diff --git a/joss.05925/10.21105.joss.05925.crossref.xml b/joss.05925/10.21105.joss.05925.crossref.xml
new file mode 100644
index 0000000000..641f6ef190
--- /dev/null
+++ b/joss.05925/10.21105.joss.05925.crossref.xml
@@ -0,0 +1,302 @@
+
+
+
+ 20240207T222426-05ab3deab7d4338db1b2375a3451d2166fd485d8
+ 20240207222426
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 02
+ 2024
+
+
+ 9
+
+ 94
+
+
+
+ Chi: A Python package for treatment response
+modelling
+
+
+
+ David
+ Augustin
+ https://orcid.org/0000-0002-4885-1088
+
+
+
+ 02
+ 07
+ 2024
+
+
+ 5925
+
+
+ 10.21105/joss.05925
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.10510572
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/5925
+
+
+
+ 10.21105/joss.05925
+ https://joss.theoj.org/papers/10.21105/joss.05925
+
+
+ https://joss.theoj.org/papers/10.21105/joss.05925.pdf
+
+
+
+
+
+ The systems biology markup language (SBML): A
+medium for representation and exchange of biochemical network
+models
+ Hucka
+ Bioinformatics
+ 4
+ 19
+ 10.1093/bioinformatics/btg015
+ 2003
+ Hucka, M., Finney, A., Sauro, H. M.,
+Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J.,
+Bray, D., Cornish-Bowden, A., & others. (2003). The systems biology
+markup language (SBML): A medium for representation and exchange of
+biochemical network models. Bioinformatics, 19(4), 524–531.
+https://doi.org/10.1093/bioinformatics/btg015
+
+
+ Filter inference: A scalable nonlinear mixed
+effects inference approach for snapshot time series data
+ Augustin
+ PLOS Computational Biology
+ 5
+ 19
+ 10.1371/journal.pcbi.1011135
+ 2023
+ Augustin, D., Lambert, B., Wang, K.,
+Walz, A.-C., Robinson, M., & Gavaghan, D. (2023). Filter inference:
+A scalable nonlinear mixed effects inference approach for snapshot time
+series data. PLOS Computational Biology, 19(5), 1–29.
+https://doi.org/10.1371/journal.pcbi.1011135
+
+
+ Preclinical pharmacokinetic / pharmacodynamic
+modeling and simulation in the pharmaceutical industry: An IQ consortium
+survey examining the current landscape
+ Schuck
+ The AAPS journal
+ 2
+ 17
+ 10.1208/s12248-014-9716-2
+ 2015
+ Schuck, E., Bohnert, T., Chakravarty,
+A., Damian-Iordache, V., Gibson, C., Hsu, C.-P., Heimbach, T.,
+Krishnatry, A. S., Liederer, B. M., Lin, J., Maurer, T., Mettetal, J.
+T., Mudra, D. R., Nijsen, M. J., Raybon, J., Schroeder, P., Schuck, V.,
+Suryawanshi, S., Su, Y., … Wong, H. (2015). Preclinical pharmacokinetic
+/ pharmacodynamic modeling and simulation in the pharmaceutical
+industry: An IQ consortium survey examining the current landscape. The
+AAPS Journal, 17(2), 462–473.
+https://doi.org/10.1208/s12248-014-9716-2
+
+
+ Impact of a five-dimensional framework on
+r&d productivity at AstraZeneca
+ Morgan
+ Nature Reviews Drug Discovery
+ 3
+ 17
+ 10.1038/nrd.2017.244
+ 2018
+ Morgan, P., Brown, D. G., Lennard,
+S., Anderton, M. J., Barrett, J. C., Eriksson, U., Fidock, M., Hamrén,
+B., Johnson, A., March, R. E., Matcham, J., Mettetal, J., Nicholls, D.
+J., Platz, S., Rees, S., Snowden, M. A., & Pangalos, M. N. (2018).
+Impact of a five-dimensional framework on r&d productivity at
+AstraZeneca. Nature Reviews Drug Discovery, 17(3), 167–181.
+https://doi.org/10.1038/nrd.2017.244
+
+
+ Translational PK/PD modeling to increase
+probability of success in drug discovery and early
+development
+ Lavé
+ Drug Discovery Today:
+Technologies
+ 21-22
+ 10.1016/j.ddtec.2016.11.005
+ 1740-6749
+ 2016
+ Lavé, T., Caruso, A., Parrott, N.,
+& Walz, A. (2016). Translational PK/PD modeling to increase
+probability of success in drug discovery and early development. Drug
+Discovery Today: Technologies, 21-22, 27–34.
