-
Notifications
You must be signed in to change notification settings - Fork 179
/
Copy pathchainer_simple.py
131 lines (101 loc) · 4.41 KB
/
chainer_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""
Optuna example that optimizes multi-layer perceptrons using Chainer.
In this example, we optimize the validation accuracy of fashion product recognition using
Chainer and FashionMNIST. We optimize the neural network architecture as well as the optimizer
configuration. As it is too time consuming to use the whole FashionMNIST dataset,
we here use a small subset of it.
"""
import numpy as np
import optuna
from optuna.integration import ChainerPruningExtension
from packaging import version
import chainer
import chainer.functions as F
import chainer.links as L
if version.parse(chainer.__version__) < version.parse("4.0.0"):
raise RuntimeError("Chainer>=4.0.0 is required for this example.")
N_TRAIN_EXAMPLES = 3000
N_VALID_EXAMPLES = 1000
BATCHSIZE = 128
EPOCH = 10
def create_model(trial):
# We optimize the numbers of layers and their units.
n_layers = trial.suggest_int("n_layers", 1, 3)
layers = []
for i in range(n_layers):
n_units = int(trial.suggest_float("n_units_l{}".format(i), 4, 128, log=True))
layers.append(L.Linear(None, n_units))
layers.append(F.relu)
layers.append(L.Linear(None, 10))
return chainer.Sequential(*layers)
def create_optimizer(trial, model):
# We optimize the choice of optimizers as well as their parameters.
optimizer_name = trial.suggest_categorical("optimizer", ["Adam", "MomentumSGD"])
if optimizer_name == "Adam":
adam_alpha = trial.suggest_float("adam_alpha", 1e-5, 1e-1, log=True)
optimizer = chainer.optimizers.Adam(alpha=adam_alpha)
else:
momentum_sgd_lr = trial.suggest_float("momentum_sgd_lr", 1e-5, 1e-1, log=True)
optimizer = chainer.optimizers.MomentumSGD(lr=momentum_sgd_lr)
weight_decay = trial.suggest_float("weight_decay", 1e-10, 1e-3, log=True)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.WeightDecay(weight_decay))
return optimizer
# FYI: Objective functions can take additional arguments
# (https://optuna.readthedocs.io/en/stable/faq.html#objective-func-additional-args).
def objective(trial):
# Model and optimizer
model = L.Classifier(create_model(trial))
optimizer = create_optimizer(trial, model)
# Dataset
rng = np.random.RandomState(0)
train, valid = chainer.datasets.get_fashion_mnist()
train = chainer.datasets.SubDataset(
train, 0, N_TRAIN_EXAMPLES, order=rng.permutation(len(train))
)
valid = chainer.datasets.SubDataset(
valid, 0, N_VALID_EXAMPLES, order=rng.permutation(len(valid))
)
train_iter = chainer.iterators.SerialIterator(train, BATCHSIZE)
valid_iter = chainer.iterators.SerialIterator(valid, BATCHSIZE, repeat=False, shuffle=False)
# Trainer
updater = chainer.training.StandardUpdater(train_iter, optimizer)
trainer = chainer.training.Trainer(updater, (EPOCH, "epoch"))
trainer.extend(chainer.training.extensions.Evaluator(valid_iter, model))
log_report_extension = chainer.training.extensions.LogReport(log_name=None)
trainer.extend(
chainer.training.extensions.PrintReport(
[
"epoch",
"main/loss",
"validation/main/loss",
"main/accuracy",
"validation/main/accuracy",
]
)
)
trainer.extend(log_report_extension)
trainer.extend(ChainerPruningExtension(trial, "validation/main/accuracy", (1, "epoch")))
# Run!
trainer.run(show_loop_exception_msg=False)
# Set the user attributes such as loss and accuracy for train and validation sets
log_last = log_report_extension.log[-1]
for key, value in log_last.items():
trial.set_user_attr(key, value)
# Return the validation accuracy
return log_report_extension.log[-1]["validation/main/accuracy"]
if __name__ == "__main__":
# This verbosity change is just to simplify the script output.
optuna.logging.set_verbosity(optuna.logging.WARNING)
study = optuna.create_study(direction="maximize", pruner=optuna.pruners.MedianPruner())
study.optimize(objective, n_trials=100)
print("Number of finished trials: ", len(study.trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))
print(" User attrs:")
for key, value in trial.user_attrs.items():
print(" {}: {}".format(key, value))