-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexpression_analysis_examples.R
39 lines (28 loc) · 1.32 KB
/
expression_analysis_examples.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
## Eaxmples of explorative data analysis
#####
## Download expression data from (Graveley et al. The developmental transcriptome of Drosophila melanogaster, Nature, 2012),
## Supplementary table 9, 2010-09-11375C-Table_S9_revised.xls
library(gdata)
exp.data.raw <- read.xls("2010-09-11375C-Table_S9_revised.xls")
exp.data <- as.matrix(exp.data.raw[,-1*1:4]) ## Expression levels are in column 5 and higher
rownames(exp.data) <- exp.data.raw[,1] ## Gene names are in column 1
colnames(exp.data) <- gsub("X", "", colnames(exp.data)) ## Clean up coumn names
colnames(exp.data) <- gsub("..", ".", colnames(exp.data), fixed=TRUE)
#####
## PCA plot
library(ggplot2)
test.pca <- prcomp(t(log10(exp.data+1)))
# plot how much of the variation the PCs explain
barplot(summary(test.pca)$importance[2,1:10])
annot.col <- c(rep("embryo", 12), rep("larvae", 6), rep("pupae", 6), rep("adult",6))
scores <- data.frame(annot.col, test.pca$x[,1:5])
## Plot PC1 vs PC2
pc <- qplot(x=PC1, y=PC2, data=scores, colour=factor(annot.col), label=rownames(scores))
pc <- pc + geom_text(size=4)
pc
#####
## Clustering
library(gplots)
options("expressions"=15000)
annot.colors <- c(rep("red", 12), rep("green", 6), rep("cyan", 6), rep("purple",6))
heatmap.2(log10(exp.data+1), labRow = NA, trace="none", cexCol=0.7, margins = c(10, 2), ColSideColors=annot.colors)