-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyseData.py
49 lines (38 loc) · 1.9 KB
/
analyseData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
import skimage.measure
import json
def compute_tumor_volume_evolution(regions1, regions2):
areas1 = np.array([region.area for region in regions1])
areas2 = np.array([region.area for region in regions2])
area1 = areas1.sum()
area2 = areas2.sum()
return ((area2 - area1) / area1), area1, area2
def compute_centroids_evolution(regions1, regions2):
centroids1 = np.array([region.centroid for region in regions1])
centroids2 = np.array([region.centroid for region in regions2])
if len(centroids1) > len(centroids2):
print("Warning: a tumor has disappeared")
elif len(centroids1) < len(centroids2):
print("Warning: a tumor has appeared")
else:
print("No evolution in the number of tumors")
min_dist = []
for centroid1 in centroids1:
distances = [((centroid1[0] - centroid2[0])**2 + (centroid1[1] - centroid2[1])**2)**0.5 for centroid2 in centroids2]
min_dist.append(distances.index(min(distances)))
return min_dist
return None
def compute_tumors_evolution(mask1, mask2):
regions1 = skimage.measure.regionprops(mask1.astype(np.uint8))
regions2 = skimage.measure.regionprops(mask2.astype(np.uint8))
tumor_volume_evolution, volume1, volume2 = compute_tumor_volume_evolution(regions1, regions2)
centroids_evolution = compute_centroids_evolution(regions1, regions2)
json_infos = {"scan1_tumors_volume": f"{volume1} voxels",
"scan2_tumors_volume": f"{volume2} voxels",
"tumors_volume_evolution": f"{tumor_volume_evolution * 100:.2f} %",
"centroids_evolution": centroids_evolution}
print(json_infos)
with open('results.json', 'w', encoding='utf-8') as f:
json.dump(json_infos, f, ensure_ascii=False, indent=4)
def analyseData(segmentation1, segmentation2):
compute_tumors_evolution(segmentation1, segmentation2)