-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathchat.py
122 lines (106 loc) · 4.12 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse
from typing import List, Tuple
from threading import Thread
import torch
from optimum.intel.openvino import OVModelForCausalLM
from transformers import (AutoTokenizer, AutoConfig,
TextIteratorStreamer, StoppingCriteriaList, StoppingCriteria)
class StopOnTokens(StoppingCriteria):
def __init__(self, token_ids):
self.token_ids = token_ids
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
for stop_id in self.token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
if __name__ == "__main__":
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('-h',
'--help',
action='help',
help='Show this help message and exit.')
parser.add_argument('-m',
'--model_path',
required=True,
type=str,
help='Required. model path')
parser.add_argument('-l',
'--max_sequence_length',
default=256,
required=False,
type=int,
help='Required. maximun length of output')
parser.add_argument('-d',
'--device',
default='CPU',
required=False,
type=str,
help='Required. device for inference')
args = parser.parse_args()
model_dir = args.model_path
ov_config = {"PERFORMANCE_HINT": "LATENCY",
"NUM_STREAMS": "1", "CACHE_DIR": ""}
tokenizer = AutoTokenizer.from_pretrained(
model_dir)
print("====Compiling model====")
ov_model = OVModelForCausalLM.from_pretrained(
model_dir,
device=args.device,
ov_config=ov_config,
config=AutoConfig.from_pretrained(model_dir),
)
streamer = TextIteratorStreamer(
tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True
)
stop_tokens = [151643, 151645]
stop_tokens = [StopOnTokens(stop_tokens)]
def convert_history_to_token(history: List[Tuple[str, str]]):
messages = []
for idx, (user_msg, model_msg) in enumerate(history):
if idx == len(history) - 1 and not model_msg:
messages.append({"role": "user", "content": user_msg})
break
if user_msg:
messages.append({"role": "user", "content": user_msg})
if model_msg:
messages.append({"role": "assistant", "content": model_msg})
model_inputs = tokenizer.apply_chat_template(messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt")
return model_inputs
history = []
print("====Starting conversation====")
while True:
input_text = input("用户: ")
if input_text.lower() == 'stop':
break
if input_text.lower() == 'clear':
history = []
print("AI助手: 对话历史已清空")
continue
print("Qwen2-OpenVINO:", end=" ")
history = history + [[input_text, ""]]
model_inputs = convert_history_to_token(history)
generate_kwargs = dict(
input_ids=model_inputs,
max_new_tokens=args.max_sequence_length,
temperature=0.1,
do_sample=True,
top_p=1.0,
top_k=50,
repetition_penalty=1.1,
streamer=streamer,
stopping_criteria=StoppingCriteriaList(stop_tokens),
pad_token_id=151645,
)
t1 = Thread(target=ov_model.generate, kwargs=generate_kwargs)
t1.start()
partial_text = ""
for new_text in streamer:
print(new_text, end="", flush=True)
partial_text += new_text
print("\n")
history[-1][1] = partial_text