add_argument("--image_size", type=int,
default=-1, help="Image size")
parser.add_argument("--width", type=int, default=128,
help="Width of hidden layers")
parser.add_argument("--depth", type=int, default=8,
help="Depth of network")
parser.add_argument("--weight_y", type=float, default=0.00,
help="Weight of log p(y|x) in weighted loss")
parser.add_argument("--n_y", type=int, default=10,
help="Weight of log p(y|x) in weighted loss")
parser.add_argument("--n_bits_x", type=int, default=8,
help="Number of bits of x")
parser.add_argument("--n_levels", type=int, default=5,
help="Number of levels")
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
# Synthesis/Sampling hyperparameters:
parser.add_argument("--n_sample", type=int, default=64,
help="minibatch size for sample")
# Ablation
parser.add_argument("--ycond", action="store_true",
help="Use y conditioning")
parser.add_argument("--seed", type=int, default=0, help="Random seed")
hps = parser.parse_args() # So error if typo
use_cuda = not hps.no_cuda and torch.cuda.is_available()
torch.manual_seed(hps.seed)
hps.device = torch.device("cuda" if use_cuda else "cpu")
hps.n_bins = 2. ** hps.n_bits_x # number of pixel levels
hps.in_channels = 1 if hps.problem == 'mnist' or hps.problem == 'fashion' else 3
hps.in_size = 28 * 28
hps.hidden_sizes = [1024, 1024]
hps.n_mades = 2
maf = MaskedAutoregressiveFlow(hps.in_size, hps.hidden_sizes, n_mades=hps.n_mades).to(hps.device)
optimizer = Adam(maf.parameters(), lr=hps.lr)
# if hps.inference:
# inference(maf, hps)
# elif hps.translation_attack:
# translation_attack(maf, hps)
# elif hps.reverse_attack:
# reverse_attack(maf, hps)
# elif hps.gradient_attack:
# gradient_attack(maf, hps)
# else:
train(maf, optimizer, hps)