-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathconvert_jeff33.py
executable file
·197 lines (157 loc) · 6.26 KB
/
convert_jeff33.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python
"""
Convert JEFF 3.3 ACE data distributed by OECD/NEA into an HDF5 library that can
be used by OpenMC. It will download archives containing all the ACE files,
extract them, convert them, and write HDF5 files into a destination directory.
"""
import argparse
import tarfile
import sys
import os
from pathlib import Path
from shutil import rmtree
from urllib.parse import urljoin
import openmc.data
from utils import download
# Make sure Python version is sufficient
assert sys.version_info >= (3, 6), "Python 3.6+ is required"
class CustomFormatter(argparse.ArgumentDefaultsHelpFormatter,
argparse.RawDescriptionHelpFormatter):
pass
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=CustomFormatter
)
parser.add_argument('-d', '--destination', type=Path, default=Path('jeff-3.3-hdf5'),
help='Directory to create new library in')
parser.add_argument('--download', action='store_true',
help='Download tarball from OECD-NEA')
parser.add_argument('--no-download', dest='download', action='store_false',
help='Do not download tarball from OECD-NEA')
parser.add_argument('--extract', action='store_true',
help='Extract zip files')
parser.add_argument('--no-extract', dest='extract', action='store_false',
help='Do not extract .tgz file if it has already been extracted')
parser.add_argument('--libver', choices=['earliest', 'latest'],
default='earliest', help="Output HDF5 versioning. Use "
"'earliest' for backwards compatibility or 'latest' for "
"performance")
parser.add_argument('-r', '--release', choices=['3.3'],
default='3.3', help="The nuclear data library release version. "
"The only currently supported option is 3.3.")
parser.add_argument('--cleanup', action='store_true',
help="Remove download directories when data has "
"been processed")
parser.add_argument('--no-cleanup', dest='cleanup', action='store_false',
help="Do not remove download directories when data has "
"been processed")
parser.set_defaults(download=True, extract=True, cleanup=False)
args = parser.parse_args()
library_name = 'jeff'
cwd = Path.cwd()
ace_files_dir = cwd.joinpath('-'.join([library_name, args.release, 'ace']))
download_path = cwd.joinpath('-'.join([library_name, args.release, 'download']))
# This dictionary contains all the unique information about each release. This
# can be extended to accommodate new releases
release_details = {
'3.3': {
'base_url': 'http://www.oecd-nea.org/dbdata/jeff/jeff33/downloads/temperatures/',
'compressed_files': [
'ace_293.tar.gz',
'ace_600.tar.gz',
'ace_900.tar.gz',
'ace_1200.tar.gz',
'ace_1500.tar.gz',
'ace_1800.tar.gz',
'ace_tsl.tar.gz',
],
'neutron_files': ace_files_dir.rglob('*-[A-Z]*.ace'),
'thermal_files': (ace_files_dir / 'ace_tsl').glob('*.ace'),
'metastables': ace_files_dir.rglob('*[0-9]m-*.ace'),
'compressed_file_size': '7.7 GB',
'uncompressed_file_size': '37 GB'
}
}
details = release_details[args.release]
# ==============================================================================
# DOWNLOAD FILES FROM WEBSITE
download_warning = """
WARNING: This script will download {} of data.
Extracting and processing the data requires {} of additional free disk space.
""".format(details['compressed_file_size'], details['uncompressed_file_size'])
if args.download:
print(download_warning)
for f in details['compressed_files']:
download(urljoin(details['base_url'], f), output_path=download_path)
# ==============================================================================
# EXTRACT FILES FROM TGZ
if args.extract:
for f in details['compressed_files']:
with tarfile.open(download_path / f, 'r') as tgz:
print(f'Extracting {f}...')
tgz.extractall(path=ace_files_dir)
if args.cleanup and download_path.exists():
rmtree(download_path)
# ==============================================================================
# CONVERT INCIDENT NEUTRON FILES
# Create output directory if it doesn't exist
args.destination.mkdir(parents=True, exist_ok=True)
lib = openmc.data.DataLibrary()
def key(p):
"""Return (temperature, atomic number, mass number, metastable)"""
z, x, a, temp = p.stem.split('-')
return int(temp), int(z), int(a[:-1]), a[-1]
for p in sorted((ace_files_dir / 'ace_293').glob('*.ace'), key=key):
print(f'Converting: {p}')
temp, z, a, m = key(p)
data = openmc.data.IncidentNeutron.from_ace(p)
if m == 'm' and not data.name.endswith('_m1'):
# Correct metastable
data.metastable = 1
data.name += '_m1'
for T in ('600', '900', '1200', '1500', '1800'):
p_add = ace_files_dir / f'ace_{T}' / (p.stem.replace('293', T) + '.ace')
print(f'Adding temperature: {p_add}')
data.add_temperature_from_ace(p_add)
h5_file = args.destination / f'{data.name}.h5'
data.export_to_hdf5(h5_file, 'w', libver=args.libver)
lib.register_file(h5_file)
# ==============================================================================
# CONVERT THERMAL SCATTERING FILES
thermal_mats = [
'al-sap',
'be',
'ca-cah2',
'd-d2o',
'graph',
'h-cah2',
'h-ch2',
'h-h2o',
'h-ice',
'h-zrh',
'mesi',
'mg',
'o-d2o',
'orto-d',
'orto-h',
'o-sap',
'para-d',
'para-h',
'sili',
'tolu',
]
def thermal_temp(p):
return int(p.stem.split('-')[-1])
thermal_dir = ace_files_dir / 'ace_tsl'
for mat in thermal_mats:
for i, p in enumerate(sorted(thermal_dir.glob(f'{mat}*.ace'), key=thermal_temp)):
if i == 0:
print(f'Converting: {p}')
data = openmc.data.ThermalScattering.from_ace(p)
else:
print(f'Adding temperature: {p}')
data.add_temperature_from_ace(p)
h5_file = args.destination / f'{data.name}.h5'
data.export_to_hdf5(h5_file, 'w', libver=args.libver)
lib.register_file(h5_file)
lib.export_to_xml(args.destination / 'cross_sections.xml')