-
Notifications
You must be signed in to change notification settings - Fork 92
/
dataSpatial.R
196 lines (162 loc) · 7.31 KB
/
dataSpatial.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
##################################################################
## Source code for the book: "Displaying time series, spatial and
## space-time data with R"
## Copyright (C) 2013-2012 Oscar Perpiñán Lamigueiro
## This program is free software you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published
## by the Free Software Foundation; either version 2 of the License,
## or (at your option) any later version.
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
## 02111-1307, USA.
####################################################################
##################################################################
## Initial configuration
##################################################################
## Clone or download the repository and set the working directory
## with setwd to the folder where the repository is located.
##################################################################
## Air Quality in Madrid
##################################################################
## codeStations.csv is extracted from the document
## http://www.mambiente.munimadrid.es/opencms/export/sites/default/calaire/Anexos/INTPHORA-DIA.pdf,
## table of page 3.
codEstaciones <- read.csv2('data/codeStations.csv')
codURL <- as.numeric(substr(codEstaciones$Codigo, 7, 8))
## The information of each measuring station is available at its own webpage, defined by codURL
URLs <- paste('http://www.mambiente.munimadrid.es/opencms/opencms/calaire/contenidos/estaciones/estacion', codURL, '.html', sep='')
##################################################################
## Data arrangement
##################################################################
library(XML)
library(sp)
## Access each webpage, retrieve tables and extract long/lat data
coords <- lapply(URLs, function(est){
tables <- readHTMLTable(est)
location <- tables[[2]]
## Clean the table content and convert to dms format
ub2dms <- function(x){
ch <- as.character(x)
ch <- sub(',', '.', ch)
ch <- sub('O', 'W', ch) ## Some stations use "O" instead of "W"
as.numeric(char2dms(ch, "º", "'", "'' "))
}
long <- ub2dms(location[2,1])
lat <- ub2dms(location[2,2])
alt <- as.numeric(sub(' m.', '', location[2, 3]))
coords <- data.frame(long=long, lat=lat, alt=alt)
coords
})
airStations <- cbind(codEstaciones, do.call(rbind, coords))
## The longitude of "El Pardo" station is wrong (positive instead of negative)
airStations$long[22] <- -airStations$long[22]
write.csv2(airStations, file='data/airStations.csv')
## Fill in the form at
## http://www.mambiente.munimadrid.es/opencms/opencms/calaire/consulta/descarga.html
## to receive the Diarios11.zip file.
unzip('data/Diarios11.zip')
rawData <- readLines('data/Datos11.txt')
## This loop reads each line and extracts fields as defined by the
## INTPHORA file:
## http://www.mambiente.munimadrid.es/opencms/export/sites/default/calaire/Anexos/INTPHORA-DIA.pdf
datos11 <- lapply(rawData, function(x){
codEst <- substr(x, 1, 8)
codParam <- substr(x, 9, 10)
codTec <- substr(x, 11, 12)
codPeriod <- substr(x, 13, 14)
month <- substr(x, 17, 18)
dat <- substr(x, 19, nchar(x))
## "N" used for impossible days (31st April)
idxN <- gregexpr('N', dat)[[1]]
if (idxN==-1) idxN <- numeric(0)
nZeroDays <- length(idxN)
day <- seq(1, 31-nZeroDays)
## Substitute V and N with ";" to split data from different days
dat <- gsub('[VN]+', ';', dat)
dat <- as.numeric(strsplit(dat, ';')[[1]])
## Only data from valid days
dat <- dat[day]
res <- data.frame(codEst, codParam, ##codTec, codPeriod,
month, day, year=2011,
dat)
})
datos11 <- do.call(rbind, datos11)
write.csv2(datos11, 'data/airQuality.csv')
##################################################################
## Combine data and spatial locations
##################################################################
library(sp)
## Spatial location of stations
airStations <- read.csv2('data/airStations.csv')
coordinates(airStations) <- ~ long + lat
## Geographical projection
proj4string(airStations) <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84")
## Measurements data
airQuality <- read.csv2('data/airQuality.csv')
## Only interested in NO2
NO2 <- airQuality[airQuality$codParam==8, ]
NO2agg <- aggregate(dat ~ codEst, data=NO2,
FUN = function(x) {
c(mean=signif(mean(x), 3),
median=median(x),
sd=signif(sd(x), 3))
})
NO2agg <- do.call(cbind, NO2agg)
NO2agg <- as.data.frame(NO2agg)
library(maptools)
## Link aggregated data with stations to obtain a SpatialPointsDataFrame.
## Codigo and codEst are the stations codes
idxNO2 <- match(airStations$Codigo, NO2agg$codEst)
NO2sp <- spCbind(airStations[, c('Nombre', 'alt')], NO2agg[idxNO2, ])
save(NO2sp, file='data/NO2sp.RData')
##################################################################
## Spanish General Elections
##################################################################
dat2011 <- read.csv('data/GeneralSpanishElections2011.gz')
census <- dat2011$Total.censo.electoral
validVotes <- dat2011$Votos.válidos
## Election results per political party and municipality
votesData <- dat2011[, 12:1023]
## Abstention as an additional party
votesData$ABS <- census - validVotes
## Winner party at each municipality
whichMax <- apply(votesData, 1, function(x)names(votesData)[which.max(x)])
## Results of the winner party at each municipality
Max <- apply(votesData, 1, max)
## OTH for everything but PP, PSOE and ABS
whichMax[!(whichMax %in% c('PP', 'PSOE', 'ABS'))] <- 'OTH'
## Percentage of votes with the electoral census
pcMax <- Max/census * 100
## Province-Municipality code. sprintf formats a number with leading zeros.
PROVMUN <- with(dat2011, paste(sprintf('%02d', Código.de.Provincia),
sprintf('%03d', Código.de.Municipio),
sep=""))
votes2011 <- data.frame(PROVMUN, whichMax, Max, pcMax)
write.csv(votes2011, 'data/votes2011.csv', row.names=FALSE)
##################################################################
## CM SAF
##################################################################
library(raster)
tmp <- tempdir()
unzip('data/SISmm2008_CMSAF.zip', exdir=tmp)
filesCMSAF <- dir(tmp, pattern='SISmm')
SISmm <- stack(paste(tmp, filesCMSAF, sep='/'))
## CM-SAF data is average daily irradiance (W/m2). Multiply by 24
## hours to obtain daily irradiation (Wh/m2)
SISmm <- SISmm * 24
## Monthly irradiation: each month by the correspondent number of days
daysMonth <- c(31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)
SISm <- SISmm * daysMonth / 1000 ## kWh/m2
## Annual average
SISav <- sum(SISm)/sum(daysMonth)
writeRaster(SISav, file='SISav')
library(raster)
## http://neo.sci.gsfc.nasa.gov/Search.html?group=64
pop <- raster('875430rgb-167772161.0.FLOAT.TIFF')
## http://neo.sci.gsfc.nasa.gov/Search.html?group=20
landClass <- raster('241243rgb-167772161.0.TIFF')