forked from TheAlgorithms/JavaScript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStringSearch.js
83 lines (77 loc) · 2.9 KB
/
StringSearch.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
* String Search
*/
function makeTable (str) {
// create a table of size equal to the length of `str`
// table[i] will store the prefix of the longest prefix of the substring str[0..i]
const table = new Array(str.length)
let maxPrefix = 0
// the longest prefix of the substring str[0] has length
table[0] = 0
// for the substrings the following substrings, we have two cases
for (let i = 1; i < str.length; i++) {
// case 1. the current character doesn't match the last character of the longest prefix
while (maxPrefix > 0 && str.charAt(i) !== str.charAt(maxPrefix)) {
// if that is the case, we have to backtrack, and try find a character that will be equal to the current character
// if we reach 0, then we couldn't find a character
maxPrefix = table[maxPrefix - 1]
}
// case 2. The last character of the longest prefix matches the current character in `str`
if (str.charAt(maxPrefix) === str.charAt(i)) {
// if that is the case, we know that the longest prefix at position i has one more character.
// for example consider `.` be any character not contained in the set [a.c]
// str = abc....abc
// consider `i` to be the last character `c` in `str`
// maxPrefix = will be 2 (the first `c` in `str`)
// maxPrefix now will be 3
maxPrefix++
// so the max prefix for table[9] is 3
}
table[i] = maxPrefix
}
return table
}
// Find all the words that matches in a given string `str`
export function stringSearch (str, word) {
// find the prefix table in O(n)
const prefixes = makeTable(word)
const matches = []
// `j` is the index in `P`
let j = 0
// `i` is the index in `S`
let i = 0
while (i < str.length) {
// Case 1. S[i] == P[j] so we move to the next index in `S` and `P`
if (str.charAt(i) === word.charAt(j)) {
i++
j++
}
// Case 2. `j` is equal to the length of `P`
// that means that we reached the end of `P` and thus we found a match
// Next we have to update `j` because we want to save some time
// instead of updating to j = 0 , we can jump to the last character of the longest prefix well known so far.
// j-1 means the last character of `P` because j is actually `P.length`
// e.g.
// S = a b a b d e
// P = `a b`a b
// we will jump to `a b` and we will compare d and a in the next iteration
// a b a b `d` e
// a b `a` b
if (j === word.length) {
matches.push(i - j)
j = prefixes[j - 1]
// Case 3.
// S[i] != P[j] There's a mismatch!
} else if (str.charAt(i) !== word.charAt(j)) {
// if we found at least a character in common, do the same thing as in case 2
if (j !== 0) {
j = prefixes[j - 1]
} else {
// else j = 0, and we can move to the next character S[i+1]
i++
}
}
}
return matches
}
// stringSearch('Hello search the position of me', 'pos')