-
Notifications
You must be signed in to change notification settings - Fork 178
/
tensorflow_estimator_integration.py
144 lines (106 loc) · 4.43 KB
/
tensorflow_estimator_integration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""
Optuna example that demonstrates a pruner for Tensorflow (Estimator API).
In this example, we optimize the hyperparameters of a neural network for hand-written
digit recognition in terms of validation accuracy. The network is implemented by Tensorflow and
evaluated by MNIST dataset. Throughout the training of neural networks, a pruner observes
intermediate results and stops unpromising trials.
You can run this example as follows:
$ python tensorflow_estimator_integration.py
"""
import shutil
import sys
import tempfile
import urllib
import optuna
from optuna.trial import TrialState
from packaging import version
import tensorflow_datasets as tfds
import tensorflow as tf
if version.parse(tf.__version__) >= version.parse("2.16.0"):
raise RuntimeError("tensorflow<2.16.0 is required for this example.")
# TODO(crcrpar): Remove the below three lines once everything is ok.
# Register a global custom opener to avoid HTTP Error 403: Forbidden when downloading MNIST.
opener = urllib.request.build_opener()
opener.addheaders = [("User-agent", "Mozilla/5.0")]
urllib.request.install_opener(opener)
MODEL_DIR = tempfile.mkdtemp()
BATCH_SIZE = 128
TRAIN_STEPS = 1000
PRUNING_INTERVAL_STEPS = 50
N_TRAIN_BATCHES = 3000
N_VALID_BATCHES = 1000
def preprocess(image, label):
image = tf.reshape(image, [-1, 28 * 28])
image = tf.cast(image, tf.float32)
image /= 255
label = tf.cast(label, tf.int32)
return {"x": image}, label
def train_input_fn():
data = tfds.load(name="mnist", as_supervised=True)
train_ds = data["train"]
train_ds = train_ds.map(preprocess).shuffle(60000).batch(BATCH_SIZE).take(N_TRAIN_BATCHES)
return train_ds
def eval_input_fn():
data = tfds.load(name="mnist", as_supervised=True)
valid_ds = data["test"]
valid_ds = valid_ds.map(preprocess).shuffle(10000).batch(BATCH_SIZE).take(N_VALID_BATCHES)
return valid_ds
def create_classifier(trial):
# We optimize the numbers of layers and their units.
n_layers = trial.suggest_int("n_layers", 1, 3)
hidden_units = []
for i in range(n_layers):
n_units = trial.suggest_int("n_units_l{}".format(i), 1, 128)
hidden_units.append(n_units)
config = tf.estimator.RunConfig(
save_summary_steps=PRUNING_INTERVAL_STEPS, save_checkpoints_steps=PRUNING_INTERVAL_STEPS
)
model_dir = "{}/{}".format(MODEL_DIR, trial.number)
classifier = tf.estimator.DNNClassifier(
feature_columns=[tf.feature_column.numeric_column("x", shape=[28 * 28])],
hidden_units=hidden_units,
model_dir=model_dir,
n_classes=10,
optimizer=lambda: tf.keras.optimizers.legacy.Adam(learning_rate=0.01),
config=config,
)
return classifier
def objective(trial):
classifier = create_classifier(trial)
optuna_pruning_hook = optuna.integration.TensorFlowPruningHook(
trial=trial,
estimator=classifier,
metric="accuracy",
run_every_steps=PRUNING_INTERVAL_STEPS,
)
train_spec = tf.estimator.TrainSpec(
input_fn=train_input_fn, max_steps=TRAIN_STEPS, hooks=[optuna_pruning_hook]
)
eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn, start_delay_secs=0, throttle_secs=0)
eval_results, _ = tf.estimator.train_and_evaluate(classifier, train_spec, eval_spec)
return float(eval_results["accuracy"])
def main():
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=25)
pruned_trials = study.get_trials(deepcopy=False, states=[TrialState.PRUNED])
complete_trials = study.get_trials(deepcopy=False, states=[TrialState.COMPLETE])
print("Study statistics: ")
print(" Number of finished trials: ", len(study.trials))
print(" Number of pruned trials: ", len(pruned_trials))
print(" Number of complete trials: ", len(complete_trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))
shutil.rmtree(MODEL_DIR)
if __name__ == "__main__":
if sys.version_info >= (3, 12):
raise RuntimeError(
"Use `optuna_integration.KerasPruningCallback` instead, "
"because TensorFlow recommends migrating from Estimator to Keras APIs. "
"For more details, please check the TensorFlow migration guide: "
"https://www.tensorflow.org/guide/migrate/migrating_estimator"
)
main()