-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtfl_example.py
125 lines (101 loc) · 4.18 KB
/
tfl_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import overtime as ot
####################
### Introduction ###
####################
### import central line data & create graph.
central = ot.TemporalDiGraph('CentralLine', data=ot.CsvInput('./data/central-inbound.csv'))
central.nodes # nodes object
central.edges # edges object
# nodes
central.nodes.aslist()[0:4]
central.nodes.count()
central.nodes.labels()
# node
lstreet = central.nodes.get('Liverpool Street')
lstreet.sourceof()
lstreet.sourceof().labels()
lstreet.sinkof().labels()
lstreet.sinkof().start_times()
lstreet.sinkof().end_times()
lstreet.nodeof().labels()
lstreet.neighbours()
# edges
central.edges.aslist()
central.edges.count()
central.edges.labels()
central.edges.start_times()
central.edges.get_edge_by_label('Bethnal Green-Liverpool Street')
central.edges.get_edge_by_source('Liverpool Street')
central.edges.get_edge_by_source('Liverpool Street').start_times()
central.edges.get_edge_by_source('Liverpool Street').get_edge_by_start(879).labels()
central.edges.get_edge_by_source('Liverpool Street').get_edge_by_interval((879, 884)).start_times()
# graph
central.details()
# snapshot
central.get_snapshot(879)
central.get_snapshot(879).details()
ot.Circle(central.get_snapshot(879))
# subgraph
central.get_temporal_subgraph((879, 900))
central.get_temporal_subgraph((879, 900)).details()
ot.Circle(central.get_temporal_subgraph((879, 884)))
#####################
### Visualization ###
#####################
# show central line.
ot.Circle(central, ordered=True)
ot.Slice(central)
ot.NodeScatter(central)
# show central line stations.
central.nodes.add_data('./data/central-stations.csv')
ot.NodeScatter(central, x='lon', y='lat')
# larger network (4 lines).
network = ot.TemporalDiGraph('TflNetwork', data=ot.CsvInput('./data/victoria_central_bakerloo_piccadilly-inbound_outbound.csv'))
network.details()
network.nodes.add_data('./data/victoria_central_bakerloo_piccadilly-stations.csv')
# show larger network.
# stations in a scatter plot (random locations).
ot.NodeScatter(network)
# stations in a scatter plot (geolocations).
ot.NodeScatter(network, x='lon', y='lat')
# slice plot of the entire network.
ot.Slice(network)
# get the underlying graph and plot it using a nodelink plot.
underlying = network.get_underlying_graph()
underlying.nodes.add_data('./data/victoria_central_bakerloo_piccadilly-stations.csv')
ot.NodeLink(underlying, x='lon', y='lat')
####################
### Reachability ###
### & Foremost ###
####################
# first 10mins of sampled data.
sub_network1 = network.get_temporal_subgraph((840, 850))
sub_network1.nodes.add_data('./data/victoria_central_bakerloo_piccadilly-stations.csv')
for node in sub_network1.nodes.set:
ot.calculate_reachability(sub_network1, node.label)
# show the sub network.
ot.Circle(sub_network1, ordered=True)
ot.Slice(sub_network1)
ot.NodeScatter(sub_network1, y='reachability', bubble_metric='reachability', colors='bmet')
ot.NodeScatter(sub_network1, x='lon', y='lat', bubble_metric='reachability', colors='bmet')
# show brixton's foremost tree.
brixton_tree = ot.calculate_foremost_tree(sub_network1, 'Brixton')
brixton_tree.nodes.add_data('./data/victoria_central_bakerloo_piccadilly-stations.csv')
ot.Circle(brixton_tree, ordered=True)
ot.NodeLink(brixton_tree, x='lon', y='lat', bubble_metric='foremost_time')
# further into sampled data timespan.
sub_network2 = network.get_temporal_subgraph((900, 910))
sub_network2.nodes.add_data('./data/victoria_central_bakerloo_piccadilly-stations.csv')
for node in sub_network2.nodes.set:
ot.calculate_reachability(sub_network2, node.label)
# show the sub network.
ot.Circle(sub_network2, ordered=True)
ot.Slice(sub_network2)
ot.NodeLink(sub_network2, x='lon', y='lat', bubble_metric='reachability', colors='bmet')
# show Oxford Circus' foremost tree.
oxcircus_tree = ot.calculate_foremost_tree(sub_network2, 'Oxford Circus')
oxcircus_tree.nodes.add_data('./data/victoria_central_bakerloo_piccadilly-stations.csv')
ot.Circle(oxcircus_tree, ordered=True)
ot.Slice(oxcircus_tree)
ot.NodeLink(oxcircus_tree, x='lon', y='lat', bubble_metric='foremost_time')
input("Press enter key to exit...")