-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain.py
108 lines (92 loc) · 4.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from core import convert_data_to_feature, make_dataset, split_dataset, compute_accuracy, use_model
from torch.utils.data import DataLoader
import torch
from transformers import AdamW
if __name__ == "__main__":
# BERT
model_setting = {
"model_name":"bert",
"config_file_path":"bert-base-chinese",
"model_file_path":"bert-base-chinese",
"vocab_file_path":"bert-base-chinese-vocab.txt",
"num_labels":149 # 分幾類
}
# ALBERT
# model_setting = {
# "model_name":"albert",
# "config_file_path":"albert/albert_tiny/config.json",
# "model_file_path":"albert/albert_tiny/pytorch_model.bin",
# "vocab_file_path":"albert/albert_tiny/vocab.txt",
# "num_labels":149 # 分幾類
# }
#
model, tokenizer = use_model(**model_setting)
# setting device
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print("using device",device)
model.to(device)
#
data_feature = convert_data_to_feature(tokenizer,'Taipei_QA_new.txt')
input_ids = data_feature['input_ids']
input_masks = data_feature['input_masks']
input_segment_ids = data_feature['input_segment_ids']
answer_lables = data_feature['answer_lables']
#
full_dataset = make_dataset(input_ids = input_ids, input_masks = input_masks, input_segment_ids = input_segment_ids, answer_lables = answer_lables)
train_dataset, test_dataset = split_dataset(full_dataset, 0.9)
train_dataloader = DataLoader(train_dataset,batch_size=16,shuffle=True)
test_dataloader = DataLoader(test_dataset,batch_size=16,shuffle=True)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=5e-6, eps=1e-8)
# scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
model.zero_grad()
for epoch in range(30):
running_loss_val = 0.0
running_acc = 0.0
for batch_index, batch_dict in enumerate(train_dataloader):
model.train()
batch_dict = tuple(t.to(device) for t in batch_dict)
outputs = model(
batch_dict[0],
# attention_mask=batch_dict[1],
labels = batch_dict[3]
)
loss,logits = outputs[:2]
loss.sum().backward()
optimizer.step()
# scheduler.step() # Update learning rate schedule
model.zero_grad()
# compute the loss
loss_t = loss.item()
running_loss_val += (loss_t - running_loss_val) / (batch_index + 1)
# compute the accuracy
acc_t = compute_accuracy(logits, batch_dict[3])
running_acc += (acc_t - running_acc) / (batch_index + 1)
# log
print("epoch:%2d batch:%4d train_loss:%2.4f train_acc:%3.4f"%(epoch+1, batch_index+1, running_loss_val, running_acc))
running_loss_val = 0.0
running_acc = 0.0
for batch_index, batch_dict in enumerate(test_dataloader):
model.eval()
batch_dict = tuple(t.to(device) for t in batch_dict)
outputs = model(
batch_dict[0],
# attention_mask=batch_dict[1],
labels = batch_dict[3]
)
loss,logits = outputs[:2]
# compute the loss
loss_t = loss.item()
running_loss_val += (loss_t - running_loss_val) / (batch_index + 1)
# compute the accuracy
acc_t = compute_accuracy(logits, batch_dict[3])
running_acc += (acc_t - running_acc) / (batch_index + 1)
# log
print("epoch:%2d batch:%4d test_loss:%2.4f test_acc:%3.4f"%(epoch+1, batch_index+1, running_loss_val, running_acc))
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained('trained_model')