+https://doi.org/10.1016/j.ddtec.2016.11.005
+
+
+ Simulating clinical trials for model-informed
+precision dosing: Using warfarin treatment as a use case
+ Augustin
+ Frontiers in Pharmacology
+ 14
+ 10.3389/fphar.2023.1270443
+ 1663-9812
+ 2023
+ Augustin, D., Lambert, B., Robinson,
+M., Wang, K., & Gavaghan, D. (2023). Simulating clinical trials for
+model-informed precision dosing: Using warfarin treatment as a use case.
+Frontiers in Pharmacology, 14.
+https://doi.org/10.3389/fphar.2023.1270443
+
+
+ Probabilistic inference on noisy time series
+(PINTS)
+ Clerx
+ Journal of Open Research
+Software
+ 10.5334/jors.252
+ 2019
+ Clerx, M., Robinson, M., Lambert, B.,
+Lei, C. L., Ghosh, S., Mirams, G. R., & Gavaghan, D. J. (2019).
+Probabilistic inference on noisy time series (PINTS). Journal of Open
+Research Software.
+https://doi.org/10.5334/jors.252
+
+
+ Modeling and simulation workbench for NONMEM:
+Tutorial on pirana, PsN, and xpose
+ Keizer
+ CPT: pharmacometrics & systems
+pharmacology
+ 6
+ 2
+ 10.1038/psp.2013.24
+ 2013
+ Keizer, R. J., Karlsson, M., &
+Hooker, A. (2013). Modeling and simulation workbench for NONMEM:
+Tutorial on pirana, PsN, and xpose. CPT: Pharmacometrics & Systems
+Pharmacology, 2(6), 1–9.
+https://doi.org/10.1038/psp.2013.24
+
+
+ gPKPDSim: A SimBiology-based GUI application
+for PKPD modeling in drug development
+ Hosseini
+ Journal of pharmacokinetics and
+pharmacodynamics
+ 45
+ 10.1007/s10928-017-9562-9
+ 2018
+ Hosseini, I., Gajjala, A., Bumbaca
+Yadav, D., Sukumaran, S., Ramanujan, S., Paxson, R., & Gadkar, K.
+(2018). gPKPDSim: A SimBiology-based GUI application for PKPD modeling
+in drug development. Journal of Pharmacokinetics and Pharmacodynamics,
+45, 259–275.
+https://doi.org/10.1007/s10928-017-9562-9
+
+
+ Scipion PKPD: An open-source platform for
+biopharmaceutics, pharmacokinetics and pharmacodynamics data
+analysis
+ Sorzano
+ Pharmaceutical Research
+ 7
+ 38
+ 10.1007/s11095-021-03065-1
+ 2021
+ Sorzano, C., Fonseca-Reyna, Y., &
+Cruz-Moreno, M. P. de la. (2021). Scipion PKPD: An open-source platform
+for biopharmaceutics, pharmacokinetics and pharmacodynamics data
+analysis. Pharmaceutical Research, 38(7), 1169–1178.
+https://doi.org/10.1007/s11095-021-03065-1
+
+
+ Accelerated predictive healthcare analytics
+with pumas, a high performance pharmaceutical modeling and simulation
+platform
+ Rackauckas
+ BioRxiv
+ 10.1101/2020.11.28.402297
+ 2020
+ Rackauckas, C., Ma, Y., Noack, A.,
+Dixit, V., Mogensen, P. K., Byrne, S., Maddhashiya, S., Santiago
+Calderón, J. B., Nyberg, J., Gobburu, J. V., & others. (2020).
+Accelerated predictive healthcare analytics with pumas, a high
+performance pharmaceutical modeling and simulation platform. BioRxiv,
+2020–2011.
+https://doi.org/10.1101/2020.11.28.402297
+
+
+ Myokit: A simple interface to cardiac
+cellular electrophysiology
+ Clerx
+ Progress in biophysics and molecular
+biology
+ 1-3
+ 120
+ 10.1016/j.pbiomolbio.2015.12.008
+ 2016
+ Clerx, M., Collins, P., De Lange, E.,
+& Volders, P. G. (2016). Myokit: A simple interface to cardiac
+cellular electrophysiology. Progress in Biophysics and Molecular
+Biology, 120(1-3), 100–114.
