-
Notifications
You must be signed in to change notification settings - Fork 11
/
README.m
115 lines (115 loc) · 4.25 KB
/
README.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
% A feasible method for optimization with orthogonality constraints
%
% -------------------------------------------------------------------------
% 1. Problems and solvers
%
% The package contains codes for the following two problems:
% (1) min F(X), s.t., ||X_i||_2 = 1
%
% Solver: OptManiMulitBallGBB.m
%
% Solver demo: Test_maxcut_demo.m, solving the max-cut problem
%
% The constraints can even be a single sphere: ||X||_F = 1
%
% Solver demo: GPE_SP1d_Func.m, solving the BEC problem
% (the data is not provided).
%
% (2) min F(X), S.t., X'*X = I_k, where X \in R^{n,k}
%
% Solver: OptStiefelGBB.m
%
% Solver demo: test_eig_rand_demo.m, computing leading eigenvalues
%
%
% Applications have been solved by these solvers:
%
% - Homogeneous polynomial optimization problems
% with multiple spherical constraints:
% \max \; \sum_{1\le i\le n_1, 1\le j \le n_2, 1 \le k \le n_3,
% 1\le l \le n_4} a_{ijkl} x_i y_j z_k w_l \;
% s.t., \|x\|_2 = \|y\|_2 = \|z\|_2 = \|w\|_2= 1,
% where A = (a_{ijkl}) is a fourth-order tensor of size
% n\times n \times n\times n.
%
% - Maxcut SDP: \min Tr(CX), s.t., X_{ii}=1, X \succeq 0
%
% - SDP: \min Tr(CX), s.t., Tr(X)=1, X \succeq 0
%
% - Low-Rank Nearest Correlation Estimation:
% \min_{ X \succeq 0} \; \frac{1}{2} \| H \odot (X - C) \|_F^2,
% \; X_{ii} = 1, \; i = 1, \ldots, n, \; rank(X) \le p.
%
% - The Bose–Einstein condensates (BEC) problem
%
% - Linear eigenvalue problems:
% \min Tr(X^{\top}AX), s.t., X^{\top}X =I
%
% - The electronic structure calculation:
% the Kohn-Sham total energy minimization
% the Hartree-Fock total energy minimization
%
% - Quadratic assignment problem
%
% - Harmonic energy minimization
%
% For more general problems and solvers, see:
% Adaptive Regularized Newton Method for Riemannian Optimization
% https://github.com/wenstone/ARNT
% -------------------------------------------------------------------------
% 2. Reference
%
% (1) Zaiwen Wen and Wotao Yin. A feasible method for optimization with
% orthogonality constraints. Mathematical Programming (2013): 397-434.
%
% (2) Jiang Hu, Andre Milzarek, Zaiwen Wen, Yaxiang Yuan. Adaptive
% Regularized Newton Method for Riemannian Optimization.
% SIAM Journal on Scientific Computing
%
% (3) Zaiwen Wen, Andre Milzarek, Michael Ulbrich and Hongchao Zhang,
% Adaptive regularized self-consistent field iteration with exact
% Hessian for electronic structure calculation. SIAM Journal on
% Scientific Computing (2013), A1299-A1324.
%
% (4) Xinming Wu, Zaiwen Wen, and Weizhu Bao. A regularized Newton method
% for computing ground states of Bose–Einstein condensates. Journal of
% Scientific Computing (2017): 303-329.
%
% (5) X. Zhang, J. Zhu, Z. Wen, A. Zhou, Gradient-type Optimization
% Methods for Electronic Structure Calculation, SIAM Journal on
% Scientific Computing, Vol. 36, No. 3 (2014), pp. C265-C289
%
% (6) R. Lai, Z. Wen, W. Yin, X. Gu, L. Lui, Folding-Free Global Conformal
% Mapping for Genus-0 Surfaces by Harmonic Energy Minimization,
% Journal of Scientfic Computing, 58(2014), 705-725
%
%
% -------------------------------------------------------------------------
% 3. The Authors
%
% We hope that the package is useful for your application. If you have
% any bug reports or comments, please feel free to email one of the
% toolbox authors:
%
% Zaiwen Wen, wendouble@gmail.com
% Wotao Yin, wotao.yin@gmail.com
%
% Enjoy!
% Zaiwen and Wotao
%
% -------------------------------------------------------------------------
% Copyright (C) 2018, Zaiwen Wen and Wotao Yin
% Copyright (C) 2010, Zaiwen Wen and Wotao Yin
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>