-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathutils.py
229 lines (184 loc) · 6.05 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from __future__ import absolute_import, division, print_function
import sys
import random
import pickle
import logging
import logging.handlers
import numpy as np
import scipy.sparse as sp
from sklearn.feature_extraction.text import TfidfTransformer
import torch
# Dataset names.
BEAUTY = 'beauty'
CELL = 'cell'
CLOTH = 'cloth'
CD = 'cd'
# Dataset directories.
DATASET_DIR = {
BEAUTY: './data/Amazon_Beauty',
CELL: './data/Amazon_Cellphones',
CLOTH: './data/Amazon_Clothing',
CD: './data/Amazon_CDs',
}
# Model result directories.
TMP_DIR = {
BEAUTY: './tmp/Amazon_Beauty',
CELL: './tmp/Amazon_Cellphones',
CLOTH: './tmp/Amazon_Clothing',
CD: './tmp/Amazon_CDs',
}
# Label files.
LABELS = {
BEAUTY: (TMP_DIR[BEAUTY] + '/train_label.pkl', TMP_DIR[BEAUTY] + '/test_label.pkl'),
CLOTH: (TMP_DIR[CLOTH] + '/train_label.pkl', TMP_DIR[CLOTH] + '/test_label.pkl'),
CELL: (TMP_DIR[CELL] + '/train_label.pkl', TMP_DIR[CELL] + '/test_label.pkl'),
CD: (TMP_DIR[CD] + '/train_label.pkl', TMP_DIR[CD] + '/test_label.pkl')
}
# Entities
USER = 'user'
PRODUCT = 'product'
WORD = 'word'
RPRODUCT = 'related_product'
BRAND = 'brand'
CATEGORY = 'category'
# Relations
PURCHASE = 'purchase'
MENTION = 'mentions'
DESCRIBED_AS = 'described_as'
PRODUCED_BY = 'produced_by'
BELONG_TO = 'belongs_to'
ALSO_BOUGHT = 'also_bought'
ALSO_VIEWED = 'also_viewed'
BOUGHT_TOGETHER = 'bought_together'
SELF_LOOP = 'self_loop' # only for kg env
KG_RELATION = {
USER: {
PURCHASE: PRODUCT,
MENTION: WORD,
},
WORD: {
MENTION: USER,
DESCRIBED_AS: PRODUCT,
},
PRODUCT: {
PURCHASE: USER,
DESCRIBED_AS: WORD,
PRODUCED_BY: BRAND,
BELONG_TO: CATEGORY,
ALSO_BOUGHT: RPRODUCT,
ALSO_VIEWED: RPRODUCT,
BOUGHT_TOGETHER: RPRODUCT,
},
BRAND: {
PRODUCED_BY: PRODUCT,
},
CATEGORY: {
BELONG_TO: PRODUCT,
},
RPRODUCT: {
ALSO_BOUGHT: PRODUCT,
ALSO_VIEWED: PRODUCT,
BOUGHT_TOGETHER: PRODUCT,
}
}
PATH_PATTERN = {
# length = 3
1: ((None, USER), (MENTION, WORD), (DESCRIBED_AS, PRODUCT)),
# length = 4
11: ((None, USER), (PURCHASE, PRODUCT), (PURCHASE, USER), (PURCHASE, PRODUCT)),
12: ((None, USER), (PURCHASE, PRODUCT), (DESCRIBED_AS, WORD), (DESCRIBED_AS, PRODUCT)),
13: ((None, USER), (PURCHASE, PRODUCT), (PRODUCED_BY, BRAND), (PRODUCED_BY, PRODUCT)),
14: ((None, USER), (PURCHASE, PRODUCT), (BELONG_TO, CATEGORY), (BELONG_TO, PRODUCT)),
15: ((None, USER), (PURCHASE, PRODUCT), (ALSO_BOUGHT, RPRODUCT), (ALSO_BOUGHT, PRODUCT)),
16: ((None, USER), (PURCHASE, PRODUCT), (ALSO_VIEWED, RPRODUCT), (ALSO_VIEWED, PRODUCT)),
17: ((None, USER), (PURCHASE, PRODUCT), (BOUGHT_TOGETHER, RPRODUCT), (BOUGHT_TOGETHER, PRODUCT)),
18: ((None, USER), (MENTION, WORD), (MENTION, USER), (PURCHASE, PRODUCT)),
}
def get_entities():
return list(KG_RELATION.keys())
def get_relations(entity_head):
return list(KG_RELATION[entity_head].keys())
def get_entity_tail(entity_head, relation):
return KG_RELATION[entity_head][relation]
def compute_tfidf_fast(vocab, docs):
"""Compute TFIDF scores for all vocabs.
Args:
docs: list of list of integers, e.g. [[0,0,1], [1,2,0,1]]
Returns:
sp.csr_matrix, [num_docs, num_vocab]
"""
# (1) Compute term frequency in each doc.
data, indices, indptr = [], [], [0]
for d in docs:
term_count = {}
for term_idx in d:
if term_idx not in term_count:
term_count[term_idx] = 1
else:
term_count[term_idx] += 1
indices.extend(term_count.keys())
data.extend(term_count.values())
indptr.append(len(indices))
tf = sp.csr_matrix((data, indices, indptr), dtype=int, shape=(len(docs), len(vocab)))
# (2) Compute normalized tfidf for each term/doc.
transformer = TfidfTransformer(smooth_idf=True)
tfidf = transformer.fit_transform(tf)
return tfidf
def get_logger(logname):
logger = logging.getLogger(logname)
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter('[%(levelname)s] %(message)s')
ch = logging.StreamHandler(sys.stdout)
ch.setFormatter(formatter)
logger.addHandler(ch)
fh = logging.handlers.RotatingFileHandler(logname, mode='w')
fh.setFormatter(formatter)
logger.addHandler(fh)
return logger
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def save_dataset(dataset, dataset_obj):
dataset_file = TMP_DIR[dataset] + '/dataset.pkl'
with open(dataset_file, 'wb') as f:
pickle.dump(dataset_obj, f)
def load_dataset(dataset):
dataset_file = TMP_DIR[dataset] + '/dataset.pkl'
dataset_obj = pickle.load(open(dataset_file, 'rb'))
return dataset_obj
def save_labels(dataset, labels, mode='train'):
if mode == 'train':
label_file = LABELS[dataset][0]
elif mode == 'test':
label_file = LABELS[dataset][1]
else:
raise Exception('mode should be one of {train, test}.')
with open(label_file, 'wb') as f:
pickle.dump(labels, f)
def load_labels(dataset, mode='train'):
if mode == 'train':
label_file = LABELS[dataset][0]
elif mode == 'test':
label_file = LABELS[dataset][1]
else:
raise Exception('mode should be one of {train, test}.')
user_products = pickle.load(open(label_file, 'rb'))
return user_products
def save_embed(dataset, embed):
embed_file = '{}/transe_embed.pkl'.format(TMP_DIR[dataset])
pickle.dump(embed, open(embed_file, 'wb'))
def load_embed(dataset):
embed_file = '{}/transe_embed.pkl'.format(TMP_DIR[dataset])
print('Load embedding:', embed_file)
embed = pickle.load(open(embed_file, 'rb'))
return embed
def save_kg(dataset, kg):
kg_file = TMP_DIR[dataset] + '/kg.pkl'
pickle.dump(kg, open(kg_file, 'wb'))
def load_kg(dataset):
kg_file = TMP_DIR[dataset] + '/kg.pkl'
kg = pickle.load(open(kg_file, 'rb'))
return kg