-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathSIR_model_India.py
152 lines (94 loc) · 3.79 KB
/
SIR_model_India.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 30 13:05:45 2020
@author: paul
"""
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
from pylab import *
import pandas as pd
"""
Certain portions in the code are taken from:
https://github.com/rajeshrinet/pyross
This version of model is taken from their work:
https://arxiv.org/abs/2003.12055v1
This ArXiv pre-print lists the model...
Data Sources can be found at Github.
"""
# Age categories (0-79 in group[s] of 4)
M=16
"""
Load Data
"""
# load age structure data
my_data = np.genfromtxt('/home/paul/Desktop/Research/COVID-19/India-2019.csv', delimiter=',', skip_header=1)
aM, aF = my_data[:, 1], my_data[:, 2] # Male & Female Population
# contact matrices
my_data = pd.read_excel('/home/paul/Desktop/Research/COVID-19/contact_matrices_152_countries/MUestimates_home_1.xlsx', sheet_name='India',index_col=None)
CH = np.array(my_data) # Home
my_data = pd.read_excel('/home/paul/Desktop/Research/COVID-19/contact_matrices_152_countries/MUestimates_work_1.xlsx', sheet_name='India',index_col=None)
CW = np.array(my_data) # Work
my_data = pd.read_excel('/home/paul/Desktop/Research/COVID-19/contact_matrices_152_countries/MUestimates_school_1.xlsx', sheet_name='India',index_col=None)
CS = np.array(my_data) # School
my_data = pd.read_excel('/home/paul/Desktop/Research/COVID-19/contact_matrices_152_countries/MUestimates_other_locations_1.xlsx', sheet_name='India',index_col=None)
CO = np.array(my_data) # Other Locations
my_data = pd.read_excel('/home/paul/Desktop/Research/COVID-19/contact_matrices_152_countries/MUestimates_all_locations_1.xlsx', sheet_name='India',index_col=None)
CA = np.array(my_data) # ALL
# set age groups
Ni=aM+aF; Ni=Ni[0:M]; #i=0,...,15
N=np.sum(Ni)
# initial conditions
Is = np.zeros((M)); Is[0:M]=3; #Is[2:6]=1
Ia = np.zeros((M)); Ia[0:M]=1;
R = np.zeros((M))
S = Ni - (Ia + Is + R)
alpha=0.25 # Asymptomatic cases ratio
beta=0.1646692 # Rate of infection
gamma=1.0/7 # Rate of recovery/restored... Deaths too!
T=180 # Time-play
# matrix of total contacts
C=CH+CW+CS+CO # Time dependent contact matrix : Linear Combination of contributing factors
f=1 # Proportion of self-isolation (0-1) , f=0 (totally isolated)
#Cs=f*C # Contact matrix for symptomatic cases
#Ca=C
lm = np.zeros(M) # Time-dependent lambda factor
def l(Ia_,Is_,i): # for i th group
""" Returns lambda(t)=l upgraded
Dependence on time is due to change in contributing factors: Ij & Nj
"""
for j in range(M):
lm[i]+= ( f*C[i,j]*Is_/Ni[j] + C[i,j]*Ia_/Ni[j] )
lm[i]=beta*lm[i]
return lm[i]
def SIR(vals,t,a,b,g,i):
S,Ia,Is,R=vals
lm=l(Ia,Is,i) # Frozen at t
dS=-lm*S # dS/dt
#dIa=0
dIa=a*lm*S - g*Ia
dIs=(1-a)*lm*S - g*Is
dR=g*(Ia + Is)
return [dS,dIa,dIs,dR]
steps=100
solution=np.zeros([steps,4])
# # Initial params
for i in range (M):
x=[ S[i],Ia[i],Is[i],R[i] ] # i for the age-group
rates=(alpha,beta,gamma,i)
t=np.linspace(0,T,steps)
sol=odeint(SIR,x,t,args=rates,mxstep=5000000)#,full_output=1) Repeated convergence failures (perhaps bad Jacobian or tolerances).
solution+=sol
# Plot ODE solutions
plt.plot(t,solution[:,0])
plt.plot(t,solution[:,1])
plt.plot(t,solution[:,2])
plt.plot(t,solution[:,3])
plt.xlabel('Time')
plt.ylabel('Population')
plt.legend(['S','Ia','Is','R'],shadow=True)
plt.autoscale(enable=True, axis='x', tight=True)
plt.title('COVID')
plt.draw()
savefig("/home/paul/Documents/COVID/"+"Analytic"+"_b"+str(beta)+"_g"+str(gamma)+".png",dpi=400)