+https://doi.org/10.1016/j.pbiomolbio.2015.12.008
+
+
+ SciPy 1.0: Fundamental Algorithms for
+Scientific Computing in Python
+ Virtanen
+ Nature Methods
+ 17
+ 10.1038/s41592-019-0686-2
+ 2020
+ Virtanen, P., Gommers, R., Oliphant,
+T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
+P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
+J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
+Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental
+Algorithms for Scientific Computing in Python. Nature Methods, 17,
+261–272.
+https://doi.org/10.1038/s41592-019-0686-2
+
+
+
+
+
+
diff --git a/joss.05925/10.21105.joss.05925.jats b/joss.05925/10.21105.joss.05925.jats
new file mode 100644
index 0000000000..ee032809b5
--- /dev/null
+++ b/joss.05925/10.21105.joss.05925.jats
@@ -0,0 +1,514 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+5925
+10.21105/joss.05925
+
+Chi: A Python package for treatment response
+modelling
+
+
+
+https://orcid.org/0000-0002-4885-1088
+
+Augustin
+David
+
+
+*
+
+
+
+Department of Computer Science, University of Oxford,
+Oxford, United Kingdom
+
+
+
+
+* E-mail:
+
+
+5
+8
+2023
+
+9
+94
+5925
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+pkpd
+treatment planning
+inference
+Bayesian inference
+
+
+
+
+
+ Summary
+
Chi
+ is an open source Python package for treatment response modelling with
+ support for implementation, simulation and parameter estimation.
+ Supported treatment response models include pharmacokinetic &
+ pharmacodynamic (PKPD) models, physiology-based pharmacokinetic (PBPK)
+ models, quantitative systems pharmacology (QSP) models, and nonlinear
+ mixed effects (NLME) models. The package provides two interfaces to
+ implement single-individual treatment response models: 1. an SBML
+ interface, which implements models based on SBML file specifications
+ (Hucka
+ et al., 2003); and 2. a general purpose interface that allows
+ users to implement their own, custom models using Python code. Models
+ implemented using SBML files automatically provide routines to
+ administer dosing regimens and to evaluate parameter sensitivities
+ using the simulation engine
+ Myokit
+ (Clerx
+ et al., 2016). These single-individual treatment response
+ models can be extended to NLME models, making the simulation of
+ inter-individual variability of treatment responses possible.
+
In
+ Chi,
+ model parameters can be estimated from data using Bayesian inference.
+ We provide a simple interface to infer posterior distributions of
+ model parameters from single-patient data or from population data. For
+ the extreme case where the available population data only contains a
+ single measurement for each individual, the package also implements
+ filter inference, enabling the inference of NLME model parameters from
+ such snapshot time series data
+ (Augustin,
+ Lambert, Wang, et al., 2023). For the purpose of model-informed
+ precision dosing (MIPD),
+ Chi
+ can be used to find individual-specific dosing regimens that optimise
+ treatment responses with respect to a target treatment outcome.
+
To sample from posterior distributions,
+ Chi
+ uses Markov chain Monte Carlo (MCMC) algorithms implemented in the
+ Python package
+ PINTS
+ (Clerx
+ et al., 2019). To optimise dosing regimens, different
+ optimisation algorithms can be used, including optimisers implemented
+ in
+ SciPy
+ (Virtanen
+ et al., 2020) or in
+ PINTS
+ (Clerx
+ et al., 2019).
+
Documentation, tutorials and install instructions are available at
+ https://chi.readthedocs.io.
+
+
+ Statement of need
+
Treatment response modelling has become an integral part of
+ pharmaceutical research
+ (Morgan
+ et al., 2018;
+ Schuck
+ et al., 2015). In the early phase of drug development,
+ treatment response models help with target and lead identification,
+ and contribute to a mechanistic understanding of the relevant
+ pharmacological processes. In the transition to the clinical
+ development phase, these models provide guidance and help to identify
+ safe and efficacious dosing regimens
+ (Lavé
+ et al., 2016). During clinical trials, treatment response
+ models further facilitate the assessment of safety, efficacy and
+ treatment response variability. More recently, treatment response
+ models are also being used in the context of MIPD, where models help
+ to predict individualised dosing regimens for otherwise
+ difficult-to-administer drugs
+ (Augustin,
+ Lambert, Robinson, et al., 2023).
+
The most widely used software packages and computer programs for
+ treatment response modelling include NONMEM
+ (Keizer
+ et al., 2013),
+ Monolix,
+ and Matlab Simbiology
+ (Hosseini
+ et al., 2018). Other software packages include Scipion PKPD
+ (Sorzano
+ et al., 2021),
+ PoPy,
+ Pumas
+ (Rackauckas
+ et al., 2020), and a number of
+ R
+ libraries. These packages provide an extensive toolkit for
+ PKPD modelling. However, most of these solutions are difficult to use
+ for research as their source code is neither publicly distributed nor
+ subject to open-source licenses, which conceals the algorithmic
+ details, limits the transparency of the modelling results, and hinders
+ the methological development. Notable exceptions are Scipion PKPD and
+ the R libraries, which make their source code publicly available on
+ GitHub.
+
Chi
+ is an easy-to-use, open-source Python package for treatment response
+ modelling. It is targeted at modellers on all levels of programming
+ expertise. Modellers with a primary focus on the pharmacology can use
+ Chi
+ to quickly implement models and estimate their model parameters from
+ data. Modellers with an interest in methodological research can use
+ Chi’s
+ modular, open source framework to study the advantages and limitations
+ of different modelling choices, as well as research new approaches for
+ treatment response modelling. We hope that the open-source nature of
+ this package will increase the transparency of treatment response
+ models and facilitate a community effort to further develop their
+ methodology.
+
+
+
+
+
+
+
+ HuckaMichael
+ FinneyAndrew
+ SauroHerbert M
+ BolouriHamid
+ DoyleJohn C
+ KitanoHiroaki
+ ArkinAdam P
+ BornsteinBenjamin J
+ BrayDennis
+ Cornish-BowdenAthel
+ others
+
+ The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models
+ Bioinformatics
+ Oxford University Press
+ 2003
+ 19
+ 4
+ 10.1093/bioinformatics/btg015
+ 524
+ 531
+
+
+
+
+
+ AugustinDavid
+ LambertBen
+ WangKen
+ WalzAntje-Christine
+ RobinsonMartin
+ GavaghanDavid
+
+ Filter inference: A scalable nonlinear mixed effects inference approach for snapshot time series data
+ PLOS Computational Biology
+ Public Library of Science
+ 202305
+ 19
+ 5
+ https://doi.org/10.1371/journal.pcbi.1011135
+ 10.1371/journal.pcbi.1011135
+ 1
+ 29
+
+
+
+
+
+ SchuckEdgar
+ BohnertTonika
+ ChakravartyArijit
+ Damian-IordacheValeriu
+ GibsonChristopher
+ HsuCheng-Pang
+ HeimbachTycho
+ KrishnatryAnu Shilpa
+ LiedererBianca M
+ LinJing
+ MaurerTristan
+ MettetalJerome T
+ MudraDaniel R
+ NijsenMarjoleen Jma
+ RaybonJoseph
+ SchroederPatricia
+ SchuckVirna
+ SuryawanshiSatyendra
+ SuYaming
+ TrapaPatrick
+ TsaiAlice
+ VakilynejadMajid
+ WangShining
+ WongHarvey
+
+ Preclinical pharmacokinetic / pharmacodynamic modeling and simulation in the pharmaceutical industry: An IQ consortium survey examining the current landscape
+ The AAPS journal
+ 2015
+ 17
+ 2
+ 10.1208/s12248-014-9716-2
+ 462
+ 473
+
+
+
+
+
+ MorganPaul
+ BrownDean G.
+ LennardSimon
+ AndertonMark J.
+ BarrettJ. Carl
+ ErikssonUlf
+ FidockMark
+ HamrénBengt
+ JohnsonAnthony
+ MarchRuth E.
+ MatchamJames
+ MettetalJerome
+ NichollsDavid J.
+ PlatzStefan
+ ReesSteve
+ SnowdenMichael A.
+ PangalosMenelas N.
+
+ Impact of a five-dimensional framework on r&d productivity at AstraZeneca
+ Nature Reviews Drug Discovery
+ 2018
+ 17
+ 3
+ https://doi.org/10.1038/nrd.2017.244
+ 10.1038/nrd.2017.244
+ 167
+ 181
+
+
+
+
+
+ LavéThierry
+ CarusoAntonello
+ ParrottNeil
+ WalzAntje
+
+ Translational PK/PD modeling to increase probability of success in drug discovery and early development
+ Drug Discovery Today: Technologies
+ 2016
+ 21-22
+ 1740-6749
+ https://www.sciencedirect.com/science/article/pii/S1740674916300439
+ 10.1016/j.ddtec.2016.11.005
+ 27
+ 34
+
+
+
+
+
+ AugustinDavid
+ LambertBen
+ RobinsonMartin
+ WangKen
+ GavaghanDavid
+
+ Simulating clinical trials for model-informed precision dosing: Using warfarin treatment as a use case
+ Frontiers in Pharmacology
+ 2023
+ 14
+ 1663-9812
+ https://www.frontiersin.org/articles/10.3389/fphar.2023.1270443
+ 10.3389/fphar.2023.1270443
+
+
+
+
+
+ ClerxMichael
+ RobinsonMartin
+ LambertBen
+ LeiChon Lok
+ GhoshSanmitra
+ MiramsGary R.
+ GavaghanDavid J.
+
+ Probabilistic inference on noisy time series (PINTS)
+ Journal of Open Research Software
+ 201907
+ 10.5334/jors.252
+
+
+
+
+
+ KeizerRon J
+ KarlssonMO
+ HookerA
+
+ Modeling and simulation workbench for NONMEM: Tutorial on pirana, PsN, and xpose
+ CPT: pharmacometrics & systems pharmacology
+ Wiley Online Library
+ 2013
+ 2
+ 6
+ 10.1038/psp.2013.24
+ 1
+ 9
+
+
+
+
+
+ HosseiniIraj
+ GajjalaAnita
+ Bumbaca YadavDaniela
+ SukumaranSiddharth
+ RamanujanSaroja
+ PaxsonRicardo
+ GadkarKapil
+
+ gPKPDSim: A SimBiology-based GUI application for PKPD modeling in drug development
+ Journal of pharmacokinetics and pharmacodynamics
+ Springer
+ 2018
+ 45
+ 10.1007/s10928-017-9562-9
+ 259
+ 275
+
+
+
+
+
+ SorzanoCOS
+ Fonseca-ReynaY
+ Cruz-MorenoMA Pérez de la
+
+ Scipion PKPD: An open-source platform for biopharmaceutics, pharmacokinetics and pharmacodynamics data analysis
+ Pharmaceutical Research
+ Springer
+ 2021
+ 38
+ 7
+ 10.1007/s11095-021-03065-1
+ 1169
+ 1178
+
+
+
+
+
+ RackauckasChris
+ MaYingbo
+ NoackAndreas
+ DixitVaibhav
+ MogensenPatrick Kofod
+ ByrneSimon
+ MaddhashiyaShubham
+ Santiago CalderónJosé Bayoán
+ NybergJoakim
+ GobburuJogarao VS
+ others
+
+ Accelerated predictive healthcare analytics with pumas, a high performance pharmaceutical modeling and simulation platform
+ BioRxiv
+ Cold Spring Harbor Laboratory
+ 2020
+ 10.1101/2020.11.28.402297
+ 2020
+ 11
+
+
+
+
+
+ ClerxMichael
+ CollinsPieter
+ De LangeEnno
+ VoldersPaul GA
+
+ Myokit: A simple interface to cardiac cellular electrophysiology
+ Progress in biophysics and molecular biology
+ Elsevier
+ 2016
+ 120
+ 1-3
+ 10.1016/j.pbiomolbio.2015.12.008
+ 100
+ 114
+
+
+
+
+
+ VirtanenPauli
+ GommersRalf
+ OliphantTravis E.
+ HaberlandMatt
+ ReddyTyler
+ CournapeauDavid
+ BurovskiEvgeni
+ PetersonPearu
+ WeckesserWarren
+ BrightJonathan
+ van der WaltStéfan J.
+ BrettMatthew
+ WilsonJoshua
+ MillmanK. Jarrod
+ MayorovNikolay
+ NelsonAndrew R. J.
+ JonesEric
+ KernRobert
+ LarsonEric
+ CareyC J
+ Polatİlhan
+ FengYu
+ MooreEric W.
+ VanderPlasJake
+ LaxaldeDenis
+ PerktoldJosef
+ CimrmanRobert
+ HenriksenIan
+ QuinteroE. A.
+ HarrisCharles R.
+ ArchibaldAnne M.
+ RibeiroAntônio H.
+ PedregosaFabian
+ van MulbregtPaul
+ SciPy 1.0 Contributors
+
+ SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
+ Nature Methods
+ 2020
+ 17
+ 10.1038/s41592-019-0686-2
+ 261
+ 272
+
+
+
+
+
diff --git a/joss.05925/10.21105.joss.05925.pdf b/joss.05925/10.21105.joss.05925.pdf
new file mode 100644
index 0000000000..d1c9585ca2
Binary files /dev/null and b/joss.05925/10.21105.joss.05925.pdf